# Artificial Neural Network as a Tool for Estimation of the Higher Heating Value of Miscanthus Based on Ultimate Analysis

^{1}

^{2}

^{*}

## Abstract

**:**

^{2}= 0.77). The paper proves the possibility of using ANN models in practical application in determining fuel properties of biomass energy crops and greater accuracy in predicting HHV than the regression models offered in the literature.

## 1. Introduction

^{2}values with existing regression models.

## 2. Materials and Methods

#### 2.1. Crop Establishment and Data Collection

#### 2.2. Statistical Analysis

^{2}) (Equation (1)), root mean square error (RMSE) (Equation (2)), coefficient of determination (R

^{2}), mean bias error (MBE) (Equation (3)), mean percentage error (MPE) (Equation (4)), and sum of squared estimate of errors (SSE) (Equation (5)). The RMSE shows the efficiency of the model by comparing the predicted values with the already measured values. The value obtained by the MBE is used as an indicator of the standard deviation of the predicted values from the measured values [19]. The listed parameters are given by the following formula [20].

_{exp,i}stands for the experimental values and x

_{pre,i}is the predicted values calculated by the model, N and n are the number of observations and constants, respectively.

#### 2.3. ANN Modeling

_{1}and B

_{1}and W

_{2}and B

_{2}, respectively [26]. The neural network model can be represented in matrix notation: Equation for calculating the output data (Equation (7)) of the neural network [27]:

_{1}and f

_{2}represent the transfer function in the hidden and output layer, X represents the matrix of the input layer [28].

#### 2.4. Regression Models

## 3. Results

## 4. Discussion

#### 4.1. Prediction of HHV Using Developed Regression Models

^{2}) was used as the most important statistical parameter to evaluate the suitability of the mathematical models, which was lowest for model 1, 8 and model 10 (R

^{2}= 0.00) and highest for model 9 (R

^{2}= 0.47) in the calculations for 10 different models. The reliability of the regression models and ANN is ensured by the parameters MPE, SSE and R

^{2}, but other parameters (for most models) also show good performance. The calculated statistical parameter x

^{2}shows good performance in models 2,5,7 (0.19) and in model 9 (0.17). For the above-mentioned reason, it is necessary to consider several statistical parameters when evaluating performance of the model.

#### 4.2. ANN Model

^{2}value (0.77 overall) and an overall low sum of squares value (SOS) were achieved during the training cycle (Table 4).

^{2}(0.07), RMSE (0.27), MBE (−0.03), MPE (1.10), SSE (13.74), and R

^{2}(0.77). The residual analysis also yielded the parameters skewness (0.534), kurtosis (2.293), standard deviation (0.269), and variance (0.072). Conducted analysis shows that the model has good predictive accuracy.

## 5. Conclusions

^{2}value. The calculations performed according to the proposed non-linear mathematical models are not suitable enough to predict the HHV biomass of miscanthus (R

^{2}≤ 0.47). Incorporating available data from the ultimate analysis of miscanthus the developed neural network model showed high accuracy in predicting the higher heating value (overall R

^{2}= 0.77). The factors N, C, S, H, and O influence the value of HHV. In the developed model, the increase in HHV is mainly influenced by the increase in the values of the parameter S. Although these models are not yet widely used as mathematical models for prediction (especially for variables that have nonlinear relationships), they offer the possibility of obtaining the desired result with less time, lower cost, and satisfactory accuracy, which can replace existing empirical methods. The developed model will be able to make more accurate predictions as more input data is collected. Future plans are to expand the database (literature sources and experimental data) and the development of new models such as Random Forest Regression and Support Vector Machine.

