Adaptive Neural Network-Based Fixed-Time Tracking Controller for Disabilities Exoskeleton Wheelchair Robotic System
Abstract
:1. Introduction
- -
- Recommendation of the integral nonsingular terminal sliding mode control scheme, with the aim of fixed-time convergence of position tracking error of the upper-limb exoskeleton robot system;
- -
- Demonstration of fixed-time convergence of the proposed switching surface using the Lyapunov stability concept;
- -
- Compensation for the external disturbance existing in the upper-limb exoskeleton robot system by adopting the adaptive neural network procedure.
2. Wheelchair Upper-Limb Exoskeleton Robot System
3. Preliminaries
4. Main Results
4.1. Integral Nonsingular Fixed-Time Fast Terminal Sliding Mode Control
4.2. Adaptive Neural Network Control Technique
4.2.1. Description of the Neural Network
4.2.2. Adaptive Neural-Based Nonsingular Terminal Sliding Mode Control Method
5. Simulation Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ikeda, H.; Tohyama, T.; Maki, D.; Sato, K.; Nakano, E. Autonomous Step Climbing Strategy Using a Wheelchair and Care Robot. In Proceedings of the 2019 4th International Conference on Control, Robotics and Cybernetics (CRC), Tokyo, Japan, 27–30 September 2019; pp. 75–80. [Google Scholar]
- Aly, A.A.; Vu, M.T.; El-Sousy, F.F.M.; Alotaibi, A.; Mousa, G.; Le, D.-N.; Mobayen, S. Fuzzy-Based Fixed-Time Nonsingular Tracker of Exoskeleton Robots for Disabilities Using Sliding Mode State Observer. Mathematics 2022, 10, 3147. [Google Scholar] [CrossRef]
- Hinderer, M.; Friedrich, P.; Wolf, B. An autonomous stair-climbing wheelchair. Robot. Auton. Syst. 2017, 94, 219–225. [Google Scholar] [CrossRef]
- Quaglia, G.; Nisi, M. Design of a self-leveling cam mechanism for a stair climbing wheelchair. Mech. Mach. Theory 2017, 112, 84–104. [Google Scholar] [CrossRef]
- Escobedo, A.; Spalanzani, A.; Laugier, C. Multimodal control of a robotic wheelchair: Using contextual information for usability improvement. In Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, 3–7 November 2013; pp. 4262–4267. [Google Scholar]
- Song, Z.; Tian, C.; Dai, J.S. Mechanism design and analysis of a proposed wheelchair-exoskeleton hybrid robot for assisting human movement. Mech. Sci. 2019, 10, 11–24. [Google Scholar] [CrossRef] [Green Version]
- Razzaghian, A. A fuzzy neural network-based fractional-order Lyapunov-based robust control strategy for exoskeleton robots: Application in upper-limb rehabilitation. Math. Comput. Simul. 2022, 193, 567–583. [Google Scholar] [CrossRef]
- Meng, Q.; Xie, Q.; Shao, H.; Cao, W.; Wang, F.; Wang, L.; Yu, H.; Li, S. Pilot study of a powered exoskeleton for upper limb rehabilitation based on the wheelchair. BioMed Res. Int. 2019, 2019, 9627438. [Google Scholar] [CrossRef] [PubMed]
- Schabron, B.; Desai, J.; Yihun, Y. Wheelchair-mounted upper limb robotic exoskeleton with adaptive controller for activities of daily living. Sensors 2021, 21, 5738. [Google Scholar] [CrossRef]
- Gull, M.; Thoegersen, M.; Bengtson, S.; Mohammadi, M.; Struijk, L.A.; Moeslund, T.; Bak, T.; Bai, S. A 4-dof upper limb exoskeleton for physical assistance: Design, modeling, control and performance evaluation. Appl. Sci. 2021, 11, 5865. [Google Scholar] [CrossRef]
- Teng, L.; Gull, M.A.; Bai, S. PD-based fuzzy sliding mode control of a wheelchair exoskeleton robot. IEEE/ASME Trans. Mechatron. 2020, 25, 2546–2555. [Google Scholar] [CrossRef]
- Amiri, M.S.; Ramli, R.; Ibrahim, M.F. Initialized model reference adaptive control for lower limb exoskeleton. IEEE Access 2019, 7, 167210–167220. [Google Scholar] [CrossRef]
- He, W.; Li, Z.; Dong, Y.; Zhao, T. Design and adaptive control for an upper limb robotic exoskeleton in presence of input saturation. IEEE Trans. Neural Netw. Learn. Syst. 2018, 30, 97–108. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.H.; Saad, M.; Kenné, J.-P.; Archambault, P.S. Control of an exoskeleton robot arm with sliding mode exponential reaching law. Int. J. Control Autom. Syst. 2013, 11, 92–104. [Google Scholar] [CrossRef]
