“Mixed” Meshless Time-Domain Adaptive Algorithm for Solving Elasto-Dynamics Equations
Abstract
:1. Introduction
2. Moving Least Square (MLS) Approximation
3. Recursive Governing Equations
3.1. Recursive Elasto-Dynamics Equations
3.2. Numerical Implementation of MLPG5
3.3. Natural Frequency Solved by Mixed MLPG5
4. Numerical Examples
4.1. Free Vibration Analysis
- Example 1:
- A Variable-Cross-Section Beam
4.2. Forced Vibration Analysis
- Example 2:
- A cantilever beam with horizontal traction.
- Example 3:
- A cantilever beam with vertical traction.
- Heaviside step loading with an infinite duration
- b.
- Transient loading with finite decreasing time
- c.
- Time-dependent damping
- Example 4:
- A Perforated Tension Strip
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Meirovitch, L. Computational methods in structural dynamics. J. Vib. Acoust. 1982, 49, 259–260. [Google Scholar] [CrossRef] [Green Version]
- Gu, Y.; Liu, G.R. A meshless local Petrov-Galerkin (MLPG) method for free and forced vibration analyses for solids. Comput. Mech. 2001, 27, 188–198. [Google Scholar] [CrossRef] [Green Version]
- Mohebpour, S.R.; Malekzadeh, P.; Ahmadzadeh, A.A. Dynamic analysis of laminated composite plates subjected to a moving oscillator by FEM. Compos. Struct. 2011, 93, 1574–1583. [Google Scholar] [CrossRef]
- Ghafoori, E.; Asghari, M. Dynamic analysis of laminated composite plates traversed by a moving mass based on a first-order theory. Compos. Struct. 2010, 92, 1865–1876. [Google Scholar] [CrossRef]
- Yang, Y.; Lam, C.C.; Kou, K.P. Forced vibration analysis of functionally graded beams by the meshfree boundary-domain integral equation method. Eng. Anal. Bound. Elem. 2016, 72, 100–110. [Google Scholar] [CrossRef]
- Thankane, K.S. Finite Difference Method for Beam Equation with Free Ends Using Mathematica. S. Afr. J. Pure Appl. Math. 2009, 4, 61–78. [Google Scholar]
- Chakravorty, D.; Sinha, P.K.; Bandyopadhyay, J.N. Applications of fem on free and forced vibration of laminated shells. J. Eng. Mech. 1998, 124, 1–8. [Google Scholar] [CrossRef]
- Ahmad, S.; Banerjee, P.K. Free vibration analysis by BEM using particular integrals. J. Eng. Mech. 1986, 112, 682–695. [Google Scholar] [CrossRef]
- Schanz, M. Application of 3d time domain boundary element formulation to wave propagation in poroelastic solids. Eng. Anal. Bound. Elem. 2001, 25, 363–376. [Google Scholar] [CrossRef]
- Israil, A.; Banerjee, P.K. Advanced development of time-domain bem for two-dimensional scalar wave propagation. Int. J. Numer. Methods Eng. 2010, 29, 1003–1020. [Google Scholar] [CrossRef]
- Guoyou, Y.; Mansur, W.J.; Carrer, J.A.M.; Gong, L. Stability of Galerkin and collocation time domain boundary element methods as applied to the scalar wave equation. Comput. Struct. 2000, 74, 495–506. [Google Scholar]
- Malekzadeh, P.; Haghighi, M.R.G.; Gholami, M. Dynamic response of thick laminated annular sector plates subjected to moving load. Compos. Struct. 2010, 92, 155–163. [Google Scholar] [CrossRef]
- Schenk, C.A.; Bergman, L.A.; Asce, M. Response of continuous system with stochastically varying surface roughness to moving load. J. Eng. Mech. 2003, 129, 759–768. [Google Scholar] [CrossRef]
- Ikuno, S.; Fujita, Y.; Hirokawa, Y. Large-Scale Simulation of Electromagnetic Wave Propagation Using Meshless Time-domain Method with Parallel Processing. IEEE Trans. Magn. 2013, 49, 1613–1616. [Google Scholar] [CrossRef]
- Haitian, Y. A new approach of time stepping for solving transfer problems. Int. J. Numer. Methods Biomed. Eng. 1999, 15, 325–334. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, J.; Yan, L. A numerical method of calculating first and second derivatives of dynamic response based on gauss precise time step integration method. Eur. J. Mech. 2010, 29, 370–377. [Google Scholar] [CrossRef]
