Insight in Thermally Radiative Cilia-Driven Flow of Electrically Conducting Non-Newtonian Jeffrey Fluid under the Influence of Induced Magnetic Field
Abstract
:1. Introduction
2. Viscoelastic Fluid in a Ciliated Tapered Channel: Mathematical Modeling
- The continuity equation
- 2.
- Maxwell’s equation
- 3.
- The equation of motion
- 4.
- The energy equation
3. Analytical Solutions
4. Graphical Results and Discussion
4.1. Velocity Profiles
4.2. Magnetic Force Function
4.3. Magnetic Field Characteristics
4.4. Current Density
4.5. Pressure Rise
4.6. Temperature Profile
4.7. Trapping Phenomena
5. Concluding Remarks
- i.
- The velocity profile decreases for large values of the Hartmann number and Jeffrey fluid parameter, while the eccentricity parameter exhibits the opposite trend.
- ii.
- For the velocity profile and magnetic force function, large values of the cilia length parameter exhibit an opposing tendency closer to the walls.
- iii.
- For a higher magnetic Reynolds number, inclined angle, and for higher eccentricity parameter values, the magnetic force function acts as an increasing function. However, for the Hartmann number and the Jeffrey parameter, the opposite result has been noticed.
- iv.
- The effects of the Hartmann number, Jeffrey fluid, and inclined angle on induced magnetic exhibit similar behavior, although the effects of eccentricity parameter and magnetic Reynolds number are opposite.
- v.
- The magnetic Reynolds number and electric field have had a considerable influence on current density, whereas the Hartmann number and Jeffrey fluid parameter have shown identical behavior.
- vi.
- Temperature profiles reveal rising behavior for the Eckert and Prandtl numbers but decreasing behavior for the radiation parameter.
- vii.
- The number of trapped boluses falls as the influence of the Hartmann number and Jeffrey fluid parameter improves but increases in the presence of the cilia length parameter and inclination angle.
- viii.
- For large values of the electric field and eccentricity variable, the number of trapped boluses functions similarly.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Velocity vector | |
Cartesian coordinates system [m] | |
Velocity components [m/s] | |
Reference position of the cilia | |
Time [s] | |
Cilia length parameter | |
Eccentricity of elliptical path | |
Half-width of the channel [m] | |
Wave Speed [m/s] | |
Wavelength [m] | |
Phase difference | |
Inclined angle of unperturbed wall | |
Magnetic permeability [H/m] | |
Specific heat [J⋅kg−1⋅K−1] | |
Electric conductivity [S/m] | |
Pressure [N/m2] | |
Heat flux vector | |
Radiative heat flux | |
Thermal conductivity [W⋅m−1 K−1] | |
Temperature [K] | |
Modified pressure [N/m2] | |
Density [Kg/m3] | |
Mean absorption coefficient [m−1] | |
Stefan-Boltzmann constant [W⋅m−2 K−4] | |
Wave number [m] | |
Dimensionless axial magnetic field | |
Dimensionless transverse magnetic field | |
Reynolds number | |
Magnetic Reynolds number | |
Hartmann number | |
Prandtl number | |
Eckert Number | |
Dimension less Temperature | |
Radiation parameter | |
Instantaneous flow rate | |
Magnetic force function | |
Total magnetic field [T] | |
Applied magnetic field | |
Induced magnetic field | |
Total electric field [V/m] | |
Applied electric field | |
Induced electric field | |
Total current density [A/m2] | |
Applied current density | |
Induced current density |
References
- Sleigh, M.A. The Biology of Cilia and Flagella; Pergamon Press: Oxford, UK, 1962. [Google Scholar]
- Purcell, E.M. Life at Low Reynolds Number. Am. J. Phys. 1977, 45, 3–11. [Google Scholar] [CrossRef]
