On the Fuzzy Solution of Linear-Nonlinear Partial Differential Equations
Abstract
:1. Introduction
2. Basic Concepts
- 1.
- is normal, i.e., there exists with
- 2.
- stands for a convex fuzzy set (i.e.,
- 3.
- is semicontinuous on ;
- 4.
- is the support of the in addition, its closure cl is compact.
- 1.
- is a complete metric space,
- 2.
- 3.
- ,
- 4.
- 5.
- 6.
- with .
- (i)
- for all sufficiently small, and the limits (in the metric D)or
- (ii)
- for all sufficiently small, and the limitsor
- (iii)
- for all sufficiently small, and the limitsor
- (iv)
- for all sufficiently small, and the limits
Fuzzy Fractional Calculus
- (i)
- if is (i)-differentiable fuzzy-valued function, then
- (ii)
- if is (ii)-differentiable fuzzy-valued function, then
3. Analytical Solution of Fuzzy Fractional Navier–Stokes Equation
3.1. Fuzzy Adomian Decomposition Method
3.2. Convergence Analysis
3.3. Fuzzy Modified Laplace Decomposition Method
Convergence Analysis
- (i)
- (ii)
3.4. Examples
4. Fuzzy Linear and Nonlinear Schrodinger Equations
- Consider the following fuzzy linear Schrodinger equation:with the initial condition
- Consider the fuzzy nonlinear Schrodinger equation as:with the initial conditionandwith the initial condition
4.1. Elzaki Transform
4.2. Fuzzy Elzaki Adomian Decomposition Method
4.3. Convergence Analysis
4.4. Examples
4.4.1. The Fuzzy Linear Schrodinger Equation
4.4.2. The Fuzzy Nonlinear Schrodinger Equation
5. Fuzzy Heat-Like and Wave-like Equations with Variable Coefficients
- Consider the fuzzy heat-like equation of the formwith the initial condition
- Consider the fuzzy wave-like equation of the formwith the initial condition
5.1. The Fuzzy Reduced Differential Transform Method
- 1.
- If , then
- 2.
- If , then
- 3.
- If , then , where is a constant.
- 4.
- If , then
- 5.
- If , then
- 6.
- If , then
- 7.
- If , then
- 8.
- If , then
5.2. The Fuzzy Homotopy Perturbation Method
- 1.
- a fuzzy differential operator, which means and are differential operator,
- 2.
- and , for any
5.2.1. Fuzzy Heat-like Equations
5.2.2. Inhomogeneous Fuzzy Heat-like Equations
5.2.3. Fuzzy Wave-like Equations
5.3. Examples
5.4. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Araour, M.; Mennouni, A. A New Procedures for Solving Two Classes of Fuzzy Singular Integro-Differential Equations: Airfoil Collocation Methods. Int. J. Appl. Comput. Math. 2022, 8, 35. [Google Scholar] [CrossRef]
- Casasnovas, J.; Rossell, F. Averaging fuzzy biopolymers. Fuzzy Sets Syst. 2005, 105, 139–158. [Google Scholar] [CrossRef] [Green Version]
- Guo, M.; Xue, X.; Li, R. Impulsive functional differential inclusions and fuzzy population models. Fuzzy Sets Syst. 2003, 138, 601–615. [Google Scholar] [CrossRef]
- Naschie, M.S.E. From experimental quantum optics to quantum gravity via a fuzzy Khler manifold. Chaos Solitons Fractals 2005, 25, 969–977. [Google Scholar] [CrossRef]
- Oberguggenberger, M.; Pittschmann, S. Differential equations with fuzzy parameters. Math. Mod. Syst. 1999, 5, 181–202. [Google Scholar]
- Kandel, A.; Byatt, W.J. Fuzzy differential equations. In Proceedings of the International Conference on Cybernetics and Society, Tokyo, Japan; 1978. [Google Scholar]
- Seikkala, S. On the fuzzy initial value problem. Fuzzy Sets Syst. 1987, 24, 319–330. [Google Scholar] [CrossRef]
- Kaleva, O. Fuzzy differential equations. Fuzzy Sets Syst. 1987, 24, 301–317. [Google Scholar] [CrossRef]
- Kaleva, O. The Cauchy problem for fuzzy differential equations. Fuzzy Sets Syst. 1990, 35, 389–396. [Google Scholar] [CrossRef]
- Kloeden, P.E. Remarks on Peano-like theorems for fuzzy differential equations. Fuzzy Sets Syst. 1991, 44, 161–163. [Google Scholar] [CrossRef]
- Ouyang, H.; Wu, Y. On fuzzy differential equations. Fuzzy Sets Syst. 1989, 32, 321–325. [Google Scholar]
- Jowers, L.J.; Buckley, J.J.; Reilly, K.D. Simulating continuous fuzzy systems. Inf. Sci. 2007, 177, 436–448. [Google Scholar] [CrossRef]
