Next Article in Journal
Analysis of a MAP/M/1/N Queue with Periodic and Non-Periodic Piecewise Constant Input Rate
Previous Article in Journal
Approximation Hierarchies for the Copositive Tensor Cone and Their Application to the Polynomial Optimization over the Simplex
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

On Asymptotic Behavior of a 2-Linear Functional Equation

by
Jae-Hyeong Bae
1,†,
Mohammad B. Moghimi
2,*,†,
Abbas Najati
2,*,† and
Batool Noori
2,†
1
Humanitas College, Kyung Hee University, Yongin 17104, Korea
2
Department of Mathematics, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil 56199-11367, Iran
*
Authors to whom correspondence should be addressed.
These authors contributed equally to this work.
Mathematics 2022, 10(10), 1685; https://doi.org/10.3390/math10101685
Submission received: 21 April 2022 / Revised: 10 May 2022 / Accepted: 11 May 2022 / Published: 14 May 2022

Abstract

:
In this paper, we deal with a 2-linear functional equation. The Hyers-Ulam stability of this functional equation is shown on some restricted unbounded domains, and the obtained results are applied to get several hyperstability consequences. Moreover, some asymptotic behaviors of 2-linear functions are investigated. We also study the Hyers-Ulam stability and superstability of the 2-linear functional equation in 2-Banach spaces.

1. Introduction

Let X be a linear space on the field 𝔽 and Y be a linear space on the field 𝕂. A function f : X × X Y is called 2-linear if it satisfies
f ( a 1 x 1 + a 2 x 2 , y ) = A 1 f ( x 1 , y ) + A 2 f ( x 2 , y ) f ( x , b 1 y 1 + b 2 y 2 ) = B 1 f ( x , y 1 ) + B 2 f ( x , y 2 ) , x , x 1 , x 2 , y , y 1 , y 2 X
with some a 1 , a 2 , b 1 , b 2 𝔽 and A 1 , A 2 , B 1 , B 2 𝕂 . If a 1 = a 2 = b 1 = b 2 = 1 and A 1 = A 2 = B 1 = B 2 = 1 in the above definition, we obtain a 2-additive (2-Cauchy) function. n-linear (n-additive) functions are defined similarly (see [1]).
Let a 1 , a 2 , b 1 , b 2 𝔽 and A 11 , A 12 , A 21 , A 22 𝕂 be given scalars. In this paper, we deal with the following general functional equation:
f ( a 1 x 1 + a 2 x 2 , b 1 y 1 + b 2 y 2 ) = A 11 f ( x 1 , y 1 ) + A 12 f ( x 1 , y 2 ) + A 21 f ( x 2 , y 1 ) + A 22 f ( x 2 , y 2 ) , x 1 , x 2 , y 1 , y 2 X .
It is clear that the bi-Jensen functional equation:
4 f x + y 2 , z + w 2 = f ( x , z ) + f ( x , w ) + f ( y , z ) + f ( y , w )
is a special case of (1) (see [2]). Another particular case of (1) is the functional equation:
f ( x + y , z + w ) = f ( x , z ) + f ( x , w ) + f ( y , z ) + f ( y , w ) ,
which characterizes 2-additive mappings (see [3]).
Example 1.
The function f : × defined by f ( x , y ) = a x y + b x + c y + d , where a , b , c , d are real constants, is bi-Jensen.
Example 2.
The function f : × defined by f ( x , y ) = a x y , where a is a real constant, fulfills (2).
The stability problem of homomorphisms between groups was introduced by Ulam [4] in 1940. A year later, Hyers [5] presented his solution for Banach spaces. We recall that a functional equation ( ) is said to be Hyers–Ulam stable in a class of functions F provided each function from F fulfilling approximately in ( ) is near to its actual solution.
In recent years, various functional equations have been introduced by many researchers and their stability has been studied. For more information on the concept of Hyers–Ulam stability and its applications, we refer the reader to [6,7,8,9,10,11,12,13,14,15,16,17,18,19,20].
In [1], the Hyers–Ulam stability of functional Equation (1) was shown in Banach spaces and m-Banach spaces. However, for the study of an asymptotic behavior of Equation (1), we must prove its stability on an unbounded set.
In this paper, we prove the Hyers–Ulam stability of (1) on some restricted unbounded domains. Then, we apply the obtained results to obtain some asymptotic behaviors of functions fulfilling (1). We also study the Hyers–Ulam stability and superstability of the functional Equation (1) in 2-Banach spaces. Our results improve Theorem 7 of [1] and its consequences.

