Hilfer Fractional Neutral Stochastic Volterra Integro-Differential Inclusions via Almost Sectorial Operators
Abstract
:1. Introduction
2. Preliminaries
- Suppose , corresponding is a Banach space with .
- Suppose , corresponding and the embedding is compact every time that is compact.
- For all , there exists such that
- (a)
- ;
- (b)
- (a)
- (b)
- , where is the constant;
- (c)
- the range of is contained in . Particularly, for all with ,
- (d)
- if , then
- (e)
- , and .
- 1. If , and , then the denotes to the classical R-L fractional derivative:
- 2. If and , then the equals the classical Caputo fractional derivative:
3. Existence of Mild Solution
- (H1)
- is the almost sectorial operator, which generates an analytic semigroup in Y such that , for all .
- (H2)
- The multivalued map is measurable to for any fixed , u.s.c. to for all and for all , the set
- (H3)
- For , , are continuous functions and for all , and are strongly measurable.
- (H4)
- For , along with and such that
- (H5)
- The function and there exists a constant such that
- (H6)
- The function is a continuous function and there exists and satisfies the following condition:
4. Example
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HF | Hilfer Fractional |
HFD | Hilfer Fractional Derivative |
R-L | Riemann–Liouville |
References
- Agarwal, R.P.; Lakshmikanthan, V.; Nieto, J.J. On the concept of solution for fractional differential equations with uncertainty. Nonlinear Anal. Theory Methods Appl. 2010, 72, 2859–2862. [Google Scholar] [CrossRef]
- Alikhanov, A.A.; Huang, C. A class of time-fractional diffusion equations with generalized fractional derivatives. J. Comput. Appl. Math. 2022, 414, 114424. [Google Scholar] [CrossRef]
- Bentrcia, T.; Mennouni, A. On the asymptotic stability of a Bresse system with two fractional damping terms. Theoretical and numerical analysis. Discret. Contin. Dyn. Syst. B 2022, 1–43. [Google Scholar] [CrossRef]
- Chang, Y.K.; Chalishajar, D.N. Controllability of mixed Volterra-Fredholm-type integro-differential inclusions in Banach spaces. J. Frankl. Inst. 2008, 345, 499–507. [Google Scholar] [CrossRef]
- Diemling, K. Multivalued Differential Equations. In De Gruyter Series in Nonlinear Analysis and Applications; De Gruyter: Berlin, Germnay, 1992. [Google Scholar]
- Diethelm, K. The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Du, J.; Jiang, W.; Khan Niazi, A.U. Approximate controllability of impulsive Hilfer fractional differential inclusions. J. Nonlinear Sci. Appl. 2017, 10, 595–611. [Google Scholar] [CrossRef] [Green Version]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Lakshmikantham, V.; Vatsala, A.S. Basic theory of fractional differential equations. Nonlinear Anal. Theory Methods Appl. 2008, 69, 2677–2682. [Google Scholar] [CrossRef]
- Lakshmikantham, V.; Leela, S.; Vasundhara Devi, J. Theory of Fractional Dynamic Systems; Cambridge Scientific Publishers: Cambridge, UK, 2009. [Google Scholar]
- Pazy, A. Semigroups of Linear Operators and Applications to Partial Differential Equations; Springer: New York, NY, USA, 1983; Volume 44. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Differential Equations; John Wiley: NewYork, NY, USA, 1993. [Google Scholar]
- Zhou, Y. Basic Theory of Fractional Differential Equations; World Scientific: Singapore, 2014. [Google Scholar]
- Zhou, Y. Fractional Evolution Equations and Inclusions: Analysis and Control; Elsevier: New York, NY, USA, 2015. [Google Scholar]
- Benchohra, M.; Henderson, J.; Ntouyas, S.K. Existence results for impulsive multivalued semilinear neutral functional differential inclusions in Banach Spaces. J. Math. Anal. Appl. 2001, 263, 763–780. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Xiao, T.J.; Xu, H.K. On nonlinear neutral fractional integro-differential inclusions with infinite delay. J. Appl. Math. 2012, 2012, 916543. [Google Scholar] [CrossRef] [Green Version]
