Next Article in Journal
Efficient and Secure Pairing Protocol for Devices with Unbalanced Computational Capabilities
Previous Article in Journal
Regularization Method for the Variational Inequality Problem over the Set of Solutions to the Generalized Equilibrium Problem
Previous Article in Special Issue
Revisiting the Formula for the Ramanujan Constant of a Series
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Evaluation of Infinite Series by Integrals

1
School of Mathematics and Statistics, Zhoukou Normal University, Zhoukou 466001, China
2
Department of Mathematics and Physics, University of Salento, 73100 Lecce, Italy
*
Author to whom correspondence should be addressed.
Mathematics 2022, 10(14), 2444; https://doi.org/10.3390/math10142444
Submission received: 25 June 2022 / Revised: 7 July 2022 / Accepted: 11 July 2022 / Published: 13 July 2022
(This article belongs to the Special Issue Recent Advances on Ramanujan Theories in Mathematics and Physics)

Abstract

:
We examine a large class of infinite triple series and establish a general summation formula. This is done by expressing the triple series in terms of definite integrals involving arctangent function that are evaluated in turn in closed forms. Numerous explicit formulae are tabulated for the triple series whose values result in elegant expressions as π , ln 2 and the Catalan constant G.

1. Introduction and Outline

In mathematics and applied sciences, there exist numerous infinite series [1,2]. For example, the double series of Mordell [3,4] and Tornheim [5,6,7,8] play an important role in the number theory. In his collected works, Ramanujan [9] made explorations to several remarkable series (see also [10]).
From calculus, there are two simple but well-known series
n = 0 ( 1 ) n 2 n + 1 = π 4 and n = 0 ( 1 ) n n + 1 = ln 2 .
Their tensor product with zeta function and extensions lead to intensive investigations on Euler–Zagier sums and multiple zeta values (see for example [11,12,13]). These works suggest the authors to examine naturally, for λ Z and μ , ν N 0 , the following triple series
S λ ( μ , ν ) = n = 0 λ n i = 1 ( 1 ) i 1 2 n + 2 i + 2 μ 1 j = 1 ( 1 ) j 1 2 n + 2 j + 2 ν 1 .
The aim of this article is to evaluate explicitly this series. Firstly, it is trivial to see that there holds the following symmetry:
S λ ( μ , ν ) = S λ ( ν , μ ) .
Then for m N 0 and n Z , recall the binomial identity
λ n = k = 0 m ( 1 ) m k m k k λ n + m ,
which can be explained by the finite differences (i.e., the mth difference of a polynomial of degree m + n ). When m min { μ , ν } , the series S λ ( μ , ν ) can be manipulated as follows:
S λ ( μ , ν ) = k = 0 m ( 1 ) m k m k n = 0 k λ n + m i = 1 ( 1 ) i 1 2 n + 2 i + 2 μ 1 j = 1 ( 1 ) j 1 2 n + 2 j + 2 ν 1 = k = 0 m ( 1 ) m k m k n = m k λ n i = 1 ( 1 ) i 1 2 n + 2 i + 2 μ 2 m 1 j = 1 ( 1 ) j 1 2 n + 2 j + 2 ν 2 m 1 = k = 0 m ( 1 ) m k m k n = 0 k λ n i = 1 ( 1 ) i 1 2 n + 2 i + 2 μ 2 m 1 j = 1 ( 1 ) j 1 2 n + 2 j + 2 ν 2 m 1 ,
where the lower limit m of the sum with respect to n is replaced by 0 because
k = 0 m ( 1 ) m k m k k λ n = 0 for 0 n < m .
Hence, we get the following recurrence relation.
Lemma 1 (Recurrence relation: 0 m min { μ , ν } ).
S λ ( μ , ν ) = k = 0 m ( 1 ) m k m k S λ k ( μ m , ν m ) .
Particularly for m = 1 , the following simplified recurrence holds:
S λ ( μ , ν ) = S λ 1 ( μ 1 , ν 1 ) S λ ( μ 1 , ν 1 ) .
By writing the two inner sums as definite integrals
i = 1 ( 1 ) i 1 2 n + 2 i + 2 μ 1 = i = 1 ( 1 ) i 1 0 1 x 2 n + 2 i + 2 μ 2 d x = 0 1 x 2 n + 2 μ i = 1 ( 1 ) i 1 x 2 i 2 d x = 0 1 x 2 n + 2 μ 1 + x 2 d x , j = 1 ( 1 ) j 1 2 n + 2 j + 2 ν 1 = j = 1 ( 1 ) j 1 0 1 y 2 n + 2 j + 2 ν 2 d y = 0 1 y 2 n + 2 ν j = 1 ( 1 ) j 1 y 2 j 2 d y = 0 1 y 2 n + 2 ν 1 + y 2 d y ;
where exchanging orders of summation and integration is justified by Lebesgue’s dominated convergence theorem ([14], §11.32), we can express S λ ( μ , ν ) as
S λ ( μ , ν ) = n = 0 λ n 0 1 x 2 n + 2 μ 1 + x 2 d x 0 1 y 2 n + 2 ν 1 + y 2 d y = 0 1 0 1 x 2 μ y 2 ν d x d y ( 1 + x 2 ) ( 1 + y 2 ) n = 0 λ n x 2 n y 2 n .
Evaluating the inner sum by the binomial theorem
n = 0 λ n x 2 n y 2 n = ( 1 + x 2 y 2 ) λ ,
leads us to the following double integral representation.
Lemma 2 (Integral representation: λ Z and μ , ν N 0 ).
S λ ( μ , ν ) = 0 1 0 1 x 2 μ y 2 ν d x d y ( 1 + x 2 ) ( 1 + y 2 ) ( 1 + x 2 y 2 ) λ .
Based on Lemmas 1 and 2, we deduce the following preliminary facts.
  • λ ,   μ ,   ν   with   λ = 0 In this case, the corresponding double integral becomes a product of two single integrals
    S 0 ( μ , ν ) = 0 1 0 1 x 2 μ y 2 ν ( 1 + x 2 ) ( 1 + y 2 ) d x d y = 0 1 x 2 μ 1 + x 2 d x 0 1 y 2 ν 1 + y 2 d y .
    Both integrals are computable since their integrands are simple rational functions.
  • λ ,   μ ,   ν   with   λ < 0 According to the binomial theorem, by expanding ( 1 + x 2 y 2 ) λ in Lemma 2, we can express S λ ( μ , ν ) in terms of S 0 ( μ , ν ) .
  • λ ,   μ ,   ν   with   λ > 0 In view of Lemma 1, we can write S λ ( μ , ν ) in terms of S λ ( μ , 0 ) or S λ ( 0 , ν ) . Taking account of symmetry, we only need to evaluate S λ ( μ , 0 ) for λ Z and μ N 0 .
By making use of the algebraic relation
x 2 μ = ( 1 ) μ + ( 1 + x 2 ) k = 1 μ ( 1 ) μ k x 2 k 2 ,
we can express
S λ ( μ , 0 ) = ( 1 ) μ S λ ( 0 , 0 ) + k = 1 μ ( 1 ) μ k T λ ( k 1 ) ,
where
T λ ( μ ) = 0 1 0 1 x 2 μ d x d y ( 1 + y 2 ) ( 1 + x 2 y 2 ) λ .
Therefore, the evaluation of series S λ ( μ , ν ) is simplified to analyzing series S λ ( 0 , 0 ) and T λ ( μ ) . They will be treated separately in the next two sections. Finally, the paper will end in Section 4, where a conclusive theorem will be presented together with several tabulated sample formulae.
Throughout the paper, we shall utilize the following notations. For an indeterminate x and n N 0 , the rising and falling factorials are defined by ( x ) 0 = x 0 = 1 and
( x ) n = x ( x + 1 ) ( x + n 1 ) x n = x ( x 1 ) ( x n + 1 ) for n N .
Analogous to the harmonic numbers and odd harmonic numbers [13,15,16,17,18]
H n = k = 1 n 1 k and O n = k = 1 n 1 2 k 1 ,
we shall employ their “skewed” variants (cf. [19,20,21,22]):
H ¯ n = k = 1 n ( 1 ) k 1 k and O ¯ n = k = 1 n ( 1 ) k 1 2 k 1 .
Most of our summation formulae are expressed in terms of π , ln 2 and Catalan’s constant (cf. [23,24,25])
G = n = 0 ( 1 ) n ( 2 n + 1 ) 2 0.915965594 .
In order to assure the accuracy of computations, numerical tests for all the equations have been made by appropriately devised Mathematica commands.