- Bede, B.; Rudas, I.J.; Bencsik, A.L. First order linear fuzzy differential equations under generalized differentiability. Inf. Sci. 2007, 177, 1648–1662. [Google Scholar] [CrossRef]
- Chen, M.H.; Wu, C.X.; Xue, X.P.; Liu, G.Q. On fuzzy boundary value problems. Inf. Sci. 2008, 178, 1877–1892. [Google Scholar] [CrossRef]
- Ding, Z.; Ma, M.; Kandel, A. Existence of the solutions of fuzzy differential equations with parameters. Inf. Sci. 1997, 99, 205–217. [Google Scholar] [CrossRef]
- Song, S.J.; Wu, C.X. Existence and uniqueness of solutions to Cauchy problem of fuzzy differential equations. Fuzzy Sets Syst. 2000, 110, 55–67. [Google Scholar] [CrossRef]
- Wu, C.X.; Song, S.J. Existence theorem to the Cauchy problem of fuzzy differential equations under compactness-type conditions. Inf. Sci. 1998, 108, 123–134. [Google Scholar]
- Bede, B.; Gal, S.G. Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations. Fuzzy Sets Syst. 2005, 151, 581–599. [Google Scholar] [CrossRef]
- Puri, M.L.; Ralescu, D.A. Differentials of fuzzy functions. J. Math. Anal. Appl. 1983, 91, C552–C558. [Google Scholar] [CrossRef] [Green Version]
- Bede, B.; Stefanini, L. Generalized differentiability of fuzzy-valued functions. Fuzzy Setes Syst. 2013, 230, 119–141. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Malik, M.; Sajid, M.; Baleanu, D. Existence of local and global solutions to fractional order fuzzy delay differential equation with non-instantaneous impulses. AIMS Math. 2022, 7, C2348–C2369. [Google Scholar] [CrossRef]
- Lakshmikantham, V.; Leela, S. A Krasnoselskii-Krein-type uniqueness result for fractional differential equations. Nonlinear Anal. Theory Methods Appl. 2009, 71, 3421–3424. [Google Scholar] [CrossRef]
- Lakshmikantham, V. Theory of fractional functional differential equations, Nonlinear Analysis: Theory. Methods Appl. 2008, 69, 3337–3343. [Google Scholar]
- Magin, R. Fractional calculus models of complex dynamics in biological tissues. Comput. Math. Appl. 2010, 59, 1586–1593. [Google Scholar] [CrossRef] [Green Version]
- Magin, R.; Ortigueira, M.; Podlubny, I.; Trujillo, J.J. On the fractional signals and systems. Signal Process. 2011, 91, 350–371. [Google Scholar] [CrossRef]
- Merala, F.C.; Roystona, T.J.; Magin, R. Fractional calculus in viscoelasticity: An exbperimental study. Commun. Nonlinear Sci. Numer. Simul. 2010, 15, 939–945. [Google Scholar] [CrossRef]
- Mazandarani, M.; Pariz, N.; Kamyad, A.V. Granular differentiability of fuzzy-number-valued functions. IEEE Trans. Fuzzy Syst. 2018, 26, 310–323. [Google Scholar] [CrossRef]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications; Gordon and Breach Science Publishers: Basel, Switzerland, 1993. [Google Scholar]
- Adomian, G. Nonlinear Stochastic Operator Equations; Academic Press: San Diego, CA, USA, 1986. [Google Scholar]
- Adomian, G. A review of the decomposition method in applied mathematics. J. Math. Anal. Appl. 1988, 135, 501–544. [Google Scholar] [CrossRef] [Green Version]
- Adomian, G. Solving Frontier Problems of Physics: The Decomposition Method; Kluwer Academic Publishers: Boston, MA, USA, 1994. [Google Scholar]
- Wazwaz, A.M. Exact Special solutions with solitary patterns for the nonlinear dispersive K(m,n) equations. Chaos Solitons Fractals 2002, 13, 161–170. [Google Scholar] [CrossRef]
- Wazwaz, A.M. Construction of soliton solutions and periodic solutions of the Boussinesq equation by the modified decomposition method. Chaos Solitons Fractals 2001, 12, 1549–1556. [Google Scholar] [CrossRef]
- Yan, Z.Y. New families of solitons with compact support for Boussinesq-like B(m,n) equations with fully nonlinear dispersion. Chaos Solitons Fractals 2002, 14, 1151–1158. [Google Scholar] [CrossRef]
- Zhu, Y.G. Exact special solutions with solitary patterns for Boussinesq-like B(m,n) equations with fully nonlinear dispersion. Chaos Solitons Fractals 2004, 22, 213–220. [Google Scholar] [CrossRef]