- Manimaran, S.; Gunasekar, T.; Subramaniyan, G.V.; Suba, M. Controllability of impulsive neutral functional integro-differential inclusions with infinite delay. Global J. Pure Appl. Math. 2014, 10, 817–834. [Google Scholar]
- Ganesh, R.; Sakthivel, R.; Mahmudov, N.I.; Anthoni, S.M. Approximate controllability of fractional integro-differential evolution equations. J. Appl. Math. 2013, 2013, 291816. [Google Scholar] [CrossRef]
- Ouahab, A. Some results for fractional boundary value problem of differential inclusions. Nonlinear Anal. 2008, 69, 3877–3896. [Google Scholar] [CrossRef]
- Vijayakumar, V.; Ravichandran, C.; Murgesua, R.; Trujillo, J.J. Controllability results for a class of fractional semilinear integro-differential inclusions via resolvent operators. Appl. Math. Comput. 2014, 247, 152–161. [Google Scholar] [CrossRef]
- Ma, X.; Shu, X.B.; Mao, J. Existence of almost periodic solutions for fractional impulsive neutral stochastic differential equations with infinite delay. Stoch. Dyn. 2020, 20, 2050003. [Google Scholar] [CrossRef]
- Sakthivel, R.; Ren, Y.; Debbouche, A.; Mahmudov, N.I. Approximate controllability of fractional stochastic differential inclusions with nonlocal conditions. Appl. Anal. 2016, 95, 2361–2382. [Google Scholar] [CrossRef]
- Balasubramaniam, P.; Tamilalagan, P. Approximate controllability of a class of fractional neutral stochastic integro-differential inclusions with infinite delay by using Mainardi’s function. Appl. Math. Comput. 2015, 256, 232–246. [Google Scholar] [CrossRef]
- Guo, Y.; Chen, M.; Shu, X.B.; Xu, F. The existence and Hyers-Ulam stability of solution for almost periodical fractional stochastic differential equation with fBm. Stoch. Anal. Appl. 2020, 39, 643–666. [Google Scholar] [CrossRef]
- Liu, Y.; Wnag, M.; Wang, J.L. Stabilization of stochastic highly non-linear multi-links systems via aperiodically intermittent control. Automatica 2022, 142, 110405. [Google Scholar] [CrossRef]
- Ahmad, B.; Garout, D.; Ntouyas, S.K.; Alsaedi, A. Caputo fractional differential inclusions of arbitrary order with non-local integro-multipoint boundary conditions. Miskolc Math. Notes 2019, 20, 683–699. [Google Scholar] [CrossRef]
- Ahmad, B.; Alsaedi, A.; Ntouyas, S.K.; Tariboon, J. Hadamard-Type Fractional Differential Equations, Inclusions and Inequalities; Springer: Berlin/Heidelberg, Germnay, 2017. [Google Scholar]
- Hilfer, R. Application of Ractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar]
- Hilfer, R. Experimental evidence for fractional time evolution in glass materials. Chem. Phys. 2002, 284, 399–408. [Google Scholar] [CrossRef]
- Khaminsou, B.; Thaiprayoon, C.; Sudsutad, W.; Jose, S.A. Qualitative analysis of a proportional Caputo fractional Pantograph differential equation with mixed nonlocal conditions. Nonlinear Functional. Anal. Appl. 2021, 26, 197–223. [Google Scholar]
- Sousa, J.V.D.C.; Jarad, F.; Abdeljawad, T. Existence of mild solutions to Hilfer fractional evolution equations in Banach space. Ann. Funct. Anal. 2021, 12, 1–16. [Google Scholar] [CrossRef]
- Yang, M.; Wang, Q. Approximate controllability of Hilfer fractional differential inclusions with nonlocal conditions. Math. Methods Appl. Sci. 2017, 40, 1126–1138. [Google Scholar] [CrossRef]
- Gu, H.; Trujillo, J.J. Existence of integral solution for evolution equation with Hilfer fractional derivative. Appl. Math. Comput. 2015, 257, 344–354. [Google Scholar]
- Furati, K.M.; Kassim, M.D.; Tatar, N.E. Existence and uniqueness for a problem involving Hilfer fractional derivative. Comput. Math. Appl. 2012, 641, 616–626. [Google Scholar] [CrossRef] [Green Version]
- Harrat, A.; Nieto, J.J.; Debbouche, A. Solvability and optimal controls of impulsive Hilfer fractional delay evolution inclusions with Clarke subdifferential. J. Comput. Appl. Math. 2018, 344, 725–737. [Google Scholar] [CrossRef]
