Stability Analysis for Time-Delay Systems via a New Negativity Condition on Quadratic Functions
Abstract
:1. Introduction
2. System Statement and Preliminaries
- (i)
- (ii)
- (iii)
- (i)
- (ii)
- (iii)
- (iv)
3. Main Results
4. Numerical Examples
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sipahi, R.; Niculescu, S.; Abdallah, C.T.; Michiels, W.; Gu, K. Stability and stabilization of systems with time delay. IEEE Control Syst. Mag. 2011, 31, 38–65. [Google Scholar]
- Lien, C.H.; Chang, H.C.; Yu, K.W.; Li, H.C.; Hou, Y.Y. Reachable Set and Robust Mixed Performance of Uncertain Discrete Systems with Interval Time-Varying Delay and Linear Fractional Perturbations. Mathematics 2021, 9, 2763. [Google Scholar] [CrossRef]
- Zhang, X.M.; Han, Q.L.; Seuret, A.; Gouaisbau, F.; He, Y. Overview of recent advances in stability of linear systems with time-varying delays. IET Control Theory Appl. 2019, 13, 1–16. [Google Scholar] [CrossRef]
- Zhang, X.M.; Han, Q.L.; Ge, X.; Ding, D.R. An overview of recent developments in Lyapunov-Krasovskii functionals and stability criteria for recurrent neural networks with time-varying delays. Neurocomputing 2018, 313, 392–401. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, Z. Finite-Time Synchronization Analysis for BAM Neural Networks with Time-Varying Delays by Applying the Maximum-Value Approach with New Inequalities. Mathematics 2022, 10, 835. [Google Scholar] [CrossRef]
- Li, G.L.; Peng, C.; Xie, X.P.; Xie, S.R. On Stability and Stabilization of T-S Fuzzy Systems With Time-Varying Delays via Quadratic Fuzzy Lyapunov Matrix. IEEE Trans. Fuzzy Syst. 2021. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, S.Y.; Zhang, Z.Q.; Chu, Y.M. Practical stability of a nonlinear system with delayed control input. Appl. Math. Comput. 2022, 423, 127008. [Google Scholar] [CrossRef]
- Liu, K.; Seuret, A.; Xia, Y.Q. Stability analysis of systems with time-varying delays via the second-order Bessel-Legendre inequality. Automatica 2017, 76, 138–142. [Google Scholar] [CrossRef]
- Xiao, S.P.; Cheng, W.B.; Zeng, H.B.; Kong, L.S. New results on H∞ control of linear systems with interval time-varying delays. J. Syst. Sci. Complex 2015, 28, 327–340. [Google Scholar] [CrossRef]
- Tunç, C.; Tunç, O.; Wang, Y.; Yao, J.-C. Qualitative Analyses of Differential Systems with Time-Varying Delays via Lyapunov–Krasovskiĭ Approach. Mathematics 2021, 9, 1196. [Google Scholar] [CrossRef]
- Zhang, C.K.; He, Y.; Jiang, L.; Wu, M.; Zeng, H.B. Delay-Variation-Dependent Stability of Delayed Discrete-Time Systems. IEEE Trans. Automat. Contr. 2016, 61, 2663–2669. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.M.; Han, Q.L.; Wang, J. Admissible delay upper bounds for global asymptotic stability of neural networks with time-varying delays. IEEE Trans. Neural Netw. Learn. Syst. 2018, 29, 5319–5329. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.M.; Han, Q.L.; Ge, X.H.; Zhang, B.L. Delay-variation-dependent criteria on extended dissipativity for discrete-time neural networks with time-varying Delay. IEEE Trans. Neural Netw. Learn. Syst. 2021. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Zeng, H.-B.; Zhang, X.; Wang, W. Stability analysis for delayed neural networks via a generalized reciprocally convex inequality. IEEE Trans. Neural Netw. Learn. Syst. 2022. [Google Scholar] [CrossRef]
- Ariba, Y.; Gouaisbaut, F. An augmented model for robust stability analysis of time-varying delay systems. Int. J. Control 2009, 88, 1616–1626. [Google Scholar] [CrossRef]
- Sun, J.; Liu, G.P.; Chen, J.; Rees, D. Improved delay-range-dependent stability criteria for linear systems with time-varying delays. Automatica 2010, 46, 466–470. [Google Scholar] [CrossRef]
- Lee, T.H.; Park, J. A novel Lyapunov functional for stability of time-varying delay systems via matrix-refined-function. Automatica 2017, 80, 239–242. [Google Scholar] [CrossRef]
- Zhang, C.-K.; He, Y.; Jiang, L.; Wu, M. Notes on Stability of Time-Delay Systems: Bounding Inequalities and Augmented Lyapunov-Krasovskii Functionals. IEEE Trans. Automat. Contr. 2017, 62, 5331–5336. [Google Scholar] [CrossRef]
- Wu, M.; He, Y.; She, J.H.; Liu, G.P. Delay-dependent criteria for robust stability of time-varying delay systems. Automatica 2004, 40, 1435–1439. [Google Scholar] [CrossRef]
- Briat, C. Linear Parameter-Varying and Time-Delay Systems, Analysis. Observation, Filtering and Control; Springer: Berlin/Heidelberg, Germany, 2015; Volume XXV, p. 394. [Google Scholar]
- Briat, C. Convergence and Equivalence Results for the Jensen’s Inequality—Application to Time-Delay and Sampled-Data Systems. IEEE Trans. Automat. Contr. 2011, 56, 1660–1665. [Google Scholar] [CrossRef]