2. Stability

We now prove the Ulam stability of functional Equation (1) in Banach spaces on some restricted domains. For convenience, we set:
D f ( x 1 , x 2 , y 1 , y 2 ) : = f ( a 1 x 1 + a 2 x 2 , b 1 y 1 + b 2 y 2 ) A 11 f ( x 1 , y 1 ) A 12 f ( x 1 , y 2 ) A 21 f ( x 2 , y 1 ) A 22 f ( x 2 , y 2 ) ,
for a given function f : X × X Y .
Theorem 1.
Assume that Y is a Banach space, ε 0 and f : X × X Y is a function satisfying
D f ( x 1 , x 2 , y 1 , y 2 ) ε , x 1 + x 2 + y 1 + y 2 d
for some d > 0 . Suppose that min { | A 11 + A 12 + A 21 + A 22 | , | a 1 + a 2 | , | b 1 + b 2 | } > 1 . Then, there is a unique function T : X × X Y fulfilling Equation (1) and
f ( x , y ) T ( x , y ) M ε | A | 1 , x , y X ,
where A : = A 11 + A 12 + A 21 + A 22 and M > 0 is a constant and is dependent on A 11 , A 12 , A 21 , A 22 .
Proof. 
Put a : = a 1 + a 2 and b : = b 1 + b 2 . Letting x 1 = x 2 = x and y 1 = y 2 = y in (3), we obtain
f ( a x , b y ) A f ( x , y ) ε , x + y d .
Then,
f ( a n + 1 x , b n + 1 y ) A n + 1 f ( a m x , b m y ) A m k = m n ε | A | k + 1 , x + y d , n > m 0 .
Thus, for each x , y X with x + y d , the sequence { f ( a n x , b n y ) A n } n is Cauchy. It is easy to infer that the sequence { f ( a n x , b n y ) A n } n is Cauchy for each x , y X . From the fact that Y is a Banach space, we conclude that this sequence is convergent. Define
T : X × X Y , T ( x , y ) : = lim n f ( a n x , b n y ) A n .
From the definition of T and (3), we obtain
D T ( x 1 , x 2 , y 1 , y 2 ) = 0 , ( x 1 , x 2 , y 1 , y 2 ) 0 .
Since T ( 0 , 0 ) = lim n f ( 0 , 0 ) A n = 0 , we conclude
D T ( x 1 , x 2 , y 1 , y 2 ) = 0 , x 1 , x 2 , y 1 , y 2 X .
Hence, T fulfills Equation (1).
Putting m = 0 and letting n + in (5), we obtain
f ( x , y ) T ( x , y ) ε | A | 1 , x + y d .
Now, we extend (6) to the whole X × X . We may assume without loss of generality that A 11 0 . Then, two cases arise according to whether | a 2 | + | b 2 | > 0 or a 2 = b 2 = 0 . First take the case | a 2 | + | b 2 | > 0 . Let ( x 1 , y 1 ) X × X . If b 2 0 , we choose ( x 2 , y 2 ) X × X such that
b 2 y 2 ( 1 + | b 2 | ) d + b 1 y 1 and x 2 d + x 1 .
It is clear that min { b 1 y 1 + b 2 y 2 , y 2 , x 2 } d . For the case a 2 0 , we can choose ( x 2 , y 2 ) X × X such that
a 2 x 2 ( 1 + | a 2 | ) d + a 1 x 1 and y 2 d + y 1 .
In this case, min { a 1 x 1 + a 2 x 2 , x 2 , y 2 } d . Then, (6) yields that
T ( a 1 x 1 + a 2 x 2 , b 1 y 1 + b 2 y 2 ) f ( a 1 x 1 + a 2 x 2 , b 1 y 1 + b 2 y 2 ) ε | A | 1 ; A 12 f ( x 1 , y 2 ) A 12 T ( x 1 , y 2 ) | A 12 | ε | A | 1 ; A 21 f ( x 2 , y 1 ) A 21 T ( x 2 , y 1 ) | A 21 | ε | A | 1 ; A 22 f ( x 2 , y 2 ) A 22 T ( x 2 , y 2 ) | A 22 | ε | A | 1 .
Adding these inequalities and (3) (by using the triangle inequality), we obtain
T ( a 1 x 1 + a 2 x 2 , b 1 y 1 + b 2 y 2 ) A 12 T ( x 1 , y 2 ) A 21 T ( x 2 , y 1 ) A 22 T ( x 2 , y 2 ) A 11 f ( x 1 , y 1 ) | A | + | A 12 | + | A 21 | + | A 22 | | A | 1 ε
Since T satisfies (1), we obtain
T ( x 1 , y 1 ) f ( x 1 , y 1 ) | A | + | A 12 | + | A 21 | + | A 22 | | A 11 | ( | A | 1 ) ε , x 1 , y 1 X .
