Existence of the Limit of Ratios of Consecutive Terms for a Class of Linear Recurrences
Abstract
1. Introduction
2. The Main Results
3. Proofs of the Main Results
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Knott, R. Available online: https://r-knott.surrey.ac.uk/Fibonacci/fib.html (accessed on 12 June 2022).
- Berend, D.; Kumar, R. Consecutive Ratios in Second-Order Linear Recurrence Sequences. Unif. Distrib. Theory 2022, 17, 51–76. Available online: http://pcwww.liv.ac.uk/~karpenk/JournalUDT/vol17/no2/03_Berend_Kumar.pdf (accessed on 12 June 2022).
- Stein, P.C. Elementary Properties and Applications of the Fibonacci Sequence. Ph.D. Thesis, Oklahoma State University, Stillwater, OK, USA, 1977. [Google Scholar]
- Jeske, J.A. Linear recurrence relations—Part I. Fibonacci Quart. 1963, 1, 69–74. [Google Scholar]
- Kelley, W.G.; Peterson, A.C. An introduction with applications. In Difference Equations, 2nd ed.; Harcourt/Academic Press: San Diego, CA, USA, 2001. [Google Scholar]
- Salinelli, E.; Tomarelli, F. Discrete Dynamical Models; Unitext; Translated from the 2014 Italian Original, La Matematica per il 3+2; Springer: Cham, Switzerland, 2014; Volume 76. [Google Scholar]
- Koshy, T. Fibonacci and Lucas Numbers with Applications; Pure and Applied Mathematics (Hoboken); John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2018; Volume 1. [Google Scholar]
- Koshy, T. Fibonacci and Lucas Numbers with Applications; Pure and Applied Mathematics (Hoboken); John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2019; Volume 2. [Google Scholar]
- Traub, J.F. Iterative Methods for the Solution of Equations; Prentice-Hall Series in Automatic Computation; Prentice-Hall, Inc.: Englewood Cliffs, NJ, USA, 1964. [Google Scholar]
- Andrica, D.; Bagdasar, O. Recurrent sequences—Key results, applications, and problems. In Problem Books in Mathematics; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Dunlap, R.A. The Golden Ratio and Fibonacci Numbers; World Scientific Publishing Co., Inc.: River Edge, NJ, USA, 1997. [Google Scholar]
- Meisner, G.B. The Golden Ratio—The Divine Beauty of Mathematics; Race Point Publishing: London, UK, 2018. [Google Scholar]
- Posamentier, A.S.; Farber, W.L.; Germain-Williams, T.L.; Paris, E.S.; Thaller, B.; Lehmann, I.H. 100 Commonly Asked Questions in Math Class: Answers That Promote Mathematical Understanding, Grades 6–12; SAGE Publications Inc.: Thousand Oaks, CA, USA, 2013. [Google Scholar]
- Fiorenza, A.; Vincenzi, G. Limit of ratio of consecutive terms for general order-k linear homogeneous recurrences with constant coefficients. Chaos Solitons Fractals 2011, 44, 145–152. [Google Scholar] [CrossRef]
- Fiorenza, A.; Vincenzi, G. From Fibonacci Sequence to the Golden Ratio. J. Math. 2013, 3, 204674. Available online: https://www.hindawi.com/journals/jmath/2013/204674/ (accessed on 12 June 2022). [CrossRef]
- Anatriello, G.; Fiorenza, A.; Vincenzi, G. Banach function norms via Cauchy polynomials and applications. Internat. J. Math. 2015, 26, 1550083. [Google Scholar] [CrossRef]
- Matousova, I.; Trojovsky, P. On coding by (2, q)-distance fibonacci numbers. Mathematics 2020, 8, 2058. [Google Scholar] [CrossRef]
- Everest, G.; Poorten, A.V.; Shparlinski, I.; Ward, T. Recurrence sequences. In Mathematical Surveys and Monographs; American Mathematical Society: Providence, RI, USA, 2003; Volume 104. [Google Scholar]
- Chasnov, J.R. Fibonacci Numbers and the Golden Ratio. 2016. Available online: https://www.math.hkust.edu.hk/~machas/fibonacci.pdf (accessed on 12 June 2022).
