Spectra of Complemented Triangulation Graphs
Abstract
:1. Introduction
2. Spectra of Complemented Triangulation Graphs
2.1. A-Spectra of Complemented Triangulation Graphs
- (a)
- 0, repeated times;
- (b)
- (c)
- for .
2.2. L-Spectra of Complemented Triangulation Graphs
- (a)
- ;
- (b)
- , repeated times;
- (c)
- where
- (d)
- 0.
2.3. Q-Spectra of Complemented Triangulation Graphs
- (a)
- , repeated times;
- (b)
- (c)
- where
3. Consequences
3.1. Constructing Cospectral Graphs
- (a)
- If and are A-cospectral regular graphs, then and are A-cospectral graphs.
- (b)
- If and are L-cospectral regular graphs, then and are L-cospectral graphs.
- (c)
- If and are Q-cospectral regular graphs, then and are Q-cospectral graphs.
3.2. The Number of Spanning Trees
3.3. The Kirchhoff Index
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brouwer, A.E.; Haemers, W.H. Spectra of Graphs; Springer: New York, NY, USA, 2012. [Google Scholar]
- Cvetković, D.M.; Doob, M.; Sachs, H. Spectra of Graphs—Theory and Applications, 3rd ed.; Johann Ambrosius Barth: Heidelberg, Germany, 1995. [Google Scholar]
- Cvetković, D.M.; Rowlinson, P.; Simić, H. An Introduction to the Theory of Graph Spectra; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Cui, S.-Y.; Tian, G.-X. The spectrum and the signless Laplacian spectrum of coronae. Linear Algebra Appl. 2012, 437, 1692–1703. [Google Scholar] [CrossRef]
- Hou, Y.; Shiu, W.-C. The spectrum of the edge corona of two graphs. Electron. J. Linear Algebra 2010, 20, 586–594. [Google Scholar] [CrossRef]
- Lan, J.; Zhou, B. Spectra of graph operations based on R-graph. Linear Multilinear Algebra 2015, 63, 1401–1422. [Google Scholar] [CrossRef]
- Liu, X.; Lu, P. Spectra of subdivision-vertex and subdivision-edge neighbourhood coronae. Linear Algebra Appl. 2013, 438, 3547–3559. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Q. Laplacian state transfer in total graphs. Discrete Math. 2021, 344, 112139. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, S. Spectra of the neighbourhood corona of two graphs. Linear Multilinear Algebra 2014, 62, 1205–1219. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Z. Spectra of subdivision-vertex join and subdivision-edge join of two graphs. Bull. Malays. Math. Sci. Soc. 2019, 42, 15–31. [Google Scholar] [CrossRef]
- Liu, J.-B.; Bao, Y.; Zheng, W.-T.; Hayat, S. Network coherence analysis on a family of nested weighted n-polygon networks. Fractals 2021, 29, 2150260. [Google Scholar] [CrossRef]
- Liu, J.-B.; Pan, X.F. Minimizing Kirchhoffindex among graphs with a given vertex bipartiteness. Appl. Math. Comput. 2016, 291, 84–88. [Google Scholar] [CrossRef]
- Liu, J.-B.; Pan, X.F.; Yu, L.; Li, D. Complete characterization of bicyclic graphs with minimal Kirchhoff index. Discrete Appl. Math. 2016, 200, 95–107. [Google Scholar] [CrossRef]
- Rajkumar, R.; Gayathri, M. Spectra of (H1,H2)-merged subdivision graph of a graph. Indagat. Math. 2019, 30, 1061–1076. [Google Scholar] [CrossRef]
- McLeman, C.; McNicholas, E. Spectra of coronae. Linear Algebra Appl. 2011, 435, 998–1007. [Google Scholar] [CrossRef]
- Zhang, F. The Schur Complement and Its Applications; Springer: New York, NY, USA, 2005. [Google Scholar]
- van Dam, E.R.; Haemers, W.H. Which graphs are determined by their spectrum? Linear Algebra Appl. 2003, 373, 241–272. [Google Scholar] [CrossRef]
- Bonchev, D.; Balaban, A.T.; Liu, X.; Klein, D.J. Molecular cyclicity and centricity of polycyclic graphs. I. Cyclicity based on resistance distances or reciprocal distances. Internat. J. Quant. Chem. 1994, 50, 1–20. [Google Scholar] [CrossRef]
- Klein, D.J.; Randić, M. Resistance distance. J. Math. Chem. 1993, 12, 81–95. [Google Scholar] [CrossRef]
- Gutman, I.; Mohar, B. The quasi-Wiener and the Kirchhoff indices coincide. J. Chen. Inf. Comput. Sci. 1996, 36, 982–985. [Google Scholar] [CrossRef]
- Zhu, H.-Y.; Klein, D.J.; Lukovits, I. Extensions of the Wiener number. J. Chem. Inf. Comput. Sci. 1996, 36, 420–428. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, J.; Wang, J. Spectra of Complemented Triangulation Graphs. Mathematics 2022, 10, 3168. https://doi.org/10.3390/math10173168
Wei J, Wang J. Spectra of Complemented Triangulation Graphs. Mathematics. 2022; 10(17):3168. https://doi.org/10.3390/math10173168
Chicago/Turabian StyleWei, Jia, and Jing Wang. 2022. "Spectra of Complemented Triangulation Graphs" Mathematics 10, no. 17: 3168. https://doi.org/10.3390/math10173168
APA StyleWei, J., & Wang, J. (2022). Spectra of Complemented Triangulation Graphs. Mathematics, 10(17), 3168. https://doi.org/10.3390/math10173168