Now, consider the case a 2 = b 2 = 0 . Then, a 1 , b 1 0 . We distinguish two cases according to whether | A 12 | + | A 21 | + | A 22 | > 0 or A 12 = A 21 = A 22 = 0 . First, suppose | A 12 | + | A 21 | + | A 22 | > 0 . We may assume A 12 0 . Using the argument above, we conclude
T ( x 1 , y 1 ) f ( x 1 , y 1 ) | A | + | A 11 | + | A 21 | + | A 22 | | A 12 | ( | A | 1 ) ε , x 1 , y 1 X .
Now, assume A 12 = A 21 = A 22 = 0 . Then, A 11 = A , and in this case, (3) changes as follows:
f ( a 1 x 1 , b 1 y 1 ) A f ( x 1 , y 1 ) ε , x 1 , y 1 X .
Therefore,
f ( x 1 , y 1 ) T ( x 1 , y 1 ) ε | A | 1 , x 1 , y 1 X .
By (7)–(9), we obtain (4). The uniqueness of T follows easily from (4). □
One can apply a similar argument as in the proof of Theorem 1 and prove the following theorem.
Theorem 2.
Assume that Y is a Banach space, ε 0 , d > 0 , and f : X × X Y is a function satisfying (3) for all x 1 + x 2 + y 1 + y 2 d . Suppose that A i j 0 , | a j | + | b i | > 0 for some i , j { 1 , 2 } and
min { | A 11 + A 12 + A 21 + A 22 | , | a 1 + a 2 | , | b 1 + b 2 | } > 1 .
Then, there is a unique mapping T : X × X Y fulfilling Equation (1) and
T ( x , y ) f ( x , y ) | A | | A i j | + | A 11 | + | A 12 | + | A 21 | + | A 22 | | A i j | ( | A | 1 ) ε , x , y X ,
where A : = A 11 + A 12 + A 21 + A 22 .
Remark 1.
Since x 1 + x 2 + y 1 + y 2 4 δ yields max { x 1 , x 2 , y 1 , y 2 } δ ( δ > 0 ), Theorems 1 and 2 are still valid if we use max { x 1 , x 2 , y 1 , y 2 } d instead of the condition x 1 + x 2 + y 1 + y 2 d .
Corollary 1.
Suppose z is a fixed point of Y and min { | A | , | a 1 + a 2 | , | b 1 + b 2 | } > 1 . For a function f : X × X Y , the following conditions are equivalent:
( i )
lim x 1 + x 2 + y 1 + y 2 D f ( x 1 , x 2 , y 1 , y 2 ) = z ;
( i i )
lim max { x 1 , x 2 , y 1 , y 2 } D f ( x 1 , x 2 , y 1 , y 2 ) = z ;
( i i i )
D f ( x 1 , x 2 , y 1 , y 2 ) = z , x 1 , x 2 , y 1 , y 2 X .
Proof. 
It is clear that ( i ) and ( i i ) are equivalent. To prove ( i ) ( i i i ) , let f satisfy ( i ) . Define
g : X × X Y , g ( x , y ) = f ( x , y ) + 1 A 1 z .
Then,
lim x 1 + x 2 + y 1 + y 2 D g ( x 1 , x 2 , y 1 , y 2 ) = 0 .
Let ε > 0 be an arbitrary real number. Then, there exists d ε > 0 such that
D g ( x 1 , x 2 , y 1 , y 2 ) ε , x 1 + x 2 + y 1 + y 2 d ε .
Let Y be the completion of Y. In view of Theorem 1, there exists unique function T ε : X × X Y fulfilling Equation (1) and
f ( x , y ) T ε ( x , y ) M ε | A | 1 , x , y X
where A : = A 11 + A 12 + A 21 + A 22 and M > 0 is a constant dependent on A 11 , A 12 , A 21 , A 22 . Then,
D g ( x 1 , x 2 , y 1 , y 2 ) g ( a 1 x 1 + a 2 x 2 , b 1 y 1 + b 2 y 2 ) T ε ( a 1 x 1 + a 2 x 2 , b 1 y 1 + b 2 y 2 ) + A 11 g ( x 1 , y 1 ) T ε ( x 1 , y 1 ) + A 12 g ( x 1 , y 2 ) T ε ( x 1 , y 2 ) + A 21 g ( x 2 , y 1 ) T ε ( x 2 , y 1 ) + A 22 g ( x 2 , y 2 ) T ε ( x 2 , y 2 ) 5 M ε | A | 1 , x 1 , x 2 , y 1 , y 2 X .
Since ε is arbitrary, we obtain D g ( x 1 , x 2 , y 1 , y 2 ) = 0 for all x 1 , x 2 , y 1 , y 2 X . Then,
D f ( x 1 , x 2 , y 1 , y 2 ) = z , x 1 , x 2 , y 1 , y 2 X .
This implies ( i i i ) . The implication ( i i i ) ( i i ) is obvious. Hence, the proof is complete. □
Example 3.
Let f : X × X Y . Then,
f ( x + y , z + w ) = f ( x , z ) + f ( x , w ) + f ( y , z ) + f ( y , w )
if and only if
lim x + y + z + w f ( x + y , z + w ) f ( x , z ) f ( x , w ) f ( y , z ) f ( y , w ) = 0 .
