(k,ψ)-Hilfer Nonlocal Integro-Multi-Point Boundary Value Problems for Fractional Differential Equations and Inclusions
Abstract
:1. Introduction
2. Preliminaries
3. An Auxiliary Result
4. The Single-Valued Problem
4.1. Existence of a Unique Solution
4.2. Existence Results
- , and .
- ()
- there exists a continuous and nondecreasing function and a continuous positive function σ such that
- ()
- there exists a constant such that
5. The Multi-Valued Problem
- is closed},
- is compact}, and
- is compact and convex
- (i)
- F has a fixed point in or
- (ii)
- there is a and with
- is -Carathéodory;
- There exists a continuous function which is nondecreasing, and a positive continuous function q such that
- there exists a constant such that
- is such that is measurable for each .
- for almost all and with and for almost all .
6. Examples
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar]
- Mainardi, F. Some basic problems in continuum and statistical mechanics. In Fractals and Fractional Calculus in Continuum Mechanics; Carpinteri, A., Mainardi, F., Eds.; Springer: Berlin, Germany, 1997; pp. 291–348. [Google Scholar]
- Magin, R.L. Fractional Calculus in Bioengineering; Begell House Publishers: Danbury, CT, USA, 2006. [Google Scholar]
- Alotta, G.; Di Paola, M.; Pinnola, F.P.; Zingales, M. A fractional nonlocal approach to nonlinear blood flow in small-lumen arterial vessels. Meccanica 2020, 55, 891–906. [Google Scholar]
- Fallahgoul, H.A.; Focardi, S.M.; Fabozzi, F.J. Fractional Calculus and Fractional Processes with Applications to Financial Economics, Theory and Application; Elsevier/Academic Press: London, UK, 2017. [Google Scholar]
- Golmankhaneh, A.K.; Baleanu, D. Calculus on Fractals. Fractional Dynamics; De Gruyter Open: Berlin, Germany, 2015; pp. 307–332. [Google Scholar]
- Chatterjee, A.N.; Ahmad, B. A fractional-order differential equation model of COVID-19 infection of epithelial cells. Chaos Solitons Fractals 2021, 147, 110952. [Google Scholar] [PubMed]
- Carvalho, A.; Pinto, C.M.A. A delay fractional order model for the co-infection of malaria and HIV/AIDS. Int. J. Dyn. Control 2017, 5, 168–186. [Google Scholar]
- Xu, Y.; Li, W. Finite-time synchronization of fractional-order complex-valued coupled systems. Phys. A 2020, 549, 123903. [Google Scholar]
- Ding, Y.; Wang, Z.; Ye, H. Optimal control of a fractional-order HIV-immune system with memory. IEEE Trans. Control Syst. Technol. 2012, 20, 763–769. [Google Scholar]
- Javidi, M.; Ahmad, B. Dynamic analysis of time fractional order phytoplankton-toxic phytoplankton-zooplankton system. Ecol. Model. 2015, 318, 8–18. [Google Scholar]
- Chatterjee, A.N.; Basir, F.A.; Ahmad, B.; Alsaedi, A. A Fractional-Order Compartmental Model of Vaccination for COVID-19 with the Fear Factor. Mathematics 2022, 10, 1451. [Google Scholar]
- Diethelm, K. The Analysis of Fractional Differential Equations; Lecture Notes in Mathematics; Springer: New York, NY, USA, 2010. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of the Fractional Differential Equations; North-Holland Mathematics Studies; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Lakshmikantham, V.; Leela, S.; Devi, J.V. Theory of Fractional Dynamic Systems; Cambridge Scientific Publishers: Cambridge, UK, 2009. [Google Scholar]
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Differential Equations; John Wiley: New York, NY, USA, 1993. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: New York, NY, USA, 1999. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives; Gordon and Breach Science: Yverdon, Switzerland, 1993. [Google Scholar]
- Ahmad, B.; Alsaedi, A.; Ntouyas, S.K.; Tariboon, J. Hadamard-Type Fractional Differential Equations, Inclusions and Inequalities; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Ahmad, B.; Ntouyas, S.K. Nonlocal Nonlinear Fractional-Order Boundary Value Problems; World Scientific: Singapore, 2021. [Google Scholar]
- Zhou, Y. Basic Theory of Fractional Differential Equations; World Scientific: Singapore, 2014. [Google Scholar]
- Katugampola, U.N. New approach to a generalized fractional integral. Appl. Math. Comput. 2011, 218, 860–865. [Google Scholar]
- Katugampola, U.N. A new approach to generalized fractional derivatives. Bull. Math. Anal. Appl. 2014, 6, 1–154. [Google Scholar]
- Almeida, R. A Caputo fractional derivative of a function with respect to another function. Commun. Nonlinear Sci. Numer. Simul. 2017, 44, 460–481. [Google Scholar]
- Kucche, K.D.; Mali, A.D. On the nonlinear (k,ψ)-Hilfer fractional differential equations. Chaos, Solitons Fractals 2021, 152, 111335. [Google Scholar]
- Ahmad, B.; Ntouyas, S.K.; Alotaibi, F.M. Boundary value problems for sequential Hilfer fractional differential equations and inclusions with integro-multistrip-multipoint boundary conditions. Adv. Differ. Equ. 2021, 2021, 268. [Google Scholar]
