Hermite-Hadamard-Type Integral Inequalities for Convex Functions and Their Applications
Abstract
:1. Introduction
2. New Hermite-Hadamard-Type Inequalities for Convex Functions
- Let us consider the function and Then, we have
- Let us take , whereTherefore, we get
- Next, we let and . Hence, for this case, we haveHence, we obtain
3. Applications
3.1. Some New Inequalities for the Digamma Function in Terms of the Trigamma Function
3.2. Applications of Hermite-Hadamard-Type Inequalities to Linear Combinations of Some Special Means
- The arithmetic and geometric means given by
- The logarithmic mean given by
- The generalized logarithmic mean given by
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dragomir, S.S.; Pearce, C.E.M. Selected Topics on Hermite–Hadamard Inequalities and Applications; RGMIA Monograph Series; Victoria University of Technology: Melbourne, Australia, 2003; Available online: https://ssrn.com/abstract=3158351 (accessed on 5 July 2022).
- Mitrinović, D.S.; Peĉarić, J.; Fink, A. Classical and New Inequalities in Analysis; (Eastern European Series on Mathematics and Its Applications); Kluwer Academic Publishers: Dordrecht, The Netherlands, 1993; Volume 61. [Google Scholar]
- Shishkina, E.; Sitnik, S.M. Transmutations, Singular and Fractional Differential Equations with Applications to Mathematical Physics; (Series on Mathematics in Science and Engineering); Academic Press: Cambridge, MA, USA, 2020. [Google Scholar]
- Alomari, M.; Darus, M.; Dragomir, S.S. New inequalities of Hermite–Hadamard type for functions whose second derivates absolute values are quasi-convex. RGMIA Res. Rep. Collect. 2009, 12, 1–5. [Google Scholar]
- Azpeitia, A.G. Convex functions and the Hadamard inequality. Rev. Colomb. Mat. 1994, 28, 7–12. [Google Scholar]
- Bakula, M.K.; Peĉarić, J.E. Note on some Hadamard-type inequalities. J. Inequal. Pure Appl. Math. 2004, 5, 74. [Google Scholar]
- Dragomir, S.S.; Agarwal, R.P. Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula. Appl. Math. Lett. 1998, 11, 91–95. [Google Scholar] [CrossRef]
- Dragomir, S.S. On some new inequalities of Hermite-Hadamard type for m-convex functions. Tamkang J. Math. 2002, 33, 45–56. [Google Scholar] [CrossRef]
- Dragomir, S.S. Two mappings in connection to Hadamard’s inequalities. J. Math. Anal. Appl. 1992, 167, 49–56. [Google Scholar] [CrossRef]
- Erden, S.; Sarikaya, M.Z. New Hermite-hadamard type inequalities for twice differentiable convex mappings via green function and applications. Moroccan J. Pure Appl. Anal. 2016, 2, 107–117. [Google Scholar] [CrossRef]
- Kavurmaci, H.; Avci, M.; Özdemir, M.E. New inequalities of hermite-hadamard type for convex functions with applications. J. Inequal. Appl. 2011, 2011, 86. [Google Scholar] [CrossRef]
- Kirmaci, U.S. Inequalities for differentiable mappings and applications to special means of real numbers to midpoint formula. Appl. Math. Comput. 2004, 147, 137–146. [Google Scholar] [CrossRef]
- Kirmaci, U.S.; Bakula, M.K.; Özdemir, M.E.; Peĉarić, J.E. Hadamard-tpye inequalities for s-convex functions. Appl. Math. Comput. 2007, 193, 26–35. [Google Scholar] [CrossRef]
- Pearce, C.E.M.; Peĉarić, J.E. Inequalities for differentiable mappings with application to special means and quadrature formula. Appl. Math. Lett. 2000, 13, 51–55. [Google Scholar] [CrossRef]
- Özdemir, M.E.; Avci, M.; Set, E. On some inequalities of Hermite-Hadamard type via m-convexity. Appl. Math. Lett. 2010, 23, 1065–1070. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Set, E.; Özdemir, M.E. On some new inequalities of hadamard-type involving h-convex functions. Acta Math. Univ. Comenian. (N.S.) 2010, 79, 265–272. [Google Scholar]