2. Evaluation of S λ ( 0 , 0 )

In view of the integral expression in Lemma 2, consider the difference
2 S 1 + λ ( 0 , 0 ) S λ ( 0 , 0 ) = 0 1 0 1 ( 1 x 2 y 2 ) d x d y ( 1 + x 2 ) ( 1 + y 2 ) ( 1 + x 2 y 2 ) λ + 1 .
By applying the equation
1 x 2 y 2 = ( 1 + x 2 ) + ( 1 + y 2 ) ( 1 + x 2 ) ( 1 + y 2 )
and then the symmetry, we can manipulate the double integral
2 S 1 + λ ( 0 , 0 ) S λ ( 0 , 0 ) = 0 1 0 1 d x d y ( 1 + x 2 ) ( 1 + x 2 y 2 ) λ + 1 + 0 1 0 1 d x d y ( 1 + y 2 ) ( 1 + x 2 y 2 ) λ + 1 0 1 0 1 d x d y ( 1 + x 2 y 2 ) λ + 1 = 2 0 1 0 1 d x d y ( 1 + x 2 ) ( 1 + x 2 y 2 ) λ + 1 0 1 0 1 d x d y ( 1 + x 2 y 2 ) λ + 1 ,
which yields the expression
2 S 1 + λ ( 0 , 0 ) S λ ( 0 , 0 ) = 0 1 0 1 ( 1 x 2 ) d x d y ( 1 + x 2 ) ( 1 + x 2 y 2 ) λ + 1 = 0 1 1 x 2 1 + x 2 d x 0 1 d y ( 1 + x 2 y 2 ) λ + 1 = 0 1 1 x 2 1 + x 2 Θ λ + 1 ( x ) d x .
Henceforth, Θ λ ( x ) is defined by the parametric integral
Θ λ ( x ) = 0 1 d y ( 1 + x 2 y 2 ) λ for λ N 0 .
By employing the integration by parts
Θ λ ( x ) = Θ λ 1 ( x ) 0 1 ( x y ) 2 d y ( 1 + x 2 y 2 ) λ = Θ λ 1 ( x ) Θ λ 1 ( x ) 2 ( λ 1 ) + 1 2 ( λ 1 ) ( 1 + x 2 ) λ 1 ,
we get the following recurrence relation
Θ λ ( x ) = 2 λ 3 2 λ 2 Θ λ 1 ( x ) + 1 2 ( λ 1 ) ( 1 + x 2 ) λ 1 .
Iterating this relation λ 1 times (under the condition λ 1 ), we find that
Θ λ ( x ) = λ 3 2 λ 1 λ 1 λ 1 Θ 1 ( x ) + 1 2 λ 1 k = 1 λ 1 λ 1 2 k λ 1 k ( 1 + x 2 ) λ k ,
where Θ 0 ( x ) and Θ 1 ( x ) are evaluated explicitly below
Θ 0 ( x ) = 1 and Θ 1 ( x ) = 0 1 d y 1 + x 2 y 2 = arctan x x .
Lemma 3 ( λ N ).
Θ λ ( x ) = λ 3 2 λ 1 arctan x x + 1 2 k = 1 λ 1 λ 3 2 k 1 λ 1 k ( 1 + x 2 ) λ k ,
Θ λ ( 1 ) = λ 3 2 λ 1 π 4 + k = 1 λ 1 λ 3 2 k 1 λ 1 k 2 1 + λ k .
By substitution, we can proceed further
2 S 1 + λ ( 0 , 0 ) S λ ( 0 , 0 ) = 0 1 1 x 2 1 + x 2 Θ λ + 1 ( x ) d x = λ 1 2 λ 0 1 ( 1 x 2 ) arctan x x ( 1 + x 2 ) d x + k = 1 λ λ + 1 2 k ( 2 λ + 1 ) λ k 0 1 1 x 2 ( 1 + x 2 ) 2 + λ k d x .
Evaluate the two integrals
0 1 ( 1 x 2 ) arctan x x ( 1 + x 2 ) d x = π 4 ln 2 , 0 1 1 x 2 ( 1 + x 2 ) 2 + λ k d x = 2 Θ 2 + λ k ( 1 ) Θ 1 + λ k ( 1 ) ;
where the first one is done as follows:
= 0 1 ( 1 x 2 ) arctan x x ( 1 + x 2 ) d x = 0 π 4 2 y cot ( 2 y ) d y x tan y = 0 π 4 ln sin ( 2 y ) d y = 1 2 0 π 2 ln sin y d y = 1 2 0 π 2 ln cos y d y = 1 4 0 π 2 ln sin ( 2 y ) 2 d y y x 2 = π 8 ln 2 1 8 0 π ln sin x d x = π 8 ln 2 1 4 0 π 2 ln sin x d x = π 8 ln 2 + 2 = π 4 ln 2 . .
Then we can express the difference