- Breunig, J.J.; Arellano, J.I.; Rakic, P. Cilia in the Brain: Going with the Flow. Nat. Neurosci. 2010, 13, 654–655. [Google Scholar] [CrossRef] [PubMed]
- Stannard, W.; O’Callaghan, C. Ciliary Function and the Role of Cilia in Clearance. J. Aerosol Med. 2006, 19, 110–115. [Google Scholar] [CrossRef] [PubMed]
- Lyons, R.A.; Saridogan, E.; Djahanbakhch, O. The Reproductive Significance of Human Fallopian Tube Cilia. Hum. Reprod. Update 2006, 12, 363–372. [Google Scholar] [CrossRef]
- Lardner, T.J.; Shack, W.J. Cilia Transport. Bull. Math. Biophys. 1972, 34, 325–335. [Google Scholar] [CrossRef]
- Sher Akbar, N. Biomathematical Analysis of Carbon Nanotubes Due to Ciliary Motion. Int. J. Biomath. 2015, 8, 1550023. [Google Scholar] [CrossRef]
- Nadeem, S.; Sadaf, H. Trapping Study of Nanofluids in an Annulus with Cilia. AIP Adv. 2015, 5, 127204. [Google Scholar] [CrossRef]
- Javid, K.; Alqsair, U.F.; Hassan, M.; Bhatti, M.M.; Ahmad, T.; Bobescu, E. Cilia-Assisted Flow of Viscoelastic Fluid in a Divergent Channel under Porosity Effects. Biomech. Model. Mechanobiol. 2021, 20, 1399–1412. [Google Scholar] [CrossRef]
- Khan, W.U.; Imran, A.; Raja, M.A.Z.; Shoaib, M.; Awan, S.E.; Kausar, K.; He, Y. A Novel Mathematical Modeling with Solution for Movement of Fluid through Ciliary Caused Metachronal Waves in a Channel. Sci. Rep. 2021, 11, 20601. [Google Scholar] [CrossRef]
- Gray, J. The Mechanism of Ciliary Movement. III.—The Effect of Temperature. Proc. R. Soc. Lond. B Biol. Sci. 1923, 95, 6–15. [Google Scholar]
- Baetjer, A.M. Effect of Ambient Temperature and Vapor Pressure on Cilia-Mucus Clearance Rate. J. Appl. Physiol. 1967, 23, 498–504. [Google Scholar] [CrossRef]
- Bisgrove, B.W.; Yost, H.J. The Roles of Cilia in Developmental Disorders and Disease. Development 2006, 133, 4131–4143. [Google Scholar] [CrossRef]
- Fliegauf, M.; Benzing, T.; Omran, H. When Cilia Go Bad: Cilia Defects and Ciliopathies. Nat. Rev. Mol. Cell Biol. 2007, 8, 880–893. [Google Scholar] [CrossRef]
- Sahadevan, V.; Chen, C.Y. Microfluidic Applications of Artificial Cilia: Recent Progress, Demonstration, and Future Perspectives. Micromachines 2022, 13, 735. [Google Scholar] [CrossRef]
- Zachariah, E.; Hale, Z.E.; Sadoshima, J. Primary Cilia and Their Role in Acquired Heart Disease. Cells 2022, 11, 960. [Google Scholar]
- Riaz, A.; Bobescu, E.; Ramesh, K.; Ellahi, R. Entropy Analysis for Cilia-Generated Motion of Cu-Blood Flow of Nanofluid in an Annulus. Symmetry 2021, 13, 2358. [Google Scholar] [CrossRef]
- Maqbool, K.; Shaheen, S.; Bobescu, E.; Ellahi, R. Thermal and Concentration Analysis of Phan-Thien-Tanner Fluid Flow Due to Ciliary Movement in a Peripheral Layer. J. Cent. South Univ. 2021, 28, 3327–3339. [Google Scholar] [CrossRef]
- Alamri, S.Z.; Ellahi, R.; Shehzad, N.; Zeeshan, A. Convective Radiative Plane Poiseuille Flow of Nanofluid through Porous Medium with Slip: An Application of Stefan Blowing. J. Mol. Liq. 2019, 273, 292–304. [Google Scholar] [CrossRef]
- Akbar, N.S.; Butt, A.W. Heat Transfer Analysis of Viscoelastic Fluid Flow Due to Metachronal Wave of Cilia. Int. J. Biomath. 2014, 7, 1450066. [Google Scholar] [CrossRef]
- Butt, A.W.; Akbar, N.S.; Mir, N.A. Heat Transfer Analysis of Peristaltic Flow of a Phan-Thien-Tanner Fluid Model Due to Metachronal Wave of Cilia. Biomech. Model. Mechanobiol. 2020, 19, 1925–1933. [Google Scholar] [CrossRef]
- Al-Zubaidi, A.; Nazeer, M.; Khalid, K.; Yaseen, S.; Saleem, S.; Hussain, F. Thermal Analysis of Blood Flow of Newtonian, Pseudo-Plastic, and Dilatant Fluids through an Inclined Wavy Channel Due to Metachronal Wave of Cilia. Adv. Mech. Eng. 2021, 13, 168781402110490. [Google Scholar] [CrossRef]