## Supplementary Materials

## Author Contributions

## Funding

## Institutional Review Board Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Koçar, G.; Civaş, N. An overview of biofuels from energy crops: Current status and future prospects. Renew. Sustain. Energy Rev.
**2013**, 28, 900–916. [Google Scholar] [CrossRef] - Long, H.; Li, X.; Wang, H.; Jia, J. resources and their bioenergy potential estimation: A review. Renew. Sustain. Energy Rev.
**2013**, 26, 344–352. [Google Scholar] [CrossRef] - Baxter, X.C.; Darvell, L.I.; Jones, J.M.; Barraclough, T.; Yates, N.E.; Shield, I. Miscanthus combustion properties and variations with Miscanthus agronomy. Fuel
**2014**, 117, 851–869. [Google Scholar] [CrossRef][Green Version] - Yi, L.; Feng, J.; Qin, Y.H.; Li, W.Y. Prediction of elemental composition of coal using proximate analysis. Fuel
**2017**, 193, 315–321. [Google Scholar] [CrossRef] - Sheng, C.; Azevedo, J.L.T. Estimating the higher heating value of biomass fuels from basic analysis data. Biomass Bioenergy
**2005**, 28, 499–507. [Google Scholar] [CrossRef] - Dai, Z.; Chen, Z.; Selmi, A.; Jermsittiparsert, K.; Denić, N.M.; Nešić, Z. Machine learning prediction of higher heating value of biomass. Biomass Convers. Biorefin.
**2021**, 1–9. [Google Scholar] [CrossRef] - Giwa, S.O.; Adekomaya, S.O.; Adama, K.O.; Mukaila, M.O. Prediction of selected biodiesel fuel properties using artificial neural network. Front. Energy
**2015**, 9, 433–445. [Google Scholar] [CrossRef] - Dashti, A.; Noushabadi, A.S.; Raji, M.; Razmi, A.; Ceylan, S.; Mohammadi, A.H. Estimation of biomass higher heating value (HHV) based on the proximate analysis: Smart modeling and correlation. Fuel
**2019**, 257, 115931. [Google Scholar] [CrossRef] - Pattanayak, S.; Loha, C.; Hauchhum, L.; Sailo, L. Application of MLP-ANN models for estimating the higher heating value of bamboo biomass. Biomass Convers. Biorefin.
**2021**, 11, 2499–2508. [Google Scholar] [CrossRef] - Vardiambasis, I.O.; Kapetanakis, T.N.; Nikolopoulos, C.D.; Trang, T.K.; Tsubota, T.; Keyikoglu, R.; Khataee, A.; Kalderis, D. Hydrochars as emerging biofuels: Recent advances and application of artificial neural networks for the prediction of heating values. Energies
**2020**, 13, 4572. [Google Scholar] [CrossRef] - Özveren, U. An artificial intelligence approach to predict gross heating value of lignocellulosic fuels. J. Energy Inst.
**2017**, 90, 397–407. [Google Scholar] [CrossRef] - Olatunji, O.O.; Akinlabi, S.; Madushele, N.; Adedeji, P.A.; Felix, I. Multilayer perceptron artificial neural network for the prediction of heating value of municipal solid waste. AIMS Energy
**2019**, 7, 944–956. [Google Scholar] [CrossRef] - Kartal, F.; Özveren, U. A deep learning approach for prediction of syngas lower heating value from CFB gasifier in Aspen plus
^{®}. Energy**2020**, 209, 118457. [Google Scholar] [CrossRef] - Ahmed, A.A.M. Prediction of dissolved oxygen in Surma River by biochemical oxygen demand and chemical oxygen demand using the artificial neural networks (ANNs). J. King Saud Univ. Eng. Sci.
**2017**, 29, 151–158. [Google Scholar] [CrossRef][Green Version] - Alizadeh, M.J.; Kavianpour, M.R. Development of wavelet-ANN models to predict water quality parameters in Hilo Bay, Pacific Ocean. Mar. Pollut. Bull.
**2015**, 98, 171–178. [Google Scholar] [CrossRef] - Noushabadi, A.S.; Dashti, A.; Ahmadijokani, F.; Hu, J.; Mohammadi, A.H. Estimation of higher heating values (HHVs) of biomass fuels based on ultimate analysis using machine learning techniques and improved equation. Renew. Energy
**2021**, 179, 550–562. [Google Scholar] [CrossRef] - Voća, N.; Leto, J.; Karažija, T.; Bilandžija, N.; Peter, A.; Kutnjak, H.; Šurić, J.; Poljak, M. Energy properties and biomass yield of miscanthus x giganteus fertilized by municipal sewage sludge. Molecules
**2021**, 26, 4371. [Google Scholar] [CrossRef] [PubMed] - Meehan, P.G.; Finnan, J.M.; Donnell, K.P.M. The effect of harvest date and harvest method on the combustion characteristics of Miscanthus X giganteus. GCB Bioenergy
**2013**, 5, 487–496. [Google Scholar] [CrossRef] - Khalil, S.A.; Shaffie, A.M. A comparative study of total, direct and diffuse solar irradiance by using different models on horizontal and inclined surfaces for Cairo, Egypt. Renew. Sustain. Energy Rev.