Theorem 3.
Assume that Y is a Banach space, ε 0 , and f : X × X Y is a function satisfying
D f ( x 1 , x 2 , y 1 , y 2 ) ε , min { x 1 , x 2 , y 1 , y 2 } d
for some d > 0 . Suppose that min { | A 11 + A 12 + A 21 + A 22 | , | a 1 + a 2 | , | b 1 + b 2 | } > 1 , and a 1 , a 2 , b 1 , b 2 0 . Then, there is a unique function T : X × X Y fulfilling Equation (1) for all x 1 , x 2 , y 1 , y 2 X \ { 0 } , and
f ( x , y ) T ( x , y ) | A | + | A 11 | + | A 12 | + | A 21 | + | A 22 | 1 | A | 1 ε ,
for all x , y X \ { 0 } , where A : = A 11 + A 12 + A 21 + A 22 .
Proof. 
Letting x 1 = x 2 = x and y 1 = y 2 = y in (10), we obtain
f ( a x , b y ) A f ( x , y ) ε , min { x , y } d
where a : = a 1 + a 2 and b : = b 1 + b 2 . Then, for integers n > m 0 , we obtain
f ( a n + 1 x , b n + 1 y ) A n + 1 f ( a m x , b m y ) A m k = m n ε | A | k + 1 , min { x , y } d .
Thus, for each x , y X with min { x , y } d , the sequence { f ( a n x , b n y ) A n } n is Cauchy. It is easy to infer that the sequence { f ( a n x , b n y ) A n } n is Cauchy for x = y = 0 and for each x , y X with min { x , y } > 0 , and then, it is convergent since Y is Banach. We now show that { f ( a n x , 0 ) A n } n and { f ( 0 , b n y ) A n } n are convergent. Let x X be an arbitrary element, e X \ { x , 0 } be a fixed element, and m be an integer. We take
x 1 = ( m + 1 ) x + m e a 1 , x 2 = m ( x + e ) a 2 , y 1 = m e b 1 , y 2 = m e b 2 .
If m is large enough, then
min { x 1 , x 2 , y 1 , y 2 } d and ( a 1 x 1 + a 2 x 2 , b 1 y 1 + b 2 y 2 ) = ( x , 0 ) .
Since the sequences { f ( a n x i , b n y j ) A n } n (for i , j = 1 , 2 ) are convergent, (10) implies that { f ( a n x , 0 ) A n } n is convergent. The convergence of the sequence { f ( 0 , b n y ) A n } n is similarly proven. Define
T : X × X Y , T ( x , y ) : = lim n f ( a n x , b n y ) A n .
From the definition of T and (10), we obtain
D T ( x 1 , x 2 , y 1 , y 2 ) = 0 , x 1 , x 2 , y 1 , y 2 0 .
Therefore, T fulfills Equation (1) for all x 1 , x 2 , y 1 , y 2 0 .
Putting m = 0 and letting n + in (12), we obtain
f ( x , y ) T ( x , y ) ε | A | 1 , min { x , y } d .
Now, we extend (13) to the whole X × X . Let ( x , y ) X × X be an arbitrary element, e X \ { x , y , 0 } be a fixed element, and n be an integer. We take
x 1 = ( n + 1 ) x + n e a 1 , x 2 = n x + n e a 2 , y 1 = ( n + 1 ) y + n e b i , y 2 = n y + n e b 2 .
If n is large enough, then
min { x 1 , x 2 , y 1 , y 2 } d and ( a 1 x 1 + a 2 x 2 , b 1 y 1 + b 2 y 2 ) = ( x , y ) .
By (13), we have
A 11 f ( x 1 , y 1 ) A 11 T ( x 1 , y 1 ) | A 11 | | A | 1 ε ; A 12 f ( x 1 , y 2 ) A 12 T ( x 1 , y 2 ) | A 12 | | A | 1 ε ; A 21 f ( x 2 , y 1 ) A 21 T ( x 2 , y 1 ) | A 21 | | A | 1 ε ; A 22 f ( x 2 , y 2 ) A 22 T ( x 2 , y 2 ) | A 22 | | A | 1 ε .
Adding these inequalities and (10) (by using the triangle inequality), we obtain
f ( a 1 x 1 + a 2 x 2 , b 1 y 1 + b 2 y 2 ) A 12 T ( x 1 , y 2 ) A 21 T ( x 2 , y 1 ) A 22 T ( x 2 , y 2 ) A 11 f ( x 1 , y 1 ) | A | + | A 11 | + | A 12 | + | A 21 | + | A 22 | 1 | A | 1 ε
Since T satisfies (1) and ( a 1 x 1 + a 2 x 2 , b 1 y 1 + b 2 y 2 ) = ( x , y ) , we obtain
f ( x , y ) T ( x , y ) | A | + | A 11 | + | A 12 | + | A 21 | + | A 22 | 1 | A | 1 ε , x , y X .