- McCash, L.B.; Nadeem, S.; Akhtar, S.; Saleem, A.; Saleem, S.; Issakhov, A. Novel Idea about the Peristaltic Flow of Heated Newtonian Fluid in Elliptic Duct Having Ciliated Walls. Alex. Eng. J. 2022, 61, 2697–2707. [Google Scholar] [CrossRef]
- Mayne, R.; den Toonder, J.M.J. (Eds.) Atlas of Cilia Bioengineering and Biocomputing; River: Gistrup, Denmark, 2018. [Google Scholar]
- Rashidi, S.; Esfahani, J.A.; Maskaniyan, M. Applications of Magnetohydrodynamics in Biological Systems-a Review on the Numerical Studies. J. Magn. Magn. Mater. 2017, 439, 358–372. [Google Scholar] [CrossRef]
- Ahmad Farooq, A.; Shah, Z.; Alzahrani, E.O. Heat Transfer Analysis of a Magneto-Bio-Fluid Transport with Variable Thermal Viscosity through a Vertical Ciliated Channel. Symmetry 2019, 11, 1240. [Google Scholar] [CrossRef]
- Akbar, N.S.; Tripathi, D.; Khan, Z.H.; Bég, O.A. Mathematical Model for Ciliary-Induced Transport in MHD Flow of Cu-H2O Nanofluids with Magnetic Induction. Chin. J. Phys. 2017, 55, 947–962. [Google Scholar] [CrossRef]
- Sadaf, H.; Nadeem, S. Fluid Flow Analysis of Cilia Beating in a Curved Channel in the Presence of Magnetic Field and Heat Transfer. Can. J. Phys. 2020, 98, 191–197. [Google Scholar] [CrossRef]
- Tripathi, D.; Bég, O.A. A Numerical Study of Oscillating Peristaltic Flow of Generalized Maxwell Viscoelastic Fluids through a Porous Medium. Transp. Porous Media 2012, 95, 337–348. [Google Scholar] [CrossRef]
- Elelamy, A.F.; Elgazery, N.S.; Ellahi, R. Blood flow of MHD non-Newtonian Nanofluid with Heat Transfer and Sip Effects: Application of Bacterial Growth in Heart Valve. Int. J. Numer. Methods Heat Fluid Flow 2020, 30, 4883–4908. [Google Scholar] [CrossRef]
- Zhu, J.; Xu, Y.; Han, X. A Non-Newtonian Magnetohydrodynamics (MHD) Nanofluid Flow and Heat Transfer with Nonlinear Slip and Temperature Jump. Mathematics 2019, 7, 1199. [Google Scholar] [CrossRef]
- Turkyilmazoglu, M.; Pop, I. Heat and Mass Transfer of Unsteady Natural Convection Flow of Some Nanofluids Past a Vertical Infinite Flat Plate with Radiation Effect. Int. J. Heat Mass Transf. 2013, 59, 167–171. [Google Scholar] [CrossRef]
- Othman, M.I.A.; Said, S.; Marin, M. A Novel Model of Plane Waves of Two-Temperature Fiber-Reinforced Thermoelastic Medium under the Effect of Gravity with Three-Phase-Lag Model. Int. J. Numer. Methods Heat Fluid Flow 2019, 29, 4788–4806. [Google Scholar] [CrossRef]
- Goodarzi, M.; Tlili, I.; Tian, Z.; Safaei, M.R. Efficiency Assessment of Using Graphene Nanoplatelets-Silver/Water Nanofluids in Microchannel Heat Sinks with Different Cross-Sections for Electronics Cooling. Int. J. Numer. Methods Heat Fluid Flow 2019, 30, 347–372. [Google Scholar] [CrossRef]
- Baranovskii, E.S. Mixed Initial–Boundary Value Problem for Equations of Motion of Kelvin–Voigt Fluids. Comput. Math. Math. Phys. 2016, 56, 1363–1371. [Google Scholar] [CrossRef]
- Doubova, A.; Fernández-Cara, E. On the Control of Viscoelastic Jeffreys Fluids. Syst. Control Lett. 2012, 61, 573–579. [Google Scholar] [CrossRef]
- Su, Z.-G.; Li, T.-F.; Luo, K.; Yi, H.-L. Nonlinear Behavior of Electrohydrodynamic Flow in Viscoelastic Fluids. Phys. Rev. Fluids 2021, 6, 093701. [Google Scholar] [CrossRef]
- Azaiez, J.; Homsy, G.M. Linear Stability of Free Shear Flow of Viscoelastic Liquids. J. Fluid Mech. 1994, 268, 37–69. [Google Scholar] [CrossRef]
- Baranovskii, E.S. Global Solutions for a Model of Polymeric Flows with Wall Slip. Math. Methods Appl. Sci. 2017, 40, 5035–5043. [Google Scholar] [CrossRef]
- Baranovskii, E.S. Flows of a Polymer Fluid in Domain with Impermeable Boundaries. Comput. Math. Math. Phys. 2014, 54, 1589–1596. [Google Scholar] [CrossRef]
