Operators Obtained by Using Certain Generating Function for Approximation
Abstract
:1. Introduction
- (i)
- (ii)
2. Some Results on the Operators
3. An Extension of Operators
Author Contributions
Funding
Conflicts of Interest
References
- Jakimovski, A.; Leviatan, D. Generalized Szasz operators for the approximation in the infinite interval. Mathematica 1969, 11, 97–103. [Google Scholar]
- Ismail, M.E.H. On a generalization of Szász operators. Mathematica 1974, 39, 259–267. [Google Scholar]
- Szasz, O. Generalization of S. Bernstein’s polynomials to the infinite interval. J. Res. Nat. Bur. Stand. 1950, 45, 239–245. [Google Scholar] [CrossRef]
- Roman, S. The Umbral Calculus, Pure and Applied Mathematics; Academic Press, Inc.: New York, NY, USA, 1984; Volume 111. [Google Scholar]
- Rainville, E.D. Special Functions; Macmillan: New York, NY, USA, 1960. [Google Scholar]
- Varma, S.; Sucu, S.; İçöz, G. Generalization of Szasz operators involving Brenke type polynomials. Comput. Math. Appl. 2012, 64, 121–127. [Google Scholar] [CrossRef] [Green Version]
- Sucu, S.; İçöz, G.; Varma, S. On some extensions of Szasz operators including Boas-Buck-type polynomials. In Abstract and Applied Analysis; Hindawi: London, UK, 2012; p. 680340. [Google Scholar]
- Aktaş, R.; Çekim, B.; Taxsxdelen, F. A Kantorovich-Stancu type generalization of Szasz operators including Brenke type polynomials. J. Funct. Spaces Appl. 2013, 2013, 935430. [Google Scholar] [CrossRef]
- Kajla, A.; Agrawal, P.N. Szász-Durrmeyer type operators based on Charlier polynomials. Appl. Math. Comput. 2015, 268, 1001–1014. [Google Scholar] [CrossRef]
- İçöz, G.; Varma, S.; Sucu, S. Approximation by operators including generalized Appell polynomials. Filomat 2016, 30, 429–440. [Google Scholar] [CrossRef]
- Atakut, Ç.; Büyükyazıcı, İ. Approximation by modified integral type Jakimovski-Leviatan operators. Filomat 2016, 30, 29–39. [Google Scholar]
- Aktaş, R.; Çekim, B.; Taşdelen, F. A Dunkl analogue of operators including two-variable Hermite polynomials. Bull. Malays. Math. Sci. Soc. 2019, 42, 2795–2805. [Google Scholar] [CrossRef] [Green Version]
- Çekim, B.; Aktaş, R.; İçöz, G. Kantorovich-Stancu type operators including Boas-Buck type polynomials. Hacet. J. Math. Stat. 2019, 48, 460–471. [Google Scholar] [CrossRef]
- Sucu, S.; Varma, S. Approximation by sequence of operators involving analytic functions. Mathematics 2019, 7, 188. [Google Scholar] [CrossRef] [Green Version]
- Neer, T.; Acu, A.M.; Agrawal, P.N. Baskakov-Durrmeyer type operators involving generalized Appell polynomials. Math. Methods Appl. Sci. 2020, 43, 2911–2923. [Google Scholar] [CrossRef]
- Goyal, R. An extension of a class of generating functions. Ultra Sci. Phys. Sci. 2003, 15, 289–292. [Google Scholar]
- Altomare, F.; Campiti, M. Korovkin-type approximation theory and its applications. In Appendix A by Michael Pannenberg and Appendix B by Ferdinand Beckhoff, de Gruyter Studies in Mathematics; Walter de Gruyter & Co.: Berlin, Germany, 1994; Volume 17. [Google Scholar]
- Devore, R.A.; Lorentz, G.G. Constructive Approximation; Springer: Berlin, Germany, 1993. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varma, S.; Sucu, S. Operators Obtained by Using Certain Generating Function for Approximation. Mathematics 2022, 10, 2239. https://doi.org/10.3390/math10132239
Varma S, Sucu S. Operators Obtained by Using Certain Generating Function for Approximation. Mathematics. 2022; 10(13):2239. https://doi.org/10.3390/math10132239
Chicago/Turabian StyleVarma, Serhan, and Sezgin Sucu. 2022. "Operators Obtained by Using Certain Generating Function for Approximation" Mathematics 10, no. 13: 2239. https://doi.org/10.3390/math10132239
APA StyleVarma, S., & Sucu, S. (2022). Operators Obtained by Using Certain Generating Function for Approximation. Mathematics, 10(13), 2239. https://doi.org/10.3390/math10132239