2 S 1 + λ ( 0 , 0 ) S λ ( 0 , 0 ) = λ 1 2 λ π 4 ln 2 + k = 1 λ λ + 1 2 k ( 2 λ + 1 ) λ k 2 Θ 2 + λ k ( 1 ) Θ 1 + λ k ( 1 ) .
Denote the last sum by ∇, we can manipulate it as follows:
= k = 1 λ λ + 1 2 k ( 2 λ + 1 ) λ k 2 Θ 2 + λ k ( 1 ) Θ 1 + λ k ( 1 ) = k = 0 λ 1 2 λ + 1 2 k + 1 ( 2 λ + 1 ) λ k + 1 Θ 1 + λ k ( 1 ) k = 1 λ λ + 1 2 k ( 2 λ + 1 ) λ k Θ 1 + λ k ( 1 ) = Θ λ + 1 ( 1 ) λ ( 1 2 ) λ λ ! Θ 1 ( 1 ) + k = 1 λ 1 ( 1 + λ k ) λ + 1 2 k ( 2 λ + 1 ) λ k + 1 Θ 1 + λ k ( 1 ) .
Therefore, we have established the following recurrence relation.
Proposition 1 ( λ Z ).
λ < 0 S λ ( 0 , 0 ) = k = 0 λ λ k π 4 O ¯ k 2 , λ = 0 S 0 ( 0 , 0 ) = π 2 16 , λ 1 S 1 ( 0 , 0 ) = π 2 32 + π 8 ln 2 , 2 S 1 + λ ( 0 , 0 ) S λ ( 0 , 0 ) = Θ λ + 1 ( 1 ) λ λ 1 2 λ π 4 ( 1 ln 2 )   + k = 1 λ 1 ( 1 + λ k ) λ + 1 2 k ( 2 λ + 1 ) λ k + 1 Θ 1 + λ k ( 1 ) .
Remark 1.
According to this proposition, it can be seen that S λ ( 0 , 0 ) Q 1 , π , π 2 for λ 0 and S λ ( 0 , 0 ) Q 1 , π , π 2 , π ln 2 for λ > 0 ; where Q Λ denotes the Q -linear space spanned by Λ R . Furthermore, by iterating the recursion λ 1 times, we derive, for λ 1 , the following explicit formula
S λ ( 0 , 0 ) = π ln 2 2 λ + 2 + π 2 2 λ + 4 + i = 2 λ { 2 i 1 λ i 1 Θ i ( 1 ) π ( 1 ln 2 ) 2 3 + λ i i 3 2 i 1 + 2 i 1 λ k = 1 i 2 ( i k ) i 1 2 k Θ i k ( 1 ) ( 2 i 1 ) i 1 k + 1 } .
Proof. 
The initial values corresponding to λ = 0 and λ = 1 are determined by
S 0 ( 0 , 0 ) = 0 1 0 1 d x d y ( 1 + x 2 ) ( 1 + y 2 ) = π 2 16 , 2 S 1 ( 0 , 0 ) = S 0 ( 0 , 0 ) + 0 1 1 x 2 1 + x 2 Θ 1 ( x ) d x = π 2 16 + 0 1 ( 1 x 2 ) arctan x x ( 1 + x 2 ) d x = π 2 16 + π 4 ln 2 .
when λ < 0 , the integral can be evaluated directly
S λ ( 0 , 0 ) = 0 1 0 1 ( 1 + x 2 y 2 ) λ d x d y ( 1 + x 2 ) ( 1 + y 2 ) = k = 0 λ λ k 0 1 x 2 k d x 1 + x 2 0 1 y 2 k d y 1 + y 2 = k = 0 λ λ k π 4 O ¯ k 2 ,
where the last line is justified by
0 1 x 2 k d x 1 + x 2 π 4 ( 1 ) k = ( 1 ) k + 1 0 1 1 ( x 2 ) k 1 + x 2 d x = ( 1 ) k + 1 i = 1 k 0 1 ( x 2 ) i 1 d x = ( 1 ) k + 1 i = 1 k ( 1 ) i 1 2 i 1 .
 □
We highlight from Proposition 1 the following infinite series identities.
S 1 ( 0 , 0 ) = π 2 32 + π 8 ln 2 , S 2 ( 0 , 0 ) = 1 8 + π 2 64 + π 8 ln 2 , S 3 ( 0 , 0 ) = 3 16 + π 128 + π 2 128 + 7 π 64 ln 2 , S 4 ( 0 , 0 ) = 31 144 + π 64 + π 2 256 + 3 π 32 ln 2 , S 5 ( 0 , 0 ) = 65 288 + 89 π 4096 + π 2 512 + 83 π 1024 ln 2 . S 1 ( 0 , 0 ) = 1 π 2 + π 2 8 , S 2 ( 0 , 0 ) = 22 9 4 π 3 + π 2 4 , S 3 ( 0 , 0 ) = 1144 225 44 π 15 + π 2 2 , S 4 ( 0 , 0 ) = 4496 441 128 π 21 + π 2 , S 5 ( 0 , 0 ) = 2 , 011 , 504 99 , 225 3904 π 315 + 2 π 2 .