- Hayat, T.; Khan, M.; Asghar, S.; Siddiqui, A.M. A Mathematical Model of Peristalsis in Tubes through a Porous Medium. J. Porous Media 2006, 9, 55–67. [Google Scholar] [CrossRef]
- Kothandapani, M.; Srinivas, S. Peristaltic Transport of a Jeffrey Fluid under the Effect of Magnetic Field in an Asymmetric Channel. Int. J. Non-Linear Mech. 2008, 43, 915–924. [Google Scholar] [CrossRef]
- Tripathi, D.; Pandey, S.K.; Bég, O.A. Mathematical Modelling of Heat Transfer Effects on Swallowing Dynamics of Viscoelastic Food Bolus through the Human Oesophagus. Int. J. Therm. Sci. 2013, 70, 41–53. [Google Scholar] [CrossRef]
- Muzara, H.; Shateyi, S. MHD Laminar Boundary Layer Flow of a Jeffrey Fluid Past a Vertical Plate Influenced by Viscous Dissipation and a Heat Source/Sink. Mathematics 2021, 9, 1896. [Google Scholar] [CrossRef]
- Ur Rehman, K.; Shatanawi, W.; Al-Mdallal, Q.M. A Comparative Remark on Heat Transfer in Thermally Stratified MHD Jeffrey Fluid Flow with Thermal Radiations Subject to Cylindrical/Plane Surfaces. Case Stud. Therm. Eng. 2022, 32, 101913. [Google Scholar] [CrossRef]
- Zaher, A.Z.; Moawad, A.M.A.; Mekheimer, K.S.; Bhatti, M.M. Residual Time of Sinusoidal Metachronal Ciliary Flow of Non-Newtonian Fluid through Ciliated Walls: Fertilization and Implantation. Biomech. Model. Mechanobiol. 2021, 20, 609–630. [Google Scholar] [CrossRef]
- Saleem, S.; Animasaun, I.L.; Yook, S.-J.; Al-Mdallal, Q.M.; Shah, N.A.; Faisal, M. Insight into the Motion of Water Conveying Three Kinds of Nanoparticles Shapes on a Horizontal Surface: Significance of Thermo-Migration and Brownian Motion. Surf. Interfaces 2022, 30, 101854. [Google Scholar] [CrossRef]
- Jeffreys, H. The Earth; Cambridge University Press: Cambridge, UK, 1929; p. 265. [Google Scholar]
- Ali, A.; Awais, M.; Al-Zubaidi, A.; Saleem, S.; Khan Marwat, D.N. Hartmann Boundary Layer in Peristaltic Flow for Viscoelastic Fluid: Existence. Ain Shams Eng. J. 2022, 13, 101555. [Google Scholar] [CrossRef]
- Bhatti, M.M.; Abdelsalam, S.I. Bio-Inspired Peristaltic Propulsion of Hybrid Nanofluid Flow with Tantalum (Ta) and Gold (Au) Nanoparticles under Magnetic Effects. Waves Random Complex Media 2021, 1–26. [Google Scholar] [CrossRef]
- Kothandapani, M.; Prakash, J. Effects of Thermal Radiation Parameter and Magnetic Field on the Peristaltic Motion of Williamson Nanofluids in a Tapered Asymmetric Channel. Int. J. Heat Mass Transf. 2015, 81, 234–245. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ishtiaq, F.; Ellahi, R.; Bhatti, M.M.; Alamri, S.Z. Insight in Thermally Radiative Cilia-Driven Flow of Electrically Conducting Non-Newtonian Jeffrey Fluid under the Influence of Induced Magnetic Field. Mathematics 2022, 10, 2007. https://doi.org/10.3390/math10122007
Ishtiaq F, Ellahi R, Bhatti MM, Alamri SZ. Insight in Thermally Radiative Cilia-Driven Flow of Electrically Conducting Non-Newtonian Jeffrey Fluid under the Influence of Induced Magnetic Field. Mathematics. 2022; 10(12):2007. https://doi.org/10.3390/math10122007
Chicago/Turabian StyleIshtiaq, Fehid, Rahmat Ellahi, Muhammad Mubashir Bhatti, and Sultan Z. Alamri. 2022. "Insight in Thermally Radiative Cilia-Driven Flow of Electrically Conducting Non-Newtonian Jeffrey Fluid under the Influence of Induced Magnetic Field" Mathematics 10, no. 12: 2007. https://doi.org/10.3390/math10122007
APA StyleIshtiaq, F., Ellahi, R., Bhatti, M. M., & Alamri, S. Z. (2022). Insight in Thermally Radiative Cilia-Driven Flow of Electrically Conducting Non-Newtonian Jeffrey Fluid under the Influence of Induced Magnetic Field. Mathematics, 10(12), 2007. https://doi.org/10.3390/math10122007