- Zhu, Y.; Chang, Q.; Wu, S. Exact solitary-wave solutions with compact support for the modified KdV equation. Chaos Solitons Fractals 2005, 24, 365–369. [Google Scholar] [CrossRef]
- Bhattia, S.; Zahida, M.; Alib, R.; Sarwara, A.; Wahabc, H.A. Blade coating analysis of a viscoelastic Carreau fluid using Adomian decomposition method. Math. Comput. Simul. 2021, 190, 659–677. [Google Scholar] [CrossRef]
- Georgieva, A.; Pavlova, A. Fuzzy Sawi Decomposition Method for Solving Nonlinear Partial Fuzzy Differential Equations. Symmetry 2021, 13, 1580. [Google Scholar] [CrossRef]
- Osman, M.; Gong, Z.T.; Mustafa, A.M. Comparison of fuzzy Adomian decomposition method with fuzzy VIM for solving fuzzy heat-like and wave-like equations with variable coefficients. Adv. Diff. Equ. 2020, 2020, 372. [Google Scholar] [CrossRef]
- Osman, M.; Gong, Z.T.; Mustafa, A.M.; Yong, H. Solving fuzzy (1+n)-dimensional Burgers’ equation. Adv. Diff. Equ. 2021, 2021, 219. [Google Scholar] [CrossRef]
- Paul, G.C.; Khatun, S.; Nuruzzaman, M.; Kumar, D.; Ali, M.E.; Bilkis, F.; Barman, M.C. Solving protoplanetary structure equations using Adomian decomposition method. Heliyon 2021, 7, e08213. [Google Scholar] [CrossRef]
- Elcin, Y. (Aghadjanov), Numerical solution of Duffing equation by the Laplace decomposition algorithm. Appl. Math. Comput. 2006, 177, 572–580. [Google Scholar]
- Hamoud, A.; Ghadle, K. Modified Laplace decomposition method for fractional Volterra-Fredholm integro-differential equations. J. Math. Model. 2018, 6, 91–104. [Google Scholar]
- Khuri, S.A. A Laplace decomposition algorithm applied to class of nonlinear differential equations. J. Math. Appl. 2001, 1, 141–155. [Google Scholar] [CrossRef]
- Khuri, S.A. A new approach to Bratu’s problem. Appl. Math. Comput. 2004, 147, 131–136. [Google Scholar] [CrossRef]
- Baleanu, D.; Aydogn, S.M.; Mohammadi, H.; Rezapour, S. On modelling of epidemic childhood diseases with the Caputo-Fabrizio derivative by using the Laplace Adomian decomposition method. Alex. Eng. J. 2020, 59, 3029–3039. [Google Scholar] [CrossRef]
- Farman, M.; Saleem, M.U.; Ahmad, A.; Ahmad, M.O. Analysis and numerical solution of SEIR epidemic model of measles with non-integer time fractional derivatives by using Laplace Adomian Decomposition Method. Ain Shams Eng. 2018, 9, 3391–3397. [Google Scholar] [CrossRef]
- Mohammed, O.H.; Salim, H.A. Computational methods based laplace decomposition for solving nonlinear system of fractional order differential equations. Alex. Eng. J. 2018, 57, 3549–3557. [Google Scholar] [CrossRef]
- Elzaki, T.M. The new integral transform “Elzaki Transform”. Glob. J. Pure Appl. Math. 2011, 7, 57–64. [Google Scholar]
- Elzaki, T.M.; Ezaki, S.M. Application of new transform “Elzaki Transform”, to partial differential equations. Glob. J. Pure Appl. Math. 2011, 7, 65–70. [Google Scholar]
- Elzaki1, T.M.; Mousa, A. On the convergence of triple Elzaki transform. SN Appl. Sci. 2019, 1, 275. [Google Scholar] [CrossRef] [Green Version]
- Khan, H.; Khan, A.; Kumam, P.; Baleanu, D.; Arif, M. An approximate analytical solution of the Navier–Stokes equations within Caputo operator and Elzaki transform decomposition method. Adv. Differ. Equ. 2020, 2020, 622. [Google Scholar]
- Nuruddeen, R.I. Elzaki decomposition method and its application in solving linear and nonlinear Schrodinger equations. Sohag J. Math. 2017, 4, 1–5. [Google Scholar] [CrossRef]
- Varsoliwala, A.C.; Singh, T.R. Mathematical modelling of atmospheric internal waves phenomenon and its solution by Elzaki Adomian Decomposition Method. J. Ocean. Eng. Sci. 2022, 7, 203–212. [Google Scholar] [CrossRef]
- Zhou, J.K. Differential Transformation and Its Application for Electrical Circuits; Huazhong University Press: Wuhan, China, 1986. [Google Scholar]
- Kanth, A.R.; Aruna, K. Differential transform method for solving linear and nonlinear systems of partial differential equations. Phys. Lett. A 2008, 372, 6896–6898. [Google Scholar] [CrossRef]