The uniqueness of T follows easily from (11). □
Remark 2.
Since min { x 1 , x 2 , y 1 , y 2 } d implies x 1 + x 2 + y 1 + y 2 d , Theorem 3 is still valid if we use x 1 + x 2 + y 1 + y 2 d instead of the condition min { x 1 , x 2 , y 1 , y 2 } d . It should be noted that in this case, Theorem 3 is somewhat different from Theorems 1 and 2, and T fulfilling (1) for all x 1 , x 2 , y 1 , y 2 X .
In the following corollaries, we suppose that
min { | A 11 + A 12 + A 21 + A 22 | , | a 1 + a 2 | , | b 1 + b 2 | } > 1 and a 1 , a 2 , b 1 , b 2 0 .
Corollary 2.
Suppose z is a fixed point of Y. For a function f : X × X Y , the following conditions are equivalent:
( i )
lim min { x 1 , x 2 , y 1 , y 2 } D f ( x 1 , x 2 , y 1 , y 2 ) = z ;
( i i )
D f ( x 1 , x 2 , y 1 , y 2 ) = z , x 1 , x 2 , y 1 , y 2 X \ { 0 } .
Corollary 3.
Let ε 0 and p , q , r , s < 0 . Suppose z is a fixed point of Y. If a function f : X × X Y satisfies
D f ( x 1 , x 2 , y 1 , y 2 ) z ε ( x 1 p + x 2 q + y 1 r + y 2 s ) , x 1 , x 2 , y 1 , y 2 X \ { 0 }
then D f ( x 1 , x 2 , y 1 , y 2 ) = z for all x 1 , x 2 , y 1 , y 2 X \ { 0 } .
Corollary 4.
Let ε 0 and p , q , r , s be real numbers with p + q + r + s < 0 . Suppose z is a fixed point of Y. If a function f : X × X Y satisfies
D f ( x 1 , x 2 , y 1 , y 2 ) z ε x 1 p x 2 q y 1 r y 2 s , x 1 , x 2 , y 1 , y 2 X \ { 0 }
then D f ( x 1 , x 2 , y 1 , y 2 ) = z for all x 1 , x 2 , y 1 , y 2 X \ { 0 } .
With a slight modification in the proof of Theorem 3, the following theorem is proven, and we leave the proof to the reader.
Theorem 4.
Assume that Y is a Banach space, ε 0 , and f : X × X Y is a function satisfying
D f ( x 1 , x 2 , y 1 , y 2 ) ε , min { x 1 + x 2 , y 1 + y 2 } d
for some d > 0 . Suppose that min { | A 11 + A 12 + A 21 + A 22 | , | a 1 + a 2 | , | b 1 + b 2 | } > 1 , and a 1 , a 2 , b 1 , b 2 0 with a 1 a 2 , b 1 b 2 . Then, there is a unique function T : X × X Y fulfilling Equation (1) for all x 1 , x 2 , y 1 , y 2 X \ { 0 } , and
f ( x , y ) T ( x , y ) | A | + | A 11 | + | A 12 | + | A 21 | + | A 22 | 1 | A | 1 ε ,
for all x , y X \ { 0 } , where A : = A 11 + A 12 + A 21 + A 22 .
In the following corollaries, we suppose that a 1 , a 2 , b 1 , b 2 0 with a 1 a 2 , b 1 b 2 and
min { | A 11 + A 12 + A 21 + A 22 | , | a 1 + a 2 | , | b 1 + b 2 | } > 1 .
Corollary 5.
Suppose z is a fixed point of Y. For a function f : X × X Y , the following conditions are equivalent:
( i )
lim min { x 1 + x 2 , y 1 + y 2 } D f ( x 1 , x 2 , y 1 , y 2 ) = z ;
( i i )
D f ( x 1 , x 2 , y 1 , y 2 ) = z , x 1 , x 2 , y 1 , y 2 X \ { 0 } .
Corollary 6.
Let ε 0 and r , s < 0 . Suppose z is a fixed point of Y. If a function f : X × X Y satisfies
D f ( x 1 , x 2 , y 1 , y 2 ) z ε ( x 1 + x 2 r + y 1 + y 2 s ) , x 1 , x 2 , y 1 , y 2 X \ { 0 }
then D f ( x 1 , x 2 , y 1 , y 2 ) = z for all x 1 , x 2 , y 1 , y 2 X \ { 0 } .
Corollary 7.
Let ε 0 and r , s be real numbers with r + s < 0 . Suppose z is a fixed point of Y. If a function f : X × X Y satisfies
D f ( x 1 , x 2 , y 1 , y 2 ) z ε x 1 + x 2 r y 1 + y 2 s , x 1 , x 2 , y 1 , y 2 X \ { 0 }
then D f ( x 1 , x 2 , y 1 , y 2 ) = z for all x 1 , x 2 , y 1 , y 2 X \ { 0 } .

3. Superstability and Stability in 2-Banach Spaces

The concept of 2-normed spaces was introduced by Gähler [21]. First, we recall (see for instance [22]) some basic definitions and facts concerning 2-normed spaces.
Definition 1.
Let X be a real linear space of dimension greater than one and . , . : X × X a function satisfying the following conditions:
1. 
x , y = 0 if and only if x , y are linearly dependent;
2. 
x , y = y , x ;
3. 
λ x , y = | λ | x , y ;
4. 
x , y + z x , y + x , z .
for all x , y , z X and λ . In this case, ( X , . , . ) is called a linear 2-normed space.
By ( 1 ) , ( 3 ) and ( 4 ) we infer that
0 = 0 , y = x x , y 2 x , y , x , y X .
Hence, . , . is non-negative.
A sequence { x n } n of elements of a 2-normed space X is called a Cauchy sequence if there exist linearly independent y , z X with
lim m , n x m x n , y = 0 = lim m , n x m x n , z .
A sequence { x n } n of a 2-normed space X is said to be convergent if there exists x X such that lim n x n x , y = 0 for all y X . In this case, x is called the limit of { x n } n and denoted by lim x n = x . It is easy to see that in a 2-normed space, a sequence has at most one limit, and every convergent sequence is Cauchy.
A 2-normed space X is called a 2-Banach space if every Cauchy sequence in X is convergent.
Lemma 1.
Let ( X , . , . ) be a linear 2-normed space and y , z X be linearly independent. If x , y = x , z = 0 , then x = 0 . In particular, if x , w = 0 for all w X , then x = 0 .
Proof. 
Since x , y = x , z = 0 , there exist λ , μ such that x = λ y and x = μ z . Then, λ y μ z = 0 , and we conclude that λ = μ = 0 . Hence, x = 0 . □
Let ( X , . , . ) be a linear 2-normed space and y , z X be linearly independent. It is easy to verify that the function . : X given by x = x , z + y , z is a norm on X.
The following theorem improves Theorem 7 of [1] and its consequences.
Theorem 5.
Let ε 0 , X be a linear space and ( Y , . , . ) a 2-normed space. If a function f : X × X Y satisfies
D f ( x 1 , x 2 , y 1 , y 2 ) , z ε , x 1 , x 2 , y 1 , y 2 X , z Y ,
then D f ( x 1 , x 2 , y 1 , y 2 ) = 0 for all x 1 , x 2 , y 1 , y 2 X .
Proof. 
Replacing z by n z in (16) and dividing the resultant inequality by n, we obtain
D f ( x 1 , x 2 , y 1 , y 2 ) , z ε n , x 1 , x 2 , y 1 , y 2 X , z Y , n N .
Allowing n to tend to infinity, we obtain D f ( x 1 , x 2 , y 1 , y 2 ) , z = 0 for all x 1 , x 2 , y 1 , y 2 X and z Y . Hence, by Lemma 1, D f ( x 1 , x 2 , y 1 , y 2 ) = 0 for all x 1 , x 2 , y 1 , y 2 X . □
Theorem 6.
Assume that ε , θ 0 , X is a normed space, and Y is a 2-Banach space. Let g : X Y be a surjective function and
A 11 + A 12 + A 21 + A 22 > 1 .
If f : X × X Y is a function satisfying
D f ( x 1 , x 2 , y 1 , y 2 ) , g ( z ) ε + θ z
for x 1 , x 2 , y 1 , y 2 , z X , then there is a unique mapping F : X × X Y fulfilling Equation (1) and
F ( x , y ) f ( x , y ) , g ( z ) ε + θ z | A | 1 , x , y , z X .
Proof. 
Put a : = a 1 + a 2 , b : = b 1 + b 2 and A : = A 11 + A 12 + A 21 + A 22 . Letting x 1 = x 2 = x and y 1 = y 2 = y in (18), we obtain
f ( a x , b y ) A f ( x , y ) , g ( z ) ε + θ z , x , y , z X .
Then,
f ( a n + 1 x , b n + 1 y ) A n + 1 f ( a m x , b m y ) A m , g ( z ) k = m n ε + θ z | A | k + 1
for all x , y , z X and n > m 0 .
Thus, the sequence { f ( a n x , b n y ) A n } n is Cauchy. Since Y is a 2-Banach space, we conclude that this sequence is convergent. Define
F : X × X Y , F ( x , y ) : = lim n f ( a n x , b n y ) A n .
Putting now m = 0 and letting n in (19), we see that
F ( x , y ) f ( x , y ) , g ( z ) ε + θ z | A | 1 , x , y , z X .
In view of (17), we obtain
D f ( a n x 1 , a n x 2 , b n y 1 , b n y 2 ) | A | n , g ( z ) ε + θ z | A | n , x 1 , x 2 , y 1 , y 2 , z X , n .
Letting now n and applying the definition of F , we deduce that
D F ( x 1 , x 2 , y 1 , y 2 ) , g ( z ) = 0 , x 1 , x 2 , y 1 , y 2 , z X .
Since g is surjective, we infer D F ( x 1 , x 2 , y 1 , y 2 ) = 0 for all x 1 , x 2 , y 1 , y 2 , z X by Lemma 1. The uniqueness of F is obvious. □