- Sarikaya, M.Z.; Kiris, M.E. Some new inequalities of Hermite-Hadamard type for s-convex functions. Miskolc Math. Notes 2015, 16, 491–501. [Google Scholar] [CrossRef]
- Set, E.; Özdemir, M.E.; Dragomir, S.S. On the Hermite-Hadamard inequality and other integral inequalities involving two functions. J. Inequal. Appl. 2010, 9, 148102. [Google Scholar] [CrossRef]
- Set, E.; Özdemir, M.E.; Dragomir, S.S. On Hadamard-type inequalities involving several kinds of convexity. J. Inequal. Appl. 2010, 12, 286845. [Google Scholar] [CrossRef]
- Khan, M.B.; Srivastava, H.M.; Mohammed, P.O.; Nonlaopon, K.; Hamed, Y.S. Some new Jensen, Schur and Hermite-Hadamard inequalities for log convex fuzzy interval-valued functions. AIMS Math. 2022, 7, 4338–4358. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Sahoo, S.K.; Mohammed, P.O.; Baleanu, D.; Kodamasingh, B. Hermite-Hadamard type inequalities for interval-valued preinvex functions via fractional integral operators. Internat. J. Comput. Intel. Syst. 2022, 15, 8. [Google Scholar] [CrossRef]
- Khan, M.B.; Srivastava, H.M.; Mohammed, P.O.; Macías-Diaz, J.E.; Hamed, Y.S. Some new versions of integral inequalities for log-preinvex fuzzy-interval-valued functions through fuzzy order relation. Alex. Eng. J. 2022, 61, 7089–7101. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Zhang, Z.-H.; Wu, Y.-D. Some further refinements and extensions of the Hermite-Hadamard and Jensen inequalities in several variables. Math. Comput. Model. 2011, 54, 2709–2717. [Google Scholar] [CrossRef]
- Peĉarić, J.E.; Proschan, F.; Tong, Y.L. Convex Functions, Partial Orderings, and Statistical Applications; Academic Press Incorporated: Cambridge, MA, USA, 1992. [Google Scholar]
- Hardy, G.H.; Littlewood, J.E.; Pólya, G. Inequalities; Cambridge University Press: Cambridge/London, UK; New York, NY, USA, 1952. [Google Scholar]
- Karp, D.; Sitnik, S.M. Log-convexity and log-concavity of hypergeometric-like functions. J. Math. Anal. Appl. 2010, 364, 384–394. [Google Scholar] [CrossRef] [Green Version]
- Niculescu, C.; Persson, L.E. Convex Functions and Their Applications: A Contemporary Approach; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2006. [Google Scholar]
- Bullen, P.S.; Mitrinović, D.S.; Vasić, P.M. Means and Their Inequalities; D. Reidel Publishing Company: Dordrecht, The Netherlands, 1988. [Google Scholar]
- Bullen, P.S. Handbook of Means and Their Inequalities; (Kluwer Series on Mathematics and Its Applications); Kluwer Academic Publishers: Dordrecht, The Netherlands, 2003; Volume 560. [Google Scholar]
- Bullen, P.S. Dictionary of Inequalities; (Pitman Monographs and Surveys in Pure and Applied Mathematics); CRC Press: Boca Raton, FL, USA, 1998; Volume 97. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Srivastava, H.M.; Mehrez, S.; Sitnik, S.M. Hermite-Hadamard-Type Integral Inequalities for Convex Functions and Their Applications. Mathematics 2022, 10, 3127. https://doi.org/10.3390/math10173127
Srivastava HM, Mehrez S, Sitnik SM. Hermite-Hadamard-Type Integral Inequalities for Convex Functions and Their Applications. Mathematics. 2022; 10(17):3127. https://doi.org/10.3390/math10173127
Chicago/Turabian StyleSrivastava, Hari M., Sana Mehrez, and Sergei M. Sitnik. 2022. "Hermite-Hadamard-Type Integral Inequalities for Convex Functions and Their Applications" Mathematics 10, no. 17: 3127. https://doi.org/10.3390/math10173127