- Mofid, O.; Amirkhani, S.; Din, S.u.; Mobayen, S.; Vu, M.T.; Assawinchaichote, W. Finite-time convergence of perturbed nonlinear systems using adaptive barrier-function nonsingular sliding mode control with experimental validation. J. Vib. Control 2022, 10775463221094889. [Google Scholar] [CrossRef]
- Alattas, K.A.; Mofid, O.; Alanazi, A.K.; Abo-Dief, H.M.; Bartoszewicz, A.; Bakouri, M.; Mobayen, S. Barrier Function Adaptive Nonsingular Terminal Sliding Mode Control Approach for Quad-Rotor Unmanned Aerial Vehicles. Sensors 2022, 22, 909. [Google Scholar] [CrossRef] [PubMed]
- Riani, A.; Madani, T.; Benallegue, A.; Djouani, K. Adaptive integral terminal sliding mode control for upper-limb rehabilitation exoskeleton. Control Eng. Pract. 2018, 75, 108–117. [Google Scholar] [CrossRef]
- Chen, C.-F.; Du, Z.-J.; He, L.; Wang, J.-Q.; Wu, D.-M.; Dong, W. Active disturbance rejection with fast terminal sliding mode control for a lower limb exoskeleton in swing phase. IEEE Access 2019, 7, 72343–72357. [Google Scholar] [CrossRef]
- Islam, R.; Rahmani, M.; Rahman, M.H. A novel exoskeleton with fractional sliding mode control for upper limb rehabilitation. Robotica 2020, 38, 2099–2120. [Google Scholar] [CrossRef]
- Ahmed, S.; Wang, H.; Tian, Y. Model-free control using time delay estimation and fractional-order nonsingular fast terminal sliding mode for uncertain lower-limb exoskeleton. J. Vib. Control 2018, 24, 5273–5290. [Google Scholar] [CrossRef]
- Ahmed, S.; Wang, H.; Tian, Y. Robust adaptive fractional-order terminal sliding mode control for lower-limb exoskeleton. Asian J. Control 2019, 21, 473–482. [Google Scholar] [CrossRef] [Green Version]
- Xia, K.; Huo, W. Robust adaptive backstepping neural networks control for spacecraft rendezvous and docking with uncertainties. Nonlinear Dyn. 2016, 84, 1683–1695. [Google Scholar] [CrossRef]
- Sun, L.; He, W.; Sun, C. Adaptive fuzzy relative pose control of spacecraft during rendezvous and proximity maneuvers. IEEE Trans. Fuzzy Syst. 2018, 26, 3440–3451. [Google Scholar] [CrossRef]
- Chairez, I.; Andrianova, O.; Poznyak, T.; Poznyak, A. Adaptive modeling of nonnegative environmental systems based on projectional Differential Neural Networks observer. Neural Netw. 2022, 151, 156–167. [Google Scholar] [CrossRef]
- Ballesteros, M.; Chairez, I.; Poznyak, A. Robust optimal feedback control design for uncertain systems based on artificial neural network approximation of the Bellman’s value function. Neurocomputing 2020, 413, 134–144. [Google Scholar] [CrossRef]
- Wu, Q.; Chen, B.; Wu, H. Rbfn-based adaptive backstepping sliding mode control of an upper-limb exoskeleton with dynamic uncertainties. IEEE Access 2019, 7, 134635–134646. [Google Scholar] [CrossRef]
- Chen, X.; Li, D.; Wang, P.; Yang, X.; Li, H. Model-free adaptive sliding mode robust control with neural network estimator for the multi-degree-of-freedom robotic exoskeleton. Complexity 2020, 2020, 8327456. [Google Scholar] [CrossRef]
- Priya, B.; Manohar, S.S. Adaptive Power Control and Duty Cycle based Medium Access Control Protocol for Cluster based Wireless Sensor Network. Sci. Technol. 2020, 23, 38–54. [Google Scholar]
- Precup, R.-E.; Roman, R.-C.; Hedrea, E.-L.; Petriu, E.M.; Bojan-Dragos, C.-A. Data-Driven Model-Free Sliding Mode and Fuzzy Control with Experimental Validation. Int. J. Comput. Commun. Control 2021, 16. [Google Scholar] [CrossRef]
- Zamfirache, I.A.; Precup, R.-E.; Roman, R.-C.; Petriu, E.M. Reinforcement Learning-based control using Q-learning and gravitational search algorithm with experimental validation on a nonlinear servo system. Inf. Sci. 2021, 583, 99–120. [Google Scholar] [CrossRef]
- Utkin, V.I.; Poznyak, A.S. Adaptive sliding mode control with application to super-twist algorithm: Equivalent control method. Automatica 2013, 49, 39–47. [Google Scholar] [CrossRef]
- Poznyak, A.; Fridman, L.; Bejarano, F. Mini-max integral sliding-mode control for multimodel linear uncertain systems. IEEE Trans. Autom. Control 2004, 49, 97–102. [Google Scholar] [CrossRef]