- Sitho, S.; Ntouyas, S.K.; Samadi, A.; Tariboon, J. Boundary value problems for ψ-Hilfer type sequential fractional differential equations and inclusions with integral multi-point boundary conditions. Mathematics 2021, 9, 1001. [Google Scholar]
- Tariboon, J.; Samadi, A.; Ntouyas, S.K. Multi-point boundary value problems for (k,ψ)-Hilfer fractional differential equations and inclusions. Axioms 2022, 11, 110. [Google Scholar]
- Ledesma, C.E.T.; Nyamoradi, N. (k,ψ)-Hilfer variational problem. J. Elliptic Parabol. Equ. 2022. [Google Scholar] [CrossRef]
- Korda, M.; Henrion, D.; Jones, C.N. Convex computation of the maximum controlled invariant set for polynomial control systems. SIAM J. Control Optim. 2014, 52, 2944–2969. [Google Scholar]
- Bastien, J. Study of a driven and braked wheel using maximal monotone differential inclusions: Applications to the nonlinear dynamics of wheeled vehicle. Arch. Appl. Mech. 2014, 84, 851–880. [Google Scholar]
- Danca, M.F. Synchronization of piecewise continuous systems of fractional order. Nonlinear Dyn. 2014, 78, 2065–2084. [Google Scholar]
- Kisielewicz, M. Stochastic Differential Inclusions and Applications; Springer: New York, NY, USA, 2013. [Google Scholar]
- Benchohra, M.; Hamani, S.; Zhou, Y. Oscillation and nonoscillation for Caputo-Hadamard impulsive fractional differential inclusions. Adv. Differ. Equ. 2019, 2019, 74. [Google Scholar]
- Wang, Y.; Liang, T. Mild solutions to the time fractional Navier-Stokes delay differential inclusions. Discret. Contin. Dyn. Syst. Ser. B 2019, 24, 3713–3740. [Google Scholar] [CrossRef] [Green Version]
- Yue, Y.; Tian, Y.; Bai, Z. Infinitely many nonnegative solutions for a fractional differential inclusion with oscillatory potential. Appl. Math. Lett. 2019, 88, 64–72. [Google Scholar]
- Mubeen, S.; Habibullah, G.M. k–fractional integrals and applications. Int. J. Contemp. Math. Sci. 2012, 7, 89–94. [Google Scholar]
- Diaz, R.; Pariguan, E. On hypergeometric functions and Pochhammer k-symbol. Divulg. Mat. 2007, 2, 179–192. [Google Scholar]
- Dorrego, G.A. An alternative definition for the k-Riemann-Liouville fractional derivative. Appl. Math. Sci. 2015, 9, 481–491. [Google Scholar]
- Sousa, J.V.D.C.; de Oliveira, E.C. On the ψ-Hilfer fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 2018, 60, 72–91. [Google Scholar]
- Kwun, Y.C.; Farid, G.; Nazeer, W.; Ullah, S.; Kang, S.M. Generalized Riemann-Liouville k-fractional integrals associated with Ostrowski type inequalities and error bounds of Hadamard inequalities. IEEE Access 2018, 6, 64946–64953. [Google Scholar]
- Deimling, K. Nonlinear Functional Analysis; Springer: New York, NY, USA, 1985. [Google Scholar]
- Krasnosel’skiĭ, M.A. Two remarks on the method of successive approximations. Uspekhi Mat. Nauk 1955, 10, 123–127. [Google Scholar]
- Granas, A.; Dugundji, J. Fixed Point Theory; Springer: New York, NY, USA, 2005. [Google Scholar]
- Deimling, K. Multivalued Differential Equations; Walter De Gruyter: Berlin, Germany; New York, NY, USA, 1992. [Google Scholar]
- Hu, S.; Papageorgiou, N. Handbook of Multivalued Analysis, Theory I; Kluwer: Dordrecht, The Netherlands, 1997. [Google Scholar]
- Lasota, A.; Opial, Z. An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations. Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 1965, 13, 781–786. [Google Scholar]
- Covitz, H.; Nadler, S.B., Jr. Multivalued contraction mappings in generalized metric spaces. Israel J. Math. 1970, 8, 5–11. [Google Scholar]
- Castaing, C.; Valadier, M. Convex Analysis and Measurable Multifunctions; Lecture Notes in Mathematics 580; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1977. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ntouyas, S.K.; Ahmad, B.; Tariboon, J. (k,ψ)-Hilfer Nonlocal Integro-Multi-Point Boundary Value Problems for Fractional Differential Equations and Inclusions. Mathematics 2022, 10, 2615. https://doi.org/10.3390/math10152615
Ntouyas SK, Ahmad B, Tariboon J. (k,ψ)-Hilfer Nonlocal Integro-Multi-Point Boundary Value Problems for Fractional Differential Equations and Inclusions. Mathematics. 2022; 10(15):2615. https://doi.org/10.3390/math10152615
Chicago/Turabian StyleNtouyas, Sotiris K., Bashir Ahmad, and Jessada Tariboon. 2022. "(k,ψ)-Hilfer Nonlocal Integro-Multi-Point Boundary Value Problems for Fractional Differential Equations and Inclusions" Mathematics 10, no. 15: 2615. https://doi.org/10.3390/math10152615
APA StyleNtouyas, S. K., Ahmad, B., & Tariboon, J. (2022). (k,ψ)-Hilfer Nonlocal Integro-Multi-Point Boundary Value Problems for Fractional Differential Equations and Inclusions. Mathematics, 10(15), 2615. https://doi.org/10.3390/math10152615