3. Evaluation of T λ ( μ )

Now we are going to evaluate
T λ ( μ ) = 0 1 0 1 x 2 μ d x d y ( 1 + y 2 ) ( 1 + x 2 y 2 ) λ .
Recalling the partial fraction decomposition
1 ( 1 + y ) ( 1 + x y ) λ = 1 ( 1 x ) λ ( 1 + y ) k = 1 λ x ( 1 x ) 1 + λ k ( 1 + x y ) k ,
we can integrate
0 1 d y ( 1 + y 2 ) ( 1 + x 2 y 2 ) λ = 0 1 1 ( 1 x 2 ) λ ( 1 + y 2 ) d y k = 1 λ 0 1 x 2 ( 1 x 2 ) 1 + λ k ( 1 + x 2 y 2 ) k d y = π 4 ( 1 x 2 ) λ k = 1 λ x 2 Θ k ( x ) ( 1 x 2 ) 1 + λ k .
This reduces T λ ( μ ) to a single integral
T λ ( μ ) = 0 1 R ( λ , μ ; x ) d x ,
where the integrand is given by
R ( λ , μ ; x ) = π x 2 μ 4 ( 1 x 2 ) λ k = 1 λ x 2 + 2 μ Θ k ( x ) ( 1 x 2 ) 1 + λ k .
Observing that
R ( λ , μ ; x ) R ( λ , μ + 1 ; x ) = R ( λ 1 , μ ; x ) x 2 + 2 μ Θ λ ( x ) ,
we find the recurrence relation
T λ ( 1 + μ ) = T λ ( μ ) T λ 1 ( μ ) + Δ ( λ , μ ) ,
where the non–homogeneous term Δ ( λ , μ ) reads explicitly as
Δ ( λ , μ ) = 0 1 x 2 + 2 μ Θ λ ( x ) d x = λ 3 2 λ 1 0 1 x 1 + 2 μ arctan x d x + k = 1 λ 1 λ 3 2 k 1 2 λ 1 k 0 1 x 2 + 2 μ ( 1 + x 2 ) λ k d x .
The integral Δ ( λ , μ ) will be evaluated in Lemma 6. According to the recurrence (11), we infer that as long as T λ ( 0 ) are known, we can deduce all T λ ( μ ) for μ > 0 . Analogously, we claim that as long as T 1 ( μ ) are known, we can deduce all T λ ( μ ) for λ 0 .