- Utkin, V.; Shi, J. Integral sliding mode in systems operating under uncertainty conditions. In Proceedings of the 35th IEEE Conference on Decision and Control, Kobe, Japan, 11–13 December 1996; pp. 4591–4596. [Google Scholar]
- Laghrouche, S.; Plestan, F.; Glumineau, A. Higher order sliding mode control based on integral sliding mode. Automatica 2007, 43, 531–537. [Google Scholar] [CrossRef]
- Abidi, K.; Xu, J.-X.; Xinghuo, Y. On the discrete-time integral sliding-mode control. IEEE Trans. Autom. Control 2007, 52, 709–715. [Google Scholar] [CrossRef] [Green Version]
- Pan, Y.; Yang, C.; Pan, L.; Yu, H. Integral sliding mode control: Performance, modification, and improvement. IEEE Trans. Ind. Inform. 2017, 14, 3087–3096. [Google Scholar] [CrossRef]
- Tan, S.-C.; Lai, Y.M.; Tse, C.K. Indirect sliding mode control of power converters via double integral sliding surface. IEEE Trans. Power Electron. 2008, 23, 600–611. [Google Scholar]
- Castanos, F.; Fridman, L. Analysis and design of integral sliding manifolds for systems with unmatched perturbations. IEEE Trans. Autom. Control 2006, 51, 853–858. [Google Scholar] [CrossRef] [Green Version]
- Choi, H.H. LMI-based sliding surface design for integral sliding mode control of mismatched uncertain systems. IEEE Trans. Autom. Control 2007, 52, 736–742. [Google Scholar] [CrossRef]
- Mobayen, S. Chaos synchronization of uncertain chaotic systems using composite nonlinear feedback based integral sliding mode control. ISA Trans. 2018, 77, 100–111. [Google Scholar] [CrossRef]
- Mobayen, S.; Vargas, A.N.; Acho, L.; Pujol-Vázquez, G.; Caruntu, C.F. Stabilization of two-dimensional nonlinear systems through barrier-function-based integral sliding-mode control: Application to a magnetic levitation system. Nonlinear Dyn. 2022, 1–12. [Google Scholar] [CrossRef]
- Oussar, Y.; Rivals, I.; Personnaz, L.; Dreyfus, G. Training wavelet networks for nonlinear dynamic input–output modeling. Neurocomputing 1998, 20, 173–188. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.-M.; Hsu, C.-F. Neural-network hybrid control for antilock braking systems. IEEE Trans. Neural Netw. 2003, 14, 351–359. [Google Scholar] [CrossRef]
- Pan, H.; Zhang, G.; Ouyang, H.; Mei, L. Novel fixed-time nonsingular fast terminal sliding mode control for second-order uncertain systems based on adaptive disturbance observer. IEEE Access 2020, 8, 126615–126627. [Google Scholar] [CrossRef]
Reference | Disadvantageous |
---|---|
[14] | fast convergence rate of the closed-loop system has not been offered using this control method |
[17,18,19,20,21] | the effect of the external disturbances is not considered. |
[26,27] | fast convergence rate of tracking error has not been investigated. |
Number | Initial Condition |
---|---|
Example 1 | |
Example 2 |
Parameter | Value | Parameter | Value |
---|---|---|---|
Example 1 | |
Example 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aly, A.A.; Vu, M.T.; El-Sousy, F.F.M.; Hsia, K.-H.; Alotaibi, A.; Mousa, G.; Le, D.-N.; Mobayen, S. Adaptive Neural Network-Based Fixed-Time Tracking Controller for Disabilities Exoskeleton Wheelchair Robotic System. Mathematics 2022, 10, 3853. https://doi.org/10.3390/math10203853
Aly AA, Vu MT, El-Sousy FFM, Hsia K-H, Alotaibi A, Mousa G, Le D-N, Mobayen S. Adaptive Neural Network-Based Fixed-Time Tracking Controller for Disabilities Exoskeleton Wheelchair Robotic System. Mathematics. 2022; 10(20):3853. https://doi.org/10.3390/math10203853
Chicago/Turabian StyleAly, Ayman A., Mai The Vu, Fayez F. M. El-Sousy, Kuo-Hsien Hsia, Ahmed Alotaibi, Ghassan Mousa, Dac-Nhuong Le, and Saleh Mobayen. 2022. "Adaptive Neural Network-Based Fixed-Time Tracking Controller for Disabilities Exoskeleton Wheelchair Robotic System" Mathematics 10, no. 20: 3853. https://doi.org/10.3390/math10203853
APA StyleAly, A. A., Vu, M. T., El-Sousy, F. F. M., Hsia, K.-H., Alotaibi, A., Mousa, G., Le, D.-N., & Mobayen, S. (2022). Adaptive Neural Network-Based Fixed-Time Tracking Controller for Disabilities Exoskeleton Wheelchair Robotic System. Mathematics, 10(20), 3853. https://doi.org/10.3390/math10203853