4. Conclusions

In this work, we studied the following 2-linear functional equation:
f ( a 1 x 1 + a 2 x 2 , b 1 y 1 + b 2 y 2 ) = A 11 f ( x 1 , y 1 ) + A 12 f ( x 1 , y 2 ) + A 21 f ( x 2 , y 1 ) + A 22 f ( x 2 , y 2 ) , x 1 , x 2 , y 1 , y 2 X ,
where f : X × X Y is the unknown function. We established a new strategy to the study Hyers–Ulam stability of the functional Equation (20) on some restricted unbounded domains. As a consequence, we applied the obtained results to investigate several asymptotic behaviors of functions fulfilling (20). We also investigated the Hyers–Ulam stability and superstability of the functional Equation (20) in 2-Banach spaces.

Author Contributions

Conceptualization, J.-H.B., M.B.M., A.N. and B.N.; methodology, J.-H.B., M.B.M., A.N. and B.N.; software, J.-H.B., M.B.M., A.N. and B.N.; validation, J.-H.B., M.B.M., A.N. and B.N.; formal analysis, J.-H.B., M.B.M., A.N. and B.N.; investigation, J.-H.B., M.B.M., A.N. and B.N.; resources, J.-H.B., M.B.M., A.N. and B.N.; data curation, J.-H.B., M.B.M., A.N. and B.N.; writing—original draft preparation, A.N. and B.N.; project administration, A.N. and B.N.; funding acquisition, J.-H.B. and M.B.M. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Ciepliński, K. On Ulam stability of a functional equation. Results Math. 2020, 75, 151. [Google Scholar] [CrossRef]
  2. Jun, K.-W.; Lee, Y.-H.; Oh, J.-H. On the Rassias stability of a bi-Jensen functional equation. J. Math. Inequal. 2008, 2, 363–375. [Google Scholar] [CrossRef] [Green Version]
  3. Ciepliński, K. Generalized stability of multi-additive mappings. Appl. Math. Lett. 2010, 23, 1291–1294. [Google Scholar] [CrossRef] [Green Version]
  4. Ulam, S.M. Problems in Modern Mathematics, Science ed.; John Wiley Sons, Inc.: New York, NY, USA, 1964. [Google Scholar]
  5. Hyers, D.H. On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 1941, 27, 222–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  6. Batool, A.; Nawaz, S.; Ege, O.; de la Sen, M. Hyers–Ulam stability of functional inequalities: A fixed point approach. J. Inequal. Appl. 2020, 2020, 251. [Google Scholar] [CrossRef]
  7. Czerwik, S. Functional Equations and Inequalities in Several Variables; World Scientific Publishing Company: Hackensack, NJ, USA; Hong Kong, China; Singapore; London, UK, 2002. [Google Scholar]
  8. Ebanks, B.R.; Kannappan, P.L.; Sahoo, P.K. A common generalization of functional equations characterizing normed and quasi-inner-product spaces. Can. Math. Bull. 1992, 35, 321–327. [Google Scholar] [CrossRef]
  9. Forti, G.L. Hyers–Ulam stability of functional equations in several variables. Aequationes Math. 1995, 50, 143–190. [Google Scholar] [CrossRef]
  10. Hyers, D.H.; Isac, G.; Rassias, T.M. Stability of Functional Equations in Several Variables; Birkhäuser: Basel, Switzerland, 1998. [Google Scholar]