3.1. Δ ( λ , μ )

In order to evaluate Δ ( λ , μ ) explicitly, we have to do that for the above two integrals, that are treated in the next two separate lemmas.
Firstly, it is not hard to evaluate the arctan-integral below.
Lemma 4
( m N 0 ). Let χ be the logical function defined by χ ( true ) = 1 and χ ( false ) = 0 . Then we have the following integral formulae:
I ( 2 m ) = 0 1 x 2 m arctan x d x = π 8 m + 4 ( 1 ) m ln 2 4 m + 2 + ( 1 ) m H ¯ m 4 m + 2 , I ( 2 m + 1 ) = 0 1 x 2 m + 1 arctan x d x = π χ ( m - - even ) 4 m + 4 ( 1 ) m O ¯ m + 1 2 m + 2 .
Then for another integral of the rational function
J ( m , n ) = 0 1 x m ( 1 + x 2 ) n d x where m N 0 and n N ,
by means of the integration by parts, we have
J ( m , n ) = m 1 2 ( n 1 ) 0 1 x m 2 ( 1 + x 2 ) n 1 d x x m 1 2 ( n 1 ) ( 1 + x 2 ) n 1 | 0 1
which results in the following recurrence relation
J ( m , n ) = m 1 2 ( n 1 ) J ( m 2 , n 1 ) 1 2 n ( n 1 ) .
Under the replacement m δ + 2 m with δ { 0 , 1 } , the above equation can be restated as
J ( δ + 2 m , n ) = δ 1 + 2 m 2 n 2 J ( δ + 2 m 2 , n 1 ) 1 2 n ( n 1 ) .
Iterating times this equation gives that
J ( δ + 2 m , n ) = δ 1 2 + m n 1 J ( δ + 2 m 2 , n ) k = 1 δ 1 2 + m k 1 2 1 + n k n 1 k .
By assigning = m and = n 1 for n > m and n m , respectively, we get from the above equation the following recurrent formulae.
Lemma 5 ( m N 0 , n N and δ { 0 , 1 } ).
n > m J ( δ + 2 m , n ) = ( 1 + δ 2 ) m n 1 m J ( δ , n m ) k = 1 m δ 1 2 + m k 1 2 1 + n k n 1 k , n m J ( δ + 2 m , n ) = δ 1 2 + m n 1 J ( 2 + δ + 2 m 2 n , 1 ) k = 1 n 1 δ 1 2 + m k 1 2 1 + n k n 1 k .
In the above lemma, the two integrals on the right are evaluated explicitly below:
J ( 0 , n ) = 0 1 d x ( 1 + x 2 ) n = Θ n ( 1 ) = π n 3 2 n 1 4 n 1 n 1 + k = 1 n 1 n 3 2 k 1 n 1 k 2 1 + n k ; J ( 1 , n ) = 0 1 x ( 1 + x 2 ) n d x = ln 2 2 , n = 1 ; 1 2 1 n 2 n 2 , n > 1 ; J ( m , 0 ) = 1 m + 1 , J ( 2 m , 1 ) = 0 1 x 2 m d x 1 + x 2 = ( 1 ) m π 4 ( 1 ) m O ¯ m ; J ( 2 m + 1 , 1 ) = 0 1 x 2 m + 1 d x 1 + x 2 = ( 1 ) m ln 2 2 ( 1 ) m H ¯ m 2 .
Finally, we find the following expression for the non-homogeneous term.
Lemma 6 ( λ , μ N 0 ).
Δ ( λ , μ ) = 0 1 x 2 + 2 μ Θ λ ( x ) d x = λ 3 2 λ 1 I ( 2 μ + 1 ) + k = 1 λ 1 λ 3 2 k 1 2 λ 1 k J ( 2 μ + 2 , λ k ) .

3.2. T λ ( 0 ) with λ 1

For λ = 1 , it is not difficult to check that
T 1 ( 0 ) = 0 1 0 1 d x d y ( 1 + y 2 ) ( 1 + x 2 y 2 ) = 0 1 arctan y d y y ( 1 + y 2 ) = G 2 + π 8 ln 2 .
This is justified by combining two integrals
0 1 arctan y y ( 1 + y 2 ) d y G 2 = 0 1 arctan y y ( 1 + y 2 ) d y 0 1 arctan y 2 y d y = 0 1 ( 1 y 2 ) arctan y 2 y ( 1 + y 2 ) d y = π 8 ln 2 .
Interestingly, there is a counterpart integral evaluation
0 1 y arctan y ( 1 + y 2 ) d y G 2 = 0 1 y arctan y ( 1 + y 2 ) d y 0 1 arctan y 2 y d y = 0 1 ( y 2 1 ) arctan y 2 y ( 1 + y 2 ) d y = π 8 ln 2 .
In general for λ > 1 , integrating with respect to x gives
T λ ( 0 ) = 0 1 0 1 d x d y ( 1 + y 2 ) ( 1 + x 2 y 2 ) λ = 0 1 Θ λ ( y ) 1 + y 2 d y .
Recalling Lemma 3, we can compute the rightmost integral
0 1 Θ λ ( y ) 1 + y 2 d y = λ 3 2 λ 1 0 1 arctan y y ( 1 + y 2 ) d y + 1 2 λ 1 k = 1 λ 1 λ 1 2 k λ 1 k 0 1 d y ( 1 + y 2 ) 1 + λ k = λ 3 2 λ 1 G 2 + π 8 ln 2 + 1 2 λ 1 k = 1 λ 1 λ 1 2 k λ 1 k Θ 1 + λ k ( 1 ) .
This leads us to the general formula
T λ ( 0 ) = λ 3 2 λ 1 G 2 + π 8 ln 2 + 1 2 λ 1 k = 1 λ 1 λ 1 2 k λ 1 k Θ 1 + λ k ( 1 ) .