- Yang, H.T.; Liu, Y.; Wu, R.F. Solving 2-D nonlinear coupled heat and moisture transfer problems via a self-adaptive precise algorithm in time-domain. Appl. Math. Mech. 2005, 26, 848–854. [Google Scholar]
- Taylor, R.L.; Papadopoulos, P. On a finite element method for dynamic contact/impact problems. Int. J. Numer. Methods Eng. 1993, 36, 2123–2140. [Google Scholar] [CrossRef]
- Atluri, S.N.; Zhu, T. A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics. Comput. Mech. 1998, 22, 117–127. [Google Scholar] [CrossRef]
- Atluri, S.N.; Zhu, T. The meshless local Petrov-Galerkin (MLPG) approach for solving problems in elasto-statics. Comput. Mech. 2000, 25, 169–179. [Google Scholar] [CrossRef]
- Atluri, S.N.; Han, Z.; Shen, S. Meshless Local Patrov-Galerkin (MLPG) approaches for weakly singular traction & displacement boundary integral equations. Comput. Model. Eng. Sci. 2003, 4, 507–517. [Google Scholar]
- Shen, S.; Atluri, S.N. Multiscale Simulation Based on The Meshless Local Petrov-Galerkin (MLPG) Method. Comput. Model. Eng. Sci. 2004, 5, 235–255. [Google Scholar]
- Shen, S.; Atluri, S.N. The Meshless Local Petrov-Galerkin (MLPG) Method: A Simple & Less-costly Alternative to the Finite Element and Boundary Element Methods. Comput. Model. Eng. Sci. 2002, 3, 11–51. [Google Scholar]
- Atluri, S.N.; Han, Z.D.; Rajendran, A.M. A New Implementation of the Meshless Finite Volume Method, through the MLPG “Mixed” Approach. Comput. Model. Eng. Sci. 2004, 6, 491–513. [Google Scholar]
- Atluri, S.N.; Shen, S. The Meshless Local Petrov-Galerkin (MLPG) Method; Tech Science Press: Encino, CA, USA, 2002. [Google Scholar]
- Gu, Y.T.; Liu, G.R. A meshfree weak-strong (mws) form method for time dependent problems. Comput. Mech. 2005, 35, 134–145. [Google Scholar] [CrossRef]
- Kontoni, D.P.N.; Beskos, D.E. Transient dynamic elastoplastic analysis by the dual reciprocity BEM. Eng. Anal. Bound. Elem. 1993, 12, 1–16. [Google Scholar] [CrossRef]
Mode | Mixed MLPG5 Regular | Mixed MLPG5 Random | ANSYS (FEM) (Hz) | ||
---|---|---|---|---|---|
Frequency (Hz) | Relative Error (%) | Frequency (Hz) | Relative Error (%) | ||
1 | 42.65 | 2.45 | 42.37 | 1.78 | 41.63 |
2 | 145.57 | 0.36 | 147.43 | 0.92 | 146.09 |
3 | 153.44 | 1.27 | 153.88 | 1.56 | 151.51 |
4 | 293.04 | 0.64 | 293.52 | 0.48 | 294.94 |
5 | 412.59 | 0.30 | 414.02 | 0.64 | 411.37 |
Method | DeltaT (s) | Computing Time (s) | Order of Expanding | Relative Error at Point A (%) |
---|---|---|---|---|
Newmark | 0.001 | 0.283 | / | 3.30 |
0.002 | 0.164 | 3.99 | ||
0.005 | 0.072 | 7.45 | ||
0.01 | 0.042 | 14.40 | ||
0.02 | 0.026 | 27.87 | ||
0.04 | 0.018 | 52.91 | ||
Adaptive | 0.001 | 1.183 | 7 | 3.47 |
0.002 | 0.693 | 9 | 3.42 | |
0.005 | 0.419 | 15 | 3.72 | |
0.01 | 0.314 | 24 | 3.17 | |
0.02 | 0.259 | 42 | 3.29 | |
0.04 | 0.227 | 79 | 3.13 |
Numerical Methods | Number of Nodes | Step Size (s) | Computing Time (s) |
---|---|---|---|
Mixed MLPG5 time Adaptive Method | 85 (17 × 5) | 0.001 | 3.3257 |
175 (25 × 7) | 10.105 | ||
ANSYS(FEM) | 85(17 × 5) | 10.484 | |
175 (25 × 7) | 21.828 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, M.; Zhang, T.; Cao, J. “Mixed” Meshless Time-Domain Adaptive Algorithm for Solving Elasto-Dynamics Equations. Mathematics 2022, 10, 1722. https://doi.org/10.3390/math10101722
Liao M, Zhang T, Cao J. “Mixed” Meshless Time-Domain Adaptive Algorithm for Solving Elasto-Dynamics Equations. Mathematics. 2022; 10(10):1722. https://doi.org/10.3390/math10101722
Chicago/Turabian StyleLiao, Maoxiong, Tao Zhang, and Jinggu Cao. 2022. "“Mixed” Meshless Time-Domain Adaptive Algorithm for Solving Elasto-Dynamics Equations" Mathematics 10, no. 10: 1722. https://doi.org/10.3390/math10101722
APA StyleLiao, M., Zhang, T., & Cao, J. (2022). “Mixed” Meshless Time-Domain Adaptive Algorithm for Solving Elasto-Dynamics Equations. Mathematics, 10(10), 1722. https://doi.org/10.3390/math10101722