**2013**, 27, 853–863. [Google Scholar] [CrossRef] - Arsenović, M.; Pezo, L.; Stanković, S.; Radojević, Z. Factor space differentiation of brick clays according to mineral content: Prediction of final brick product quality. Appl. Clay Sci.
**2015**, 115, 108–114. [Google Scholar] [CrossRef] - Yoon, Y.; Swales, G.; Margavio, T.M. A Comparison of Discriminant Analysis versus Artificial Neural Networks. J. Oper. Res. Soc.
**1993**, 44, 51–60. [Google Scholar] [CrossRef] - Mesroghli, S.; Jorjani, E.; Chehreh Chelgani, S. Estimation of gross calorific value based on coal analysis using regression and artificial neural networks. Int. J. Coal Geol.
**2009**, 79, 49–54. [Google Scholar] [CrossRef] - Cinar, A.C. Training Feed-Forward Multi-Layer Perceptron Artificial Neural Networks with a Tree-Seed Algorithm. Arab. J. Sci. Eng.
**2020**, 45, 10915–10938. [Google Scholar] [CrossRef] - Darvishan, A.; Bakhshi, H.; Madadkhani, M.; Mir, M.; Bemani, A. Application of MLP-ANN as a novel predictive method for prediction of the higher heating value of biomass in terms of ultimate analysis. Energy Source Part A
**2018**, 40, 2960–2966. [Google Scholar] [CrossRef] - Grieu, S.; Faugeroux, O.; Traoré, A.; Claudet, B.; Bodnar, J.L. Artificial intelligence tools and inverse methods for estimating the thermal diffusivity of building materials. Energy Build.
**2011**, 43, 543–554. [Google Scholar] [CrossRef][Green Version] - Voca, N.; Pezo, L.; Peter, A.; Suput, D.; Loncar, B.; Kricka, T. Modelling of corn kernel pre-treatment, drying and processing for ethanol production using artificial neural networks. Ind. Crop. Prod.
**2021**, 162, 113293. [Google Scholar] [CrossRef] - Pezo, L.L.; Ćurčić, B.L.; Filipović, V.S.; Nićetin, M.R.; Koprivica, G.B.; Mišljenović, N.M.; Lević, L.B. Artificial neural network model of pork meat cubes osmotic dehydratation. Hem. Ind.
**2013**, 67, 465–475. [Google Scholar] [CrossRef] - Kollo, T.; von Rosen, D. Advanced Multivariate Statistics with Matrices; Springer: Dordrecht, The Netherlands, 2005. [Google Scholar]
- Garijo, D. A Bernstein Broyden–Fletcher–Goldfarb–Shanno collocation method to solve non-linear beam models. Int. J. Nonlinear Mech.
**2021**, 131, 103672. [Google Scholar] [CrossRef] - Nhuchhen, D.R.; Afzal, M.T. HHV predicting correlations for torrefied biomass using proximate and ultimate analyses. Bioengineering
**2017**, 4, 7. [Google Scholar] [CrossRef][Green Version] - Callejón-Ferre, A.J.; Velázquez-Martí, B.; López-Martínez, J.A.; Manzano-Agugliaro, F. Greenhouse crop residues: Energy potential and models for the prediction of their higher heating value. Renew. Sustain. Energy Rev.
**2011**, 15, 948–955. [Google Scholar] [CrossRef] - Bilandžija, N.; Voća, N.; Leto, J.; Jurišić, V.; Grubor, M.; Matin, A.; Krička, T. Yield and Biomass Composition of Miscanthus x Giganteus in the Mountain Area of Croatia. In Transactions of FAMENA; University of Zagreb: Zagreb, Croatia, 2018; Volume 42, pp. 51–60. [Google Scholar]
- Rutledge, D.N. Comparison of Principal Components Analysis, Independent Components Analysis and Common Components Analysis. J. Anal. Test.
**2018**, 2, 235–248. [Google Scholar] [CrossRef] - Agahian, S.; Akan, T. Battle royale optimizer for training multi-layer perceptron. Evol. Syst.
**2021**, 123456789. [Google Scholar] [CrossRef] - Geladi, P.; Manley, M.; Lestander, T. Scatter plotting in multivariate data analysis. J. Chemometr.
**2003**, 17, 503–511. [Google Scholar] [CrossRef] - Keim, D.A.; Hao, M.C.; Dayal, U.; Janetzko, H.; Bak, P. Generalized scatter plots. Inform. Visual.
**2010**, 9, 301–311. [Google Scholar] [CrossRef]