3.3. T λ ( μ ) with λ 0

When λ 0 , it is almost routine to proceed with
T λ ( μ ) = 0 1 0 1 x 2 μ d x d y ( 1 + y 2 ) ( 1 + x 2 y 2 ) λ = k = 0 λ λ k 0 1 x 2 μ + 2 k d x 0 1 y 2 k 1 + y 2 d y = k = 0 λ λ k ( 1 ) k 2 μ + 2 k + 1 π 4 O ¯ k .
Summing up, we have proved the following general result.
Proposition 2 ( λ Z and μ N 0 ).
Assuming I ( μ ) and J ( λ , μ ) as in Lemmas 4 and 5, we have the following formulae:
λ 0 T λ ( μ ) = k = 0 λ λ k ( 1 ) k 2 μ + 2 k + 1 π 4 O ¯ k ; λ 1 T λ ( 0 ) = λ 3 2 λ 1 G 2 + π 8 ln 2 + 1 2 λ 1 k = 1 λ 1 λ 1 2 k λ 1 k Θ 1 + λ k ( 1 ) ; T λ ( μ + 1 ) = T λ ( μ ) T λ 1 ( μ ) Δ ( λ , μ ) + λ 3 2 λ 1 I ( 2 μ + 1 ) + k = 1 λ 1 λ 3 2 k 1 2 λ 1 k J ( 2 μ + 2 , λ k ) .
Remark 2.
This proposition clearly implies the remarkable fact that T λ ( μ ) Q 1 , π for λ 0 and T λ ( μ ) Q 1 , G , π , π ln 2 for λ > 0 .
According to Proposition 2, it is possible to compute T λ ( μ ) when λ Z and μ N 0 are specified by small values. For 3 λ 3 and 0 μ 3 , the corresponding values of T λ ( μ ) are recorded in the following table.
λ \ μ 0123
3 76 105 + 4 π 35 388 945 + 4 π 315 988 3465 + 4 π 1155 12 55 + 4 π 3003
2 8 15 + 2 π 15 32 105 + 2 π 105 40 189 + 2 π 315 16 99 + 2 π 693
1 1 3 + π 6 1 5 + π 30 1 7 + π 70 1 9 + π 126
0 π 4 π 12 π 20 π 28
1 G 2 + π 8 ln 2 G 2 1 2 + π 8 ln 2 G 2 1 3 π 12 + π 8 ln 2 G 2 43 90 π 20 + π 8 ln 2
2 1 8 + G 4 + π 16 + π 16 ln 2 3 8 G 4 + π 16 π 16 ln 2 5 8 3 G 4 + 3 π 16 3 π 16 ln 2 95 72 5 G 4 + 3 π 16 5 π 16 ln 2
3 5 32 + 3 G 16 + 9 π 128 + 3 π 64 ln 2 5 32 G 16 + 5 π 128 π 64 ln 2 3 G 16 3 32 3 π 128 + 3 π 64 ln 2 15 G 16 89 96 15 π 128 + 15 π 64 ln 2