- Tanackov, I.; Kovačević, I.; Tepić, J. Formula for Fibonacci Sequence with Arbitrary Initial Numbers. Chaos Solitons Fractals 2015, 73, 115–119. [Google Scholar] [CrossRef]
- Bacani, J.B.; Rabago, J.F.T. On generalized Fibonacci numbers. Appl. Math. Sci. 2015, 9, 3611–3622. [Google Scholar] [CrossRef]
- Bagdasar, O.; Hedderwick, E. On the ratios and geometric boundaries of complex horadam sequences. Electr. Notes Discr. Math. 2018, 67, 63–70. [Google Scholar] [CrossRef]
- Crasta, G.; Malusa, A. Elementi di Analisi Matematica e Geometria con Prerequisiti ed Esercizi Svolti, 2nd ed.; Edizioni LaDotta: Bologna, Italy, 2017. [Google Scholar]
- Pagani, C.D.; Salsa, S. Analisi Matematica 1, 1st ed.; Zanichelli: Bologna, Italy, 2015. [Google Scholar]
- Marcellini, P.; Sbordone, C. Calcolo, 2nd ed.; Liguori Editore: Napoli, Italy, 2002. [Google Scholar]
- Hunter, J.K.; Nachtergaele, B. Applied Analysis; World Scientific Publishing Co., Inc.: River Edge, NJ, USA, 2001. [Google Scholar]
- Belding, D.F.; Mitchell, K.J. Foundations of Analysis; Dover Publications, Inc.: Mineola, NY, USA, 2008. [Google Scholar]
- Barcz, E. Application of Banach contraction principle to approximate the golden number. Ann. Univ. Paedagog. Cracoviensis Stud. Didact. Math. Pertin. 2020, 12, 31–38. [Google Scholar] [CrossRef]
- Barcz, E. A new proof and consequences of the fixed-point theorem of Matkowski. Ann. Math. Sil. 2021, 35, 149–157. [Google Scholar] [CrossRef]
- Barcz, E. On the golden number and fibonacci type sequences. Ann. Univ. Paedagog. Cracoviensis Stud. Didact. Math. Pertin. 2019, 11, 25–35. [Google Scholar] [CrossRef]
- Hunter, J.K. An Introduction to Real Analysis. 2014. Available online: https://www.math.ucdavis.edu/~hunter/intro_analysis_pdf/intro_analysis.pdf (accessed on 12 June 2022).
- Rudin, W. Principles of Mathematical Analysis, 3rd ed.; International Series in Pure and Applied Mathematics; McGraw-Hill Book Co.: New York, NY, USA, 1976. [Google Scholar]
- Campanato, S. Lezioni di Analisi Matematica, 1a Parte, 3rd ed.; Libreria Scientifica Giordano Pellegrini: Pisa, Italy, 1977. [Google Scholar]
- Fiorenza, R.; Greco, D. Lezioni di Analisi Matematica, Vol. Primo, 3rd ed.; Liguori Editore: Napoli, Italy, 1995. [Google Scholar]
- Campanato, S. Esercizi e Complementi di Analisi Matematica, 1a Parte, 2nd ed.; Libreria Scientifica Giordano Pellegrini: Pisa, Italy, 1975. [Google Scholar]
- Giusti, E. Esercizi e Complementi di Analisi Matematica, Vol. Primo, 1st ed.; Programma di Matematica, Fisica, Elettronica; [Program of Mathematics, Physics, Electronics]; Bollati Boringhieri: Turin, Italy, 1991. [Google Scholar]
- Wikipedia. Available online: https://en.wikipedia.org/wiki/Limit_inferior_and_limit_superior (accessed on 12 June 2022).
- Kalantari, B. On the order of convergence of a determinantal family of root-finding methods. BIT 1999, 39, 96–109. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, H. On the reciprocal sums of higher-order sequences. Adv. Differ. Equ. 2013, 2013, 189. [Google Scholar] [CrossRef][Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fiorenza, R. Existence of the Limit of Ratios of Consecutive Terms for a Class of Linear Recurrences. Mathematics 2022, 10, 2065. https://doi.org/10.3390/math10122065
Fiorenza R. Existence of the Limit of Ratios of Consecutive Terms for a Class of Linear Recurrences. Mathematics. 2022; 10(12):2065. https://doi.org/10.3390/math10122065
Chicago/Turabian StyleFiorenza, Renato. 2022. "Existence of the Limit of Ratios of Consecutive Terms for a Class of Linear Recurrences" Mathematics 10, no. 12: 2065. https://doi.org/10.3390/math10122065
APA StyleFiorenza, R. (2022). Existence of the Limit of Ratios of Consecutive Terms for a Class of Linear Recurrences. Mathematics, 10(12), 2065. https://doi.org/10.3390/math10122065