Sr.no. | Proposed Equations from the Literature | References |
---|---|---|

1 | HHV = a + b · C | [31] |

2 | HHV − a + b · H | [31] |

3 | HHV − a + b · O | [31] |

4 | $HHV=a+b\cdot \frac{O}{C}$ | [31] |

5 | $HHV=a+b\cdot \frac{H}{C}$ | [31] |

6 | HHV = a + b · C + c · H + d · C^{2} + e · H^{2} | [31] |

7 | $HHV=a+b\cdot \frac{O}{C}+c\cdot \frac{H}{C}+d\cdot {\left(\frac{O}{C}\right)}^{2}+e\cdot {\left(\frac{H}{C}\right)}^{2}$ | [31] |

8 | HHV = a · C − b | [5] |

9 | HHV = a + b · C^{2} + c · C + d · H + e · C · H + g · N | [30] |

10 | $HHV=a+b\cdot {\left(C\right)}^{2}$ | [31] |

**Table 2.**Average values of nitrogen, carbon, sulfur, hydrogen, and oxygen of investigated biomass of miscanthus.

Sample | N | C | S | H | O | HHV |
---|---|---|---|---|---|---|

MxG1 | 0.24 ± 0.15 ^{a} | 51.49 ± 0.58 ^{a} | 0.11 ± 0.04 ^{a} | 5.82 ± 0.32 ^{a} | 42.33 ± 0.74 ^{a} | 18.21 ± 0.54 ^{a} |

MxG2 | 0.19 ± 0.13 ^{a} | 51.3 ± 0.53 ^{a} | 0.14 ± 0.06 ^{a} | 5.85 ± 0.2 ^{a} | 42.53 ± 0.42 ^{a} | 18.16 ± 0.37 ^{a} |

MxG3 | 0.23 ± 0.15 ^{a} | 50.9 ± 0.96 ^{a} | 0.14 ± 0.06 ^{a} | 5.82 ± 0.2 ^{a} | 42.91 ± 0.89 ^{a} | 18.22 ± 0.58 ^{a} |

MxG4 | 0.22 ± 0.13 ^{a} | 51.75 ± 0.73 ^{a} | 0.21 ± 0.3 ^{a} | 5.83 ± 0.33 ^{a} | 41.99 ± 0.69 ^{a} | 18.24 ± 0.64 ^{a} |

MxG5 | 0.2 ± 0.09 ^{a} | 51.38 ± 0.8 ^{a} | 0.14 ± 0.08 ^{a} | 5.84 ± 0.33 ^{a} | 42.44 ± 0.82 ^{a} | 18.37 ± 0.48 ^{a} |

MxG6 | 0.31 ± 0.21 ^{a} | 51.53 ± 0.86 ^{a} | 0.21 ± 0.2 ^{a} | 5.89 ± 0.23 ^{a} | 42.06 ± 0.88 ^{a} | 18.45 ± 0.61 ^{a} |