4. Evaluation of S λ ( μ , ν )

Recalling the integral representation in Lemma 2, S λ ( μ , ν ) is symmetric in μ and ν . Suppose that λ Z and μ , ν N 0 with μ ν . By Lemma 1, we can write
S λ ( μ , ν ) = k = 0 ν ( 1 ) ν k ν k S λ k ( μ ν , 0 ) .
In view of the algebraic relation
x μ ν = ( 1 ) μ ν + ( 1 + x ) j = 1 μ ν ( 1 ) μ ν j x j 1 ,
we can proceed further with
S λ k ( μ ν , 0 ) = 0 1 0 1 x 2 μ 2 ν ( 1 + x 2 ) ( 1 + y 2 ) ( 1 + x 2 y 2 ) λ k d x d y = ( 1 ) μ ν S λ k ( 0 , 0 ) + j = 1 μ ν ( 1 ) μ ν j T λ k ( j 1 ) .
By substitution, we arrive at the following conclusive theorem.
Theorem 1 ( λ Z and μ , ν N 0 ).
For any triplet integers λ , μ , ν with λ Z and μ , ν N 0 , the corresponding S λ ( μ , ν ) always has the value in Q 1 , π , π 2 for λ 0 and Q 1 , G , π , π 2 , π ln 2 for λ > 0 , where Q Λ denotes the Q -linear space spanned by Λ R . More precisely, assuming S λ ( 0 , 0 ) and T λ ( μ ) as in Proposition 1 and Proposition 2, respectively, the following infinite series identity holds:
S λ ( μ , ν ) = k = 0 ν ( 1 ) μ k ν k S λ k ( 0 , 0 ) + k = 0 ν ν k j = 1 μ ν ( 1 ) μ k j T λ k ( j 1 ) .
According to this theorem, we tabulate the summation formulae for triple series S λ ( μ , ν ) with 4 λ 5 and 0 μ , ν 3 below.
μ \ ν 0123
λ = 0 0 π 2 16 λ = 0
1 π 4 π 2 16 1 π 2 + π 2 16
2 π 2 16 π 6 5 π 12 π 2 16 2 3 4 9 π 3 + π 2 16
3 13 π 60 π 2 16 13 15 7 π 15 + π 2 16 23 π 60 π 2 16 26 45 169 225 13 π 30 + π 2 16
λ = 1 0 1 π 2 + π 2 8 λ = 1
1 2 π 3 2 3 π 2 8 13 9 5 π 6 + π 2 8
2 13 15 19 π 30 + π 2 8 4 π 5 56 45 π 2 8 269 225 23 π 30 + π 2 8
3 68 π 105 76 105 π 2 8 85 63 57 π 70 + π 2 8 82 π 105 1898 1575 π 2 8 14,057 11,025 167 π 210 + π 2 8
λ = 2 0 22 9 4 π 3 + π 2 4 λ = 2
1 22 π 15 86 45 π 2 4 66 25 8 π 5 + π 2 4
2 698 315 152 π 105 + π 2 4 166 π 105 1286 525 π 2 4 27,238 11,025 164 π 105 + π 2 4
3 458 π 315 1894 945 π 2 4 12,074 4725 100 π 63 + π 2 4 494 π 315 80,594 33,075 π 2 4 247,666 99,225 496 π 315 + π 2 4
λ = 3 0 1144 225 44 π 15 + π 2 2 λ = 3
1 64 π 21 6868 1575 π 2 2 56,344 11,025 332 π 105 + π 2 2
2 22,544 4725 956 π 315 + π 2 2 992 π 315 161,612 33,075 π 2 2 492,808 99,225 988 π 315 + π 2 2
3 1504 π 495 233,164 51,975 π 2 2 1,827,712 363,825 10,924 π 3465 + π 2 2 2176 π 693 5,341,508 1,091,475 π 2 2 8,520,376 1,715,175 1556 π 495 + π 2 2
λ = 4 0 4496 441 128 π 21 + π 2 λ = 4
1 1952 π 315 61,168 6615 π 2 999,904 99,225 1984 π 315 + π 2
2 142,544 14,553 4288 π 693 + π 2 7264 π 1155 10,674,704 1,091,475 π 2 4,770,896 480,249 4352 π 693 + π 2
3 278,816 π 45,045 809,072 85,995 π 2 141,578,432 14,189,175 31,488 π 5005 + π 2 282,976 π 45,045 306,183,088 31,216,185 π 2 20,122,947,296 2,029,052,025 283,072 π 45,045 + π 2
λ = 1 0 π 2 32 + π 8 ln 2 λ = 1
1 G 2 π 2 32 π 2 32 π 8 ln 2
2 π 2 32 + π 8 ln 2 1 2 π 4 G 2 π 2 32 1 π 2 + π 2 32 + π 8 ln 2
3 G 2 + 1 6 π 12 π 2 32 1 2 π 6 + π 2 32 π 8 ln 2 G 2 2 3 + π 6 π 2 32 π 6 + π 2 32 π 8 ln 2 5 9
λ = 2 0 1 8 + π 2 64 + π 8 ln 2 λ = 2
1 G 4 + π 16 π 2 64 π 16 ln 2 π 2 64 1 8
2 3 8 + π 2 64 G 2 G 4 π 16 π 2 64 + π 16 ln 2 1 8 + π 2 64 π 8 ln 2
3 1 4 G 4 + 3 π 16 π 2 64 3 π 16 ln 2 G 2 7 8 + π 2 64 + 1 8 π ln 2 5 π 16 π 2 64 π 16 ln 2 3 G 4 7 8 π 2 + π 2 64 + 1 4 π ln 2
λ = 3 0 3 16 + π 128 + π 2 128 + 7 π 64 ln 2 λ = 3
1 3 G 16 1 32 + π 16 π 2 128 π 16 ln 2 π 2 128 π 128 1 16 + π 64 ln 2
2 3 16 G 4 3 π 128 + π 2 128 + 3 π 64 ln 2 G 16 + 1 32 π 2 128 π 128 + π 2 128 1 16 π 64 ln 2
3 7 G 16 9 32 π 2 128 3 16 G 4 + 3 π 128 + π 2 128 3 π 64 ln 2 3 G 16 1 32 π 16 π 2 128 + π 16 ln 2 3 16 π 128 + π 2 128 7 π 64 ln 2
λ = 4 0 31 144 + π 64 + π 2 256 + 3 π 32 ln 2 λ = 4
1 5 G 32 3 64 + 43 π 768 π 2 256 7 π 128 ln 2 π 2 256 1 36 π 128 + π 64 ln 2
2 π 2 256 3 G 16 + 47 288 3 π 128 + 3 π 64 ln 2 G 32 + 1 64 + 5 π 768 π 2 256 π 128 ln 2 π 2 256 5 144
3 7 G 32 9 64 + 25 π 768 π 2 256 5 π 128 ln 2 7 288 G 16 + π 2 256 G 32 + 1 64 5 π 768 π 2 256 + π 128 ln 2 π 128 1 36 + π 2 256 π 64 ln 2
λ = 5 0 65 288 + 89 π 4096 + π 2 512 + 83 π 1024 ln 2 λ = 5
1 35 G 256 241 4608 + 19 π 384 π 2 512 3 π 64 ln 2 π 2 512 1 96 25 π 4096 + 13 π 1024 ln 2
2 π 2 512 5 G 32 + 29 192 253 π 12,288 + 43 π 1024 ln 2 5 G 256 + 25 4608 + 5 π 768 π 2 512 π 128 ln 2 π 2 512 5 288 7 π 4096 + 3 π 1024 ln 2
3 43 G 256 179 1536 + 25 π 768 π 2 512 5 π 128 ln 2 π 2 512 G 32 + 7 576 35 π 12,288 + 5 π 1024 ln 2 3 G 256 + 47 4608 π 2 512 π 2 512 5 288 + 7 π 4096 3 π 1024 ln 2

