New Masjed Jamei–Type Inequalities for Inverse Trigonometric and Inverse Hyperbolic Functions
Abstract
1. Introduction
2. Main Results
2.1. Lemms
2.2. Main Results and Their Proofs
3. Some Improvements of Mitrinovic–Adamović and Lazarević Inequalities and Remarks
4. Some Applications of Theorem 1 and Theorem 2 in the Mean Value Theory
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Masjed-Jamei, M. A main inequality for several special functions. Comput. Math. Appl. 2010, 60, 1280–1289. [Google Scholar] [CrossRef]
- Zhu, L.; Malešević, B. Inequalities between the inverse hyperbolic tangent and the inverse sine and the analogue for corresponding functions. J. Inequalities Appl. 2019, 2019, 93. [Google Scholar] [CrossRef]
- Malešević, B.; Lutovac, T.; Rašajski, M.; Mortici, C. Extensions of the natural approach to refinements and generalizations of some trigonometric inequalities. Adv. Differ. Equa. 2018, 2018, 90. [Google Scholar] [CrossRef] [PubMed]
- Lutovac, T.; Malešević, B.; Mortici, C. The natural algorithmic approach of mixed trigonometric-polynomial problems. J. Inequalities Appl. 2017, 2017, 116. [Google Scholar] [CrossRef] [PubMed]
- Lutovac, T.; Malešević, B.; Rašajski, M. A new method for proving some inequalities related to several special functions. Res. Math. 2018, 73, 100. [Google Scholar] [CrossRef]
- Malešević, B.; Rašajski, M.; Lutovac, T. Refinements and generalizations of some inequalities of Shafer-Fink’s type for the inverse sine function. J. Inequalities Appl. 2017, 2017, 275. [Google Scholar] [CrossRef]
- Rašajski, M.; Lutovac, T.; Maleševic, B. About some exponential inequalities related to the sinc function. J. Inequalities Appl. 2018, 2018, 150. [Google Scholar] [CrossRef]
- Banjac, B.; Makragić, M.; Maleševic, B. Some notes on a method for proving inequalities by computer. Res. Math. 2016, 69, 161–176. [Google Scholar] [CrossRef][Green Version]
- Nenezić, M.; Zhu, L. Some improvements of Jordan-Steckin and Becker-Stark inequalities. Appl. Anal. Discrete Math. 2018, 12, 244–256. [Google Scholar] [CrossRef]
- Zhu, L.; Malešević, B. Natural approximation of Masjed-Jamei’s inequality. RACSAM 2020, 114, 25. [Google Scholar] [CrossRef]
- Chesneau, C.; Bagul, Y.J. On a reverse trigonometric Masjed-Jamei inequality. Asia Pac. J. Math. 2021, 8, 13. [Google Scholar]
- Chen, C.P.; Malešević, B. Inequalities related to certain inverse trigonometric and inverse hyperbolic functions. RACSAM 2020, 114, 105. [Google Scholar] [CrossRef]
- Chen, X.-D.; Nie, L.; Huang, W.K. New inequalities between the inverse hyperbolic tangent and the analogue for corresponding functions. J. Inequalities Appl. 2020, 2020, 131. [Google Scholar] [CrossRef]
- Mitrinović, D.S.; Adamović, D.D. Sur Une Inegalite Elementaire Ou Interviennent Des Fonctions Trigonometriques; Publikacije Elektrotehnickog Fakulteta. Serija Matematika i Fizika; Univerzitet u Beogradu: Belgrade, Serbia, 1965; Volume 149, pp. 23–34. [Google Scholar]
- Mitrinović, D.S.; Adamović, D.D. Complement a L’article “Sur Une Inegalite Elementaire Ou Interviennent Des Fonctions Trigonometriques”; Publikacije Elektrotehnickog Fakulteta. Serija Matematika i Fizika; Univerzitet u Beogradu: Belgrade, Serbia, 1966; Volume 166, pp. 31–32. [Google Scholar]
- Lazarević, I. Neke Nejednakosti Sa Hiperbolickim Funkcijama; Publikacije Elektrotehnickog Fakulteta. Serija Matematika i Fizika; Univerzitet u Beogradu: Belgrade, Serbia, 1966; Volume 170, pp. 41–48. [Google Scholar]
- Yang, Z.-H.; Qian, W.-M.; Chu, Y.-M.; Zhang, W. On approximating the arithmetic-geometric mean and complete elliptic integral of the first kind. J. Math. Anal. Appl. 2018, 462, 1714–1726. [Google Scholar] [CrossRef]
- Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables; U.S. National Bureau of Standards: Washington, DC, USA, 1964. [Google Scholar]
- Jeffrey, A. Handbook of Mathematical Formulas and Integrals, 3rd ed.; Elsevier Academic Press: San Diego, CA, USA, 2004. [Google Scholar]
- D’Aniello, C. On some inequalities for the Bernoulli numbers. Rend. Del Circ. Mat. Palermo. Ser. II 1994, 43, 329–332. [Google Scholar] [CrossRef]
- Alzer, H. Sharp bounds for the Bernoulli numbers. Arch. Der Math. 2000, 74, 207–211. [Google Scholar] [CrossRef]
- Mitrinović, D.S. Analytic Inequalities; Springer: New York, NY, USA, 1970. [Google Scholar]
- Bullen, P.S. Handbook of Means and Their Inequalities; Kluwer Academic Publishers: Dordrecht, The Nethrelands, 2003. [Google Scholar]
- Ostle, B.; Terwilliger, H.L. A comparison of two means. Proc. Montana Acad. Sci. 1957, 17, 69–70. [Google Scholar]
- Leach, E.B.; Sholander, M.C. Extended mean values. J. Math. Anal. Appl. 1983, 92, 207–223. [Google Scholar] [CrossRef]
- Stolarsky, K.B. The power mean and generalized logarithmic means. Amer. Math. Monthly 1980, 87, 545–548. [Google Scholar] [CrossRef]
- Carlson, B.C. The logarithmic mean. Amer. Math. Monthly 1972, 79, 615–618. [Google Scholar] [CrossRef]
- Alzer, H.; Qiu, S.-L. Inequalities for means in two variables. Arch. Math. 2003, 80, 201–215. [Google Scholar] [CrossRef]
- Zhu, L. From chains for mean value Inequalities to Mitrinovic’s problem II. Int. J. Educ. Sci. Technol. 2005, 36, 118–125. [Google Scholar] [CrossRef]
- Kahlig, P.; Matkowski, J. Decomposition of homogeneous means and construction of some metric spaces. Math. Inequal. Appl. 1998, 1, 463–480. [Google Scholar] [CrossRef]
- Witkowski, A. On Seiffert–like means. J. Math. Inequal. 2015, 9, 1071–1092. [Google Scholar] [CrossRef]
- Nowicka, M.; Witkowski, A. Optimal bounds for the tangent and hyperbolic sine means II. J. Math. Inequal. 2020, 14, 23–33. [Google Scholar] [CrossRef]
- Nowicka, M.; Witkowski, A. Optimal bounds for the tangent and hyperbolic sine means. Aequat. Math. 2020, 94, 817–827. [Google Scholar] [CrossRef]
- Seiffert, H.-J. Problem 887. Nieuw Arch. Wiskd. 1993, 11, 176. [Google Scholar]
- Seiffert, H.-J. Aufgabe β 16. Wurzel 1995, 29, 221–222. [Google Scholar]
- Neuman, E.; Sándor, J. On the Schwab-Borchardt mean. Math. Pannon. 2003, 14, 253–266. [Google Scholar]
- Neuman, E.; Sándor, J. On the Schwab–Borchardt mean II. Math. Pannon. 2006, 17, 49–59. [Google Scholar]
- Hästö, P.A. Optimal inequalities between Seiffert mean and power means. Math. Inequal. Appl. 2004, 7, 47–53. [Google Scholar]
- Kukushkin, M.V. Spectral properties of fractional differentiation op erators. Elec. J. Diff. Equa. 2018, 29, 1–24. [Google Scholar]
- Kukushkin, M.V. Asymptotics of eigenvalues for differential operators of fractional order. Fract. Calc. Appl. Anal. 2019, 22, 658–680. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, L. New Masjed Jamei–Type Inequalities for Inverse Trigonometric and Inverse Hyperbolic Functions. Mathematics 2022, 10, 2972. https://doi.org/10.3390/math10162972
Zhu L. New Masjed Jamei–Type Inequalities for Inverse Trigonometric and Inverse Hyperbolic Functions. Mathematics. 2022; 10(16):2972. https://doi.org/10.3390/math10162972
Chicago/Turabian StyleZhu, Ling. 2022. "New Masjed Jamei–Type Inequalities for Inverse Trigonometric and Inverse Hyperbolic Functions" Mathematics 10, no. 16: 2972. https://doi.org/10.3390/math10162972
APA StyleZhu, L. (2022). New Masjed Jamei–Type Inequalities for Inverse Trigonometric and Inverse Hyperbolic Functions. Mathematics, 10(16), 2972. https://doi.org/10.3390/math10162972