MxG7 | 0.2 ± 0.13 ^{a} | 51.33 ± 0.93 ^{a} | 0.12 ± 0.09 ^{a} | 5.82 ± 0.33 ^{a} | 42.54 ± 0.92 ^{a} | 17.97 ± 0.73 ^{a} |

MxG8 | 0.2 ± 0.11 ^{a} | 51.65 ± 1.33 ^{a} | 0.11 ± 0.06 ^{a} | 5.88 ± 0.27 ^{a} | 42.16 ± 1.18 ^{a} | 18.23 ± 0.64 ^{a} |

MxG9 | 0.21 ± 0.12 ^{a} | 51.76 ± 0.77 ^{a} | 0.13 ± 0.05 ^{a} | 5.85 ± 0.35 ^{a} | 42.05 ± 0.86 ^{a} | 18.35 ± 0.32 ^{a} |

MxG10 | 0.18 ± 0.1 ^{a} | 51.48 ± 0.97 ^{a} | 0.11 ± 0.05 ^{a} | 5.83 ± 0.33 ^{a} | 42.4 ± 0.85 ^{a} | 18.1 ± 0.61 ^{a} |

MxG11 | 0.22 ± 0.16 ^{a} | 51.09 ± 1.14 ^{a} | 0.11 ± 0.05 ^{a} | 5.85 ± 0.27 ^{a} | 42.74 ± 1.12 ^{a} | 18.06 ± 0.33 ^{a} |

MxG12 | 0.19 ± 0.11 ^{a} | 51.6 ± 0.82 ^{a} | 0.12 ± 0.06 ^{a} | 5.86 ± 0.35 ^{a} | 42.24 ± 0.97 ^{a} | 18.51 ± 0.5 ^{a} |

MxG13 | 0.27 ± 0.22 ^{a} | 51.15 ± 0.8 ^{a} | 0.15 ± 0.09 ^{a} | 5.79 ± 0.36 ^{a} | 42.64 ± 0.86 ^{a} | 18.24 ± 0.6 ^{a} |

MxG14 | 0.2 ± 0.14 ^{a} | 51.53 ± 0.82 ^{a} | 0.09 ± 0.03 ^{a} | 5.31 ± 1.71 ^{a} | 42.86 ± 2.12 ^{a} | 17.83 ± 0.81 ^{a} |

MxG15 | 0.25 ± 0.15 ^{a} | 51.73 ± 0.99 ^{a} | 0.12 ± 0.05 ^{a} | 5.83 ± 0.38 ^{a} | 42.08 ± 1.19 ^{a} | 18.09 ± 0.4 ^{a} |

MxG16 | 0.18 ± 0.12 ^{a} | 51.11 ± 1.12 ^{a} | 0.11 ± 0.05 ^{a} | 5.83 ± 0.33 ^{a} | 42.77 ± 1.15 ^{a} | 18.02 ± 0.43 ^{a} |

Model | x^{2} | RMSE | MBE | MPE | SSE | R^{2} | Skewness | Kurtosis | SD | Variance |
---|---|---|---|---|---|---|---|---|---|---|

Model 1 | 0.31 | 0.01 | 0.01 | 854.24 | 59.66 | 0.00 | −0.63 | 1.47 | 0.56 | 0.31 |

Model 2 | 0.19 | 0.01 | 0.01 | 578.45 | 35.56 | 0.40 | −1.32 | 9.26 | 0.43 | 0.19 |

Model 3 | 0.30 | 0.01 | 0.01 | 810.35 | 57.95 | 0.03 | −0.67 | 2.10 | 0.55 | 0.30 |

Model 4 | 0.31 | 0.01 | 0.01 | 830.08 | 58.92 | 0.02 | −0.65 | 1.81 | 0.56 | 0.31 |

Model 5 | 0.19 | 0.01 | 0.01 | 623.98 | 36.77 | 0.38 | −1.19 | 6.78 | 0.44 | 0.19 |