- Yu, J.; Jing, J.; Sun, Y.; Wu, S. (n+1)-dimensional reduced differential transform method for solving partial differential equations. Appl. Math. Comput. 2016, 273, 697–705. [Google Scholar] [CrossRef]
- Zou, L.; Wang, Z.; Zong, Z. Generalized differential transform method to differential-difference equation. Phy. Lett. A 2009, 373, 4142–4151. [Google Scholar] [CrossRef]
- Abazari, R.; Ganji, M. Extended two-dimensional dtm and its application on nonlinear pdes with proportional delay. Int. J. Compu. Math. 2011, 88, 1749–1762. [Google Scholar] [CrossRef]
- Keskin, Y.; Oturan, G. Reduced differential transform method for partial differential equations. Int. J. Nonlinear Sci. Numer. Simul. 2009, 10, 741–749. [Google Scholar] [CrossRef]
- Keskin, Y.; Oturan, G. Reduced differential transform method: A new approach to fractional partial differential equations. Nonlinear Sci. Lett. A 2010, 1, 61–72. [Google Scholar]
- Arshad, M.; Wang, D.L.J. (N+1)-dimensional fractional reduced differential transform method for fractional order partial differential equations. Commun. Nonlinear Sci. Numer. Simul. 2017, 48, 509–519. [Google Scholar] [CrossRef]
- He, J.H. Homotopy perturbation technique, Comput. Mehods. Comput. Methods Appl. Mech. Eng. 1999, 178, 257–262. [Google Scholar] [CrossRef]
- He, J.H. A coupling method of Homotopy technique and a perturbation technique for nonlinear problems. Int. J. Non-Linear Mech. 2000, 35, 7–43. [Google Scholar] [CrossRef]
- Altaie, S.A.; Jameel, A.F.; Saaban, A. Homotopy perturbation method approximate analytical solution of fuzzy partial differential equation. IAENG Int. J. Appl. Math. 2019, 49, 22–28. [Google Scholar]
- Ates, I.; Zegeling, P.A. A homotopy perturbation method for fractional-order advection-diffusion-reaction boundary-value problems. Appl. Math. Model. 2017, 47, 425–441. [Google Scholar] [CrossRef]
- Sakar, M.G.; Uludag, F.; Erdogan, F. Numerical solution of time-fractional nonlinear PDEs with proportional delyas by homotopy perturbation method. Appli. Math. Mode. 2016, 40, 6639–6649. [Google Scholar] [CrossRef]
- Jameel, A.F.; Altaie, A.S.J.; Aljabbari, S.G.A.; AlZubaidi, A.; Man, N.H. Double Parametric Fuzzy Numbers Approximate Scheme for Solving One-Dimensional Fuzzy Heat-Like and Wave-Like Equations. Mathematics 2020, 8, 1737. [Google Scholar] [CrossRef]
- Wu, C.V.; Gong, Z.T. On Henstock integral of fuzzy-number-valued functions (1). Fuzzy Sets Syst. 2001, 120, 523–532. [Google Scholar] [CrossRef]
- Allahviranloo, T.; Gouyandeha, Z.; Armanda, A.; Hasanoglub, A. On fuzzy solutions for heat equation based on generalized Hukuhara differentiability. Fuzzy Sets Syst. 2015, 265, 1–23. [Google Scholar] [CrossRef]
- Salahshour, S.; Allahviranloo, T.; Abbasbandy, S. Solving fuzzy fractional differential equations by fuzzy Laplace transforms. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 1372–1381. [Google Scholar] [CrossRef]
- Rivaz, A.; Fard, O.S.; Bidgoli, T.A. Solving fuzzy fractional differential equations by generalized differential transform method. SeMA J. 2016, 73, 149–170. [Google Scholar] [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Osman, M.; Xia, Y.; Omer, O.A.; Hamoud, A. On the Fuzzy Solution of Linear-Nonlinear Partial Differential Equations. Mathematics 2022, 10, 2295. https://doi.org/10.3390/math10132295
Osman M, Xia Y, Omer OA, Hamoud A. On the Fuzzy Solution of Linear-Nonlinear Partial Differential Equations. Mathematics. 2022; 10(13):2295. https://doi.org/10.3390/math10132295
Chicago/Turabian StyleOsman, Mawia, Yonghui Xia, Omer Abdalrhman Omer, and Ahmed Hamoud. 2022. "On the Fuzzy Solution of Linear-Nonlinear Partial Differential Equations" Mathematics 10, no. 13: 2295. https://doi.org/10.3390/math10132295
APA StyleOsman, M., Xia, Y., Omer, O. A., & Hamoud, A. (2022). On the Fuzzy Solution of Linear-Nonlinear Partial Differential Equations. Mathematics, 10(13), 2295. https://doi.org/10.3390/math10132295