- Bedi, P.; Kumar, A.; Abdeljawad, T.; Khan, Z.A.; Khan, A. Existence and approximate controllability of Hilfer fractional evolution equations with almost sectorial operators. Adv. Differ. Equ. 2020, 615, 1–15. [Google Scholar] [CrossRef]
- Jaiswal, A.; Bahuguna, D. Hilfer fractional differantial equations with almost sectorial operators. Differ. Equ. Dyn. Syst. 2020, 1–17. [Google Scholar] [CrossRef]
- Karthikeyan, K.; Debbouche, A.; Torres, D.F.M. Analysis of Hilfer fractional integro-differential equations with almost sectorial operators. Fractal Fract. 2021, 5, 22. [Google Scholar] [CrossRef]
- Varun Bose, C.S.; Udhayakumar, R. A note on the existence of Hilfer fractional differential inclusions with almost sectorial operators. Math. Methods Appl. Sci. 2021, 45, 2530–2541. [Google Scholar] [CrossRef]
- Sakthivel, R.; Ganesh, R.; Anthoni, S.M. Approximate controllability of fractional nonlinear differential inclusions. Appl. Math. Comput. 2013, 225, 708–717. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, Y. Existence and controllability results for fractional semilinear differential inclusions. Nonlinear Anal. 2011, 12, 3642–3653. [Google Scholar] [CrossRef]
- Nisar, K.S.; Vijayakumar, V. Results concerning to approximate controllability of non-densely defined Sobolev-type Hilfer fractional neutral delay differential system. Math. Methods Appl. Sci. 2021, 44, 13615–13632. [Google Scholar] [CrossRef]
- Ding, X.L.; Ahmad, B. Analytical solutions to fractional evolution equations with almost sectorial operators. Adv. Differ. Equ. 2016, 203, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Falguni, A.; Jitendra, P. Contrallability of fractional impulsive differential inclusions with sectorial operators in Banach space. J. Appl. Sci. Comput. 2018, 5, 184–196. [Google Scholar]
- Periago, F.; Straub, B. A functional calculus for almost sectorial operators and applications to abstract evolution equations. J. Evol. Equ. 2002, 2, 41–62. [Google Scholar] [CrossRef]
- Wang, R.N.; Chen, D.H.; Xiao, T.J. Abstract fractional Cauchy problems with almost sectorial operators. J. Diff. Equ. 2012, 252, 202–235. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Zhou, Y. Fractional Cauchy problems with almost sectorial operators. Appl. Math. Comput. 2014, 257, 145–157. [Google Scholar] [CrossRef]
- Zhou, M.; Li, C.; Zhou, Y. Existence of Mild Solutions for Hilfer Fractional Evolution Equations with Almost Sectorial Operators. Axioms 2022, 11, 144. [Google Scholar] [CrossRef]
- Yang, M.; Wang, Q. Existence of mild solutions for a class of Hilfer fractional evolution equations with nonlocal conditions. Fract. Calc. Appl. Anal. 2017, 20, 679–705. [Google Scholar] [CrossRef]
- Lasota, A.; Opial, Z. An application of the Kakutani-Ky-Fan theorem in the theory of ordinary differential equations or noncompact acyclic-valued map. Bull. Acad. Pol. Sci. Ser. Sci. Math. Astron. Phys. 1965, 13, 781–786. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sivasankar, S.; Udhayakumar, R. Hilfer Fractional Neutral Stochastic Volterra Integro-Differential Inclusions via Almost Sectorial Operators. Mathematics 2022, 10, 2074. https://doi.org/10.3390/math10122074
Sivasankar S, Udhayakumar R. Hilfer Fractional Neutral Stochastic Volterra Integro-Differential Inclusions via Almost Sectorial Operators. Mathematics. 2022; 10(12):2074. https://doi.org/10.3390/math10122074
Chicago/Turabian StyleSivasankar, Sivajiganesan, and Ramalingam Udhayakumar. 2022. "Hilfer Fractional Neutral Stochastic Volterra Integro-Differential Inclusions via Almost Sectorial Operators" Mathematics 10, no. 12: 2074. https://doi.org/10.3390/math10122074
APA StyleSivasankar, S., & Udhayakumar, R. (2022). Hilfer Fractional Neutral Stochastic Volterra Integro-Differential Inclusions via Almost Sectorial Operators. Mathematics, 10(12), 2074. https://doi.org/10.3390/math10122074