Author Contributions

Writing—original draft, W.C.; Writing—review & editing, C.L. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Informed Consent Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Bromwich, T.J. An Introduction to the Theory of Infinite Series; MacMillan & Co. Limited: London, UK, 1908. [Google Scholar]
  2. Knopp, K. Theory and Applications of Infinite Series; Blackie & Son Limited: London, UK, 1928. [Google Scholar]
  3. Mordell, L.J. On the evaluation of some multiple series. J. Lond. Math. Soc. 1958, 33, 368–371. [Google Scholar]
  4. Subbarao, M.V.; Sitaramachandrarao, R. On some infinite series of L. J. Mordell and their analogues. Pac. J. Math. 1985, 119, 245–255. [Google Scholar] [CrossRef] [Green Version]
  5. Aliev, I.A.; Dil, A. Tornheim-like series, harmonic numbers and zeta values. arXiv 2020, arXiv:2008.02488v1. [Google Scholar]
  6. Tornheim, L. Harmonic double series. Am. J. Math. 1950, 72, 303–314. [Google Scholar] [CrossRef]
  7. Kadota, S.Y.; Okamoto, T.; Tasaka, K. Evaluation of Tornheim’s type of double series. Illinois J. Math. 2017, 61, 171–186. [Google Scholar] [CrossRef] [Green Version]
  8. Tsumura, H. Evaluation formulas for Tornheim’s type of alternating double series. Math. Comp. 2003, 73, 251–258. [Google Scholar] [CrossRef] [Green Version]
  9. Ramanujan, S. Collected Papers of Srivasa Ramanujan; Hardy, G.H., Seshu Aiyar, P.V., Wilson, B.M., Eds.; Cambridge University Press: Cambridge, UK, 1927. [Google Scholar]
  10. Chagas, J.Q.; Tenreiro Machado, J.A.; Lopes, A.M. Revisiting the formula for the Ramanujan constant of a series. Mathematics 2022, 10, 1539. [Google Scholar] [CrossRef]
  11. Borwein, D.; Borwein, J.M. On an intriguing integral and some series related to zeta(4). Proc. Am. Math. Soc. 1995, 123, 1191–1198. [Google Scholar]
  12. Borwein, D.; Borwein, J.M.; Girgensohn, R. Explicit evaluation of Euler sums. Proc. Edinb. Math. Soc. 1995, 38, 277–294. [Google Scholar] [CrossRef] [Green Version]
  13. Chu, W. Hypergeometric series and the Riemann zeta function. Acta Arith. 1997, 82, 103–118. [Google Scholar] [CrossRef]
  14. Rudin, W. Principles of Mathematical Analysis, 3rd ed.; McGraw–Hill, Inc.: New York, NY, USA, 1976. [Google Scholar]
  15. Chen, H. Interesting series associated with central binomial coefficients, Catalan numbers and harmonic numbers. J. Integer Seq. 2016, 19, 16.1.5. [Google Scholar]
  16. Chu, W. A binomial coefficient identity associated with Beukers’ conjecture on Apéry numbers. Electron. J. Combin. 2004, 11, N15. [Google Scholar] [CrossRef]
  17. Chu, W. Infinite series identities on harmonic numbers. Results Math. 2012, 61, 209–221. [Google Scholar] [CrossRef]
  18. Chu, W.; Wang, X.Y. Binomial series identities involving generalized harmonic numbers. Integers 2020, 20, 98. [Google Scholar]
  19. Batir, N. Finite binomial sum identities with harmonic numbers. J. Integer Seq. 2021, 24, 21.4.3. [Google Scholar]
  20. Boyadzhiev, K.N. Power series with skew-harmonic numbers, dilogarithms, and double integrals. Tatra Mt. Mat. Publ. 2013, 56, 93–108. [Google Scholar] [CrossRef] [Green Version]
  21. Frontczak, R. Binomial sums with skew-harmonic numbers. Palest. J. Math. 2021, 10, 756–763. [Google Scholar]
  22. Kargin, L.; Can, M. Harmonic number identities via polynomials with r-Lah coefficients. C. R. Math. Acad. Sci. Paris 2020, 358, 535–550. [Google Scholar] [CrossRef]
  23. Bradley, D.M. Representations of Catalan’s Constant. 2001. Available online: www.researchgate.net/publication/2325473 (accessed on 2 February 2001).
  24. Jameron, G.; Lord, N. Integrals evaluated in terms of Catalan’s constant. Math. Gaz. 2017, 101, 38–49. [Google Scholar] [CrossRef]
  25. Stewart, S.M. A Catalan constant inspired integral odyssey. Math. Gaz. 2020, 104, 449–459. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Li, C.; Chu, W. Evaluation of Infinite Series by Integrals. Mathematics 2022, 10, 2444. https://doi.org/10.3390/math10142444

AMA Style

Li C, Chu W. Evaluation of Infinite Series by Integrals. Mathematics. 2022; 10(14):2444. https://doi.org/10.3390/math10142444

Chicago/Turabian Style

Li, Chunli, and Wenchang Chu. 2022. "Evaluation of Infinite Series by Integrals" Mathematics 10, no. 14: 2444. https://doi.org/10.3390/math10142444

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop