A Numerical Scheme for Harmonic Stochastic Oscillators Based on Asymptotic Expansions
Abstract
1. Introduction
2. Construction of the Method
2.1. Recalls and Preparatory Notions
2.2. Semidiscretisation Based on Variation of Constants
2.3. Numerical Method Based on Asymptotic Expansions
3. Numerical Experiments
3.1. Example 1
3.2. Example 2
3.3. Example 3
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gitterman, M. The Noisy Oscillator. The First Hundred Years, from Einstein Until Now; World Scientific Publishing Company: Singapore, 2005. [Google Scholar]
- Giorgini, A.; Mamon, R.S.; Rodrigo, M.R. A stochastic harmonic oscillator temperature model for the valuation of weather derivatives. Mathematics 2021, 9, 2890. [Google Scholar] [CrossRef]
- Gitterman, M. Oscillator Subject to Periodic and Random Forces. J. Mod. Phys. 2013, 4, 94–98. [Google Scholar] [CrossRef][Green Version]
- Lingala, N.; Namachchivaya, N.; Pavlyukevich, I. Random perturbations of a periodically driven nonlinear oscillator: Escape from a resonance zon. Nonlinearity 2017, 30, 1376–1404. [Google Scholar] [CrossRef]
- Thomas, P.J.; Linder, B. Asymptotic phase for stochastic oscillators. Phys. Rev. Lett. 2014, 113, 254101. [Google Scholar] [CrossRef] [PubMed]
- Cohen, D. On the numerical discretisation of stochastic oscillators. Math. Comput. Simul. 2012, 82, 1478–1495. [Google Scholar] [CrossRef]
- Cohen, D.; Sigg, M. Convergence analysis of trigonometric methods for stiff second-order stochastic differential equations. Numer. Math. 2012, 121, 1–29. [Google Scholar] [CrossRef][Green Version]
- D’Ambrosio, R.; Scalone, C. Filon quadrature for stochastic oscillators driven by time-varying forces. Appl. Numer. Math. 2021, 169, 21–31. [Google Scholar] [CrossRef]
- D’Ambrosio, R.; Scalone, C. Asymptotic Quadrature Based Numerical Integration of Stochastic Damped Oscillators. In International Conference on Computational Science and Its Applications; Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Cham, Switzerland, 2021; Volume 12950, pp. 622–629. [Google Scholar]
- de la Cruz, H.; Jimenez, J.C.; Zubelli, J.P. Locally linearized methods for the simulation of stochastic oscillators driven by random forces. BIT Numer. Math. 2017, 57, 123–151. [Google Scholar] [CrossRef]
- Senoisian, M.J.; Tocino, A. On the numerical integration of the undamped harmonic oscillator driven by independent additive gaussian white noises. Appl. Numer. Math. 2019, 137, 49–61. [Google Scholar] [CrossRef]
- Burrage, K.; Lenane, I.; Lythe, G. Numerical methods for second-order stochastic differential equations. SIAM J. Sci. Comput. 2007, 29, 245–264. [Google Scholar] [CrossRef]
- Burrage, K.; Lythe, G. Accurate stationary densities with partitioned numerical methods for stochastic differential equations. SIAM J. Numer. Anal. 2009, 47, 1601–1618. [Google Scholar] [CrossRef]
- Citro, V.; D’Ambrosio, R. Long-term analysis of stochastic θ-methods for damped stochastic oscillators. Appl. Numer. Math. 2019, 150, 18–26. [Google Scholar] [CrossRef]
- D’Ambrosio, R.; Giovacchino, S.D.; Scalone, C. Principles of Stochastic Geometric Numerical Integrations: Dissipative Problems and Stochastic Oscillators. In AIP Conference Proocedings of ICNAAM; American Institute of Physics: College Park, MD, USA, 2021. [Google Scholar]
- D’Ambrosio, R.; Moccaldi, M.; Paternoster, B. Numerical preservation of long-term dynamics by stochastic two-step methods. Discret. Contin. Dyn. Syst. Ser. B 2018, 23, 2763–2773. [Google Scholar] [CrossRef]
- D’Ambrosio, R.; Scalone, C. On the numerical structure preservation of nonlinear damped stochastic oscillators. Numer. Algorithms 2021, 86, 933–952. [Google Scholar] [CrossRef]
- Scalone, C. Positivity preserving stochastic θ-methods for selected SDEs. Appl. Numer. Math. 2022, 172, 351–358. [Google Scholar] [CrossRef]
- Strömmen Melbö, A.H.; Higham, D.J. Numerical simulation of a linear stochastic oscillator with additive noise. Appl. Numer. Math. 2004, 51, 89–99. [Google Scholar] [CrossRef]
- Tocino, A. On preserving long-time features of a linear stochastic oscillator. BIT Numer. Math. 2007, 47, 189–196. [Google Scholar] [CrossRef]
- Iserles, A.; Nørsett, S.P. On Quadrature Methods for Highly Oscillatory Integrals and Their Implementation. BIT Numer. Math. 2004, 44, 755–772. [Google Scholar] [CrossRef]
- Iserles, A.; Nørsett, S.P. Efficient quadrature of highly oscillatory integrals using derivatives. Proc. R. Soc. A 2006, 461, 1383–1399. [Google Scholar] [CrossRef]
- Condon, M.; Iserles, A.; Nørsett, S.P. Differential equations with general highly oscillatory forcing terms. Proc. R. Soc. A 2014, 470. [Google Scholar] [CrossRef]
- Khanamiryan, M. Quadrature methods for highly oscillatory linear and nonlinear systems of ordinary differential equations: Part I. BIT Numer. Math. 2008, 48, 743. [Google Scholar] [CrossRef]
- Hairer, E.; Lubich, C.; Wanner, G. Geometric Numerical Integration; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Hochbruck, M.; Ostermann, A. Exponential Integrators. Acta Numer. 2010, 19, 209–286. [Google Scholar] [CrossRef]
- Shokri, A. An explicit trigonometrically fitted ten-step method with phase-log of order infinity for the numerical solution of the radiale Schrodinger equation. Appl. Comput. Math. 2015, 14, 63–74. [Google Scholar]
- Shokri, A.; Saadat, H.; Khodadadi, A.R. A New High Order Closed Newton-Cotes Trigonometrically-fitted Formulae for the Numerical Solution of the Schrodinger Equation. Iran. J. Math. Sci. Inform. 2018, 13, 111–129. [Google Scholar]
- Kloeden, P.E.; Platen, E. The Numerical Solution of Stochastic Differential Equations; Springer: Berlin/Heidelberg, Germany, 1992. [Google Scholar]
- Mao, X. Stochastic Differential Equations and Applications, 2nd ed.; Woodhead Publishing: Cambridge, UK, 2008. [Google Scholar]
- D’Ambrosio, R.; Guglielmi, N.; Scalone, C. Destabilising nonnormal stochastic differential equations. Dicrete Contin. Dyn. Syst. Ser. B 2022. [Google Scholar] [CrossRef]
- D’Ambrosio, R.; Giovacchino, S.D. Numerical preservation issues in stochastic dynamical systems by θ-methods. J. Comput. Dyn. 2022, 9, 123–131. [Google Scholar] [CrossRef]
- D’Ambrosio, R.; Giovacchino, S.D. Mean-square contractivity of stochastic θ-methods. Commun. Nonlinear Sci. Numer. Simul. 2021, 96, 105671. [Google Scholar] [CrossRef]
- Ruan, J.; Wang, L.; Wang, P. Exponential discrete gradient schemes for a class of stochastic differential equations. J. Comput. Appl. Math. 2022, 402, 113–797. [Google Scholar] [CrossRef]
- Khanamiryan, M. Quadrature methods for highly oscillatory linear and non-linear systems of ordinary differential equations: Part II. BIT Numer. Math. 2012, 52, 383–405. [Google Scholar] [CrossRef]
- Olver, S. Numerical approximation of vector-valued highly oscillatory integrals. BIT Numer. Math. 2007, 47, 637–655. [Google Scholar] [CrossRef]
- Bulsara, A.R.; Lindenberg, K.; Shuler, K.E. Spectral analysis of a nonlinear oscillator driven by random and periodic forces. I. Linearized Theory. J. Stat. Phys. 1982, 27, 787–808. [Google Scholar] [CrossRef]
Method | Example 1 | Example 2 | Example 3 |
---|---|---|---|
Asymptotic Method | s | s | s |
Euler–Maruyama | s | s | s |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scalone, C. A Numerical Scheme for Harmonic Stochastic Oscillators Based on Asymptotic Expansions. Mathematics 2022, 10, 3083. https://doi.org/10.3390/math10173083
Scalone C. A Numerical Scheme for Harmonic Stochastic Oscillators Based on Asymptotic Expansions. Mathematics. 2022; 10(17):3083. https://doi.org/10.3390/math10173083
Chicago/Turabian StyleScalone, Carmela. 2022. "A Numerical Scheme for Harmonic Stochastic Oscillators Based on Asymptotic Expansions" Mathematics 10, no. 17: 3083. https://doi.org/10.3390/math10173083
APA StyleScalone, C. (2022). A Numerical Scheme for Harmonic Stochastic Oscillators Based on Asymptotic Expansions. Mathematics, 10(17), 3083. https://doi.org/10.3390/math10173083