- Seuret, A.; Gouaisbaut, F. Wirtinger-based integral inequality: Application to time-delay systems. Automatica 2013, 49, 2860–2886. [Google Scholar] [CrossRef] [Green Version]
- Zeng, H.B.; He, Y.; Wu, M.; She, J.H. Free-Matrix-Based Integral Inequality for Stability Analysis of Systems with Time-Varying Delay. IEEE Trans. Automat. Contr. 2015, 60, 2768–2772. [Google Scholar] [CrossRef]
- Seuret, A.; Gouaisbaut, F. Hierarchy of LMI conditions for the stability analysis of time-delay systems. Syst. Control Lett. 2015, 81, 1–7. [Google Scholar] [CrossRef]
- Park, P.G.; Lee, W.I.; Lee, S.Y. Auxiliary function-based integral inequalities for quadratic functions and their applications to time-delay systems. J. Frankl. Inst. 2015, 352, 1378–1396. [Google Scholar] [CrossRef]
- Chen, W.; Gao, F. Stability analysis of systems via a new double free-matrix-based integral inequality with interval time-varying delay. Int. J. Syst. Sci. 2019, 50, 2663–2672. [Google Scholar] [CrossRef]
- Park, P.G.; Ko, J.W.; Jeong, C.K. Reciprocally convex approach to stability of systems with time-varying delays. Automatica 2011, 47, 235–238. [Google Scholar] [CrossRef]
- Zhang, C.K.; He, Y.; Jiang, L.; Wu, M.; Wang, Q.G. An extended reciprocally convex matrix inequality for stability analysis of systems with time-varying delay. Automatica 2017, 85, 481–485. [Google Scholar] [CrossRef]
- Zhang, X.M.; Han, Q.L.; Seuret, A.; Gouaisbaut, F. An improved reciprocally convex inequality and an augmented Lyapunov-Krasovskii functional for stability of linear systems with time-varying delay. Automatica 2017, 84, 221–226. [Google Scholar] [CrossRef]
- Lee, W.I.; Lee, S.Y.; Park, P.G. Affine Bessel–Legendre inequality: Application to stability analysis for systems with time-varying delays. Automatica 2018, 93, 535–539. [Google Scholar] [CrossRef]
- Zeng, H.B.; Liu, X.G.; Wang, W. A generalized free-matrix-based integral inequality for stability analysis of time-varying delay systems. Appl. Math. Comput. 2019, 354, 1–8. [Google Scholar] [CrossRef]
- Kim, J.H. Further improvement of Jensen inequality and application to stability of time-delayed systems. Automatica 2016, 64, 121–125. [Google Scholar] [CrossRef]
- Park, J.M.; Park, P.G. Finite-interval quadratic polynomial inequalities and their application to time-delay systems. J. Frankl. Inst. 2020, 357, 4316–4327. [Google Scholar] [CrossRef]
- Chen, J.; Park, J.H.; Xu, S.Y. Stability analysis of systems with time-varying delay: A quadratic-partitioning method. IET Control Theory Appl. 2019, 18, 184–3189. [Google Scholar] [CrossRef]
- Zhang, C.K.; Long, F.; He, Y.; Yao, W.; Jiang, L.; Wu, M. A relaxed quadratic function negative-determination lemma and its application to time-delay systems. Automatica 2020, 113, 108764. [Google Scholar] [CrossRef]
- Chen, J.; Park, J.H.; Xu, S.Y. Stability analysis of continuous-time systems with time-varying delay using new Lyapunov-Krasovskii functionals. J. Frankl. Inst. 2018, 355, 5957–5967. [Google Scholar] [CrossRef]
- Zeng, H.B.; Lin, H.C.; He, Y.; Zhang, C.K.; Teo, K.L. Improved negativity condition for a quadratic function and its application to systems with time-varying delay. IET Control Theory Appl. 2020, 14, 2989–2993. [Google Scholar] [CrossRef]
Methods | |||
---|---|---|---|
[32] | 4.753 | 2.429 | 2.183 |
[29] | 4.910 | 3.233 | 2.789 |
[31] | 4.921 | 3.221 | 2.792 |
[34] | 4.939 | 3.298 | 2.869 |
[36] | 4.942 | 3.309 | 2.882 |
[37] | 4.966 | 3.395 | 2.983 |
Theorem 2 (N = 1) | 4.978 | 3.414 | 2.969 |
Theorem 2 (N = 2) | 4.997 | 3.424 | 3.029 |
Theorem 2 (N = 3) | 5.015 | 3.452 | 3.030 |
Theorem 3 | 4.946 | 3.337 | 2.918 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, S.; Yu, J.; Yang, S.X.; Qiu, Y. Stability Analysis for Time-Delay Systems via a New Negativity Condition on Quadratic Functions. Mathematics 2022, 10, 3096. https://doi.org/10.3390/math10173096
Xiao S, Yu J, Yang SX, Qiu Y. Stability Analysis for Time-Delay Systems via a New Negativity Condition on Quadratic Functions. Mathematics. 2022; 10(17):3096. https://doi.org/10.3390/math10173096
Chicago/Turabian StyleXiao, Shenping, Jin Yu, Simon X. Yang, and Yongfeng Qiu. 2022. "Stability Analysis for Time-Delay Systems via a New Negativity Condition on Quadratic Functions" Mathematics 10, no. 17: 3096. https://doi.org/10.3390/math10173096
APA StyleXiao, S., Yu, J., Yang, S. X., & Qiu, Y. (2022). Stability Analysis for Time-Delay Systems via a New Negativity Condition on Quadratic Functions. Mathematics, 10(17), 3096. https://doi.org/10.3390/math10173096