Model 6 | 0.22 | 0.01 | 0.01 | 582.07 | 42.91 | 0.36 | −1.53 | 12.54 | 0.47 | 0.22 |

Model 7 | 0.19 | 0.01 | 0.01 | 585.55 | 35.77 | 0.40 | −1.28 | 8.67 | 0.43 | 0.19 |

Model 8 | 0.31 | 0.01 | 0.01 | 854.24 | 59.66 | 0.00 | −0.63 | 1.47 | 0.56 | 0.31 |

Model 9 | 0.17 | 0.01 | 0.01 | 526.96 | 31.57 | 0.47 | −1.79 | 13.09 | 0.41 | 0.17 |

Model 10 | 0.31 | 0.01 | 0.01 | 853.32 | 59.64 | 0.00 | −0.63 | 1.49 | 0.56 | 0.31 |

ANN | 0.07 | 0.27 | -0.03 | 1.10 | 13.74 | 0.77 | 0.53 | 2.29 | 0.27 | 0.07 |

^{2}—reduced chi-square, RMSE—root mean square error, R

^{2}—coefficient of determination, MBE—mean bias error and MPE—mean percentage error, ANN—artificial neural network.

Input Layer | Output Layer | ||||||
---|---|---|---|---|---|---|---|

Weight | Bias | Weight | Bias | ||||

N | C | S | H | O | HHV | ||

−1.74 | 10.34 | −30.08 | −7.41 | 1.90 | 1.62 | −1.76 | 2.06 |

−0.28 | 3.37 | 1.69 | 2.99 | −4.61 | −0.37 | 1.18 | |

2.58 | −0.83 | −5.02 | −0.40 | −0.37 | −1.56 | 0.20 | |

4.23 | −0.73 | −6.78 | −0.79 | 0.10 | −1.40 | −0.31 | |

10.55 | −3.52 | −15.48 | 12.93 | −0.96 | −2.58 | −1.91 | |

1.08 | 1.54 | 1.49 | −2.03 | −3.48 | −1.57 | −0.44 | |

3.56 | −2.75 | −8.74 | 1.54 | 1.03 | −2.09 | −1.30 | |

−3.67 | 1.30 | 2.92 | 2.02 | −2.74 | −0.87 | 0.48 | |

−2.72 | −0.49 | 6.47 | −0.49 | 0.34 | 0.75 | −0.60 | |

2.25 | 2.01 | 6.90 | −5.15 | 1.20 | 3.20 | 0.47 | |

−1.14 | 1.93 | 2.53 | 0.98 | −1.49 | 0.71 | −1.56 |

Net. Name | Train. Perf. | Test Perf. | Valid. Perf. | Train. Error | Test Error | Valid. Error | Train. Algorithm | Error Function | Hidden Activation | Output Activation |
---|---|---|---|---|---|---|---|---|---|---|

MLP 5-11-1 | 0.861 | 0.902 | 0.951 | 0.042 | 0.026 | 0.021 | BFGS 71 | SOS | Tanh | Logistic |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Brandić, I.; Pezo, L.; Bilandžija, N.; Peter, A.; Šurić, J.; Voća, N. Artificial Neural Network as a Tool for Estimation of the Higher Heating Value of Miscanthus Based on Ultimate Analysis. *Mathematics* **2022**, *10*, 3732.
https://doi.org/10.3390/math10203732

**AMA Style**

Brandić I, Pezo L, Bilandžija N, Peter A, Šurić J, Voća N. Artificial Neural Network as a Tool for Estimation of the Higher Heating Value of Miscanthus Based on Ultimate Analysis. *Mathematics*. 2022; 10(20):3732.
https://doi.org/10.3390/math10203732

**Chicago/Turabian Style**

Brandić, Ivan, Lato Pezo, Nikola Bilandžija, Anamarija Peter, Jona Šurić, and Neven Voća. 2022. "Artificial Neural Network as a Tool for Estimation of the Higher Heating Value of Miscanthus Based on Ultimate Analysis" *Mathematics* 10, no. 20: 3732.
https://doi.org/10.3390/math10203732