  11. Jung, S.M. Hyers–Ulam–Rassias Stability of Functional Equations in Nonlinear Analysis; Springer: New York, NY, USA; Dordrecht, The Netherlands; Heidelberg, Germany; London, UK, 2011. [Google Scholar]
  12. Kannappan, P. Functional Equations and Inequalities with Applications; Springer: New York, NY, USA, 2009. [Google Scholar]
  13. Najati, A.; Park, C. Hyers–Ulam-Rassias stability of homomorphisms in quasi-Banach algebras associated to the Pexiderized Cauchy functional equation. J. Math. Anal. Appl. 2007, 335, 763–778. [Google Scholar] [CrossRef] [Green Version]
  14. Najati, A.; Park, C. The Pexiderized Apollonius-Jensen type additive mapping and isomorphisms between C*-algebras. J. Differ. Equat. Appl. 2008, 14, 459–479. [Google Scholar] [CrossRef]
  15. Najati, A.; Tareeghee, M.A. Drygas functional inequality on restricted domains. Acta Math. Hungar. 2022, 166, 115–123. [Google Scholar] [CrossRef]
  16. Prager, W.; Schwaiger, J. Stability of the bi-Jensen equation. Bull. Korean Math. Soc. 2008, 45, 133–142. [Google Scholar] [CrossRef] [Green Version]
  17. Radu, V. The fixed point alternative and the stability of functional equations. Fixed Point Theory 2003, 4, 91–96. [Google Scholar]
  18. Rassias, J.M. On the Ulam stability of mixed type mappings on restricted domains. J. Math. Anal. Appl. 2002, 276, 747–762. [Google Scholar] [CrossRef] [Green Version]
  19. Suparatulatorn, R.; Chaobankoh, T. Hyers–Ulam stability results for a functional inequality of (s,t)-type in Banach spaces. J. Funct. Spaces 2022, 2022, 2195754. [Google Scholar] [CrossRef]
  20. Tareeghee, M.A.; Najati, A.; Abdollahpour, M.R.; Noori, B. On restricted functional inequalities associated with quadratic functional equations. Aequationes Math. 2022. [Google Scholar] [CrossRef]
  21. Gähler, S. Lineare 2-normierte Räume. Math. Nachr. 1964, 28, 1–43. [Google Scholar] [CrossRef]
  22. Cho, Y.J.; Lin, P.C.S.; Kim, S.S.; Misiak, A. Theory of 2-Inner Product Spaces; Nova Science: New York, NY, USA, 2001. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Bae, J.-H.; Moghimi, M.B.; Najati, A.; Noori, B. On Asymptotic Behavior of a 2-Linear Functional Equation. Mathematics 2022, 10, 1685. https://doi.org/10.3390/math10101685

AMA Style

Bae J-H, Moghimi MB, Najati A, Noori B. On Asymptotic Behavior of a 2-Linear Functional Equation. Mathematics. 2022; 10(10):1685. https://doi.org/10.3390/math10101685

Chicago/Turabian Style

Bae, Jae-Hyeong, Mohammad B. Moghimi, Abbas Najati, and Batool Noori. 2022. "On Asymptotic Behavior of a 2-Linear Functional Equation" Mathematics 10, no. 10: 1685. https://doi.org/10.3390/math10101685

APA Style

Bae, J.-H., Moghimi, M. B., Najati, A., & Noori, B. (2022). On Asymptotic Behavior of a 2-Linear Functional Equation. Mathematics, 10(10), 1685. https://doi.org/10.3390/math10101685

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop