Coefficient Estimates and the Fekete–Szegö Problem for New Classes of m-Fold Symmetric Bi-Univalent Functions
Abstract
:1. Introduction and Preliminary Results
2. Main Results
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lewin, M. On a coefficient problem for bi-univalent functions. Proc. Am. Math. Soc. 1967, 18, 63–68. [Google Scholar] [CrossRef]
- Netanyahu, E. The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in |z|<1. Arch. Rational Mech. Anal. 1969, 32, 100–112. [Google Scholar]
- Brannan, D.A.; Clunie, J.; Kirwan, W.E. Coefficient estimates for a class of starlike functions. Can. J. Math. 1970, 22, 476–485. [Google Scholar] [CrossRef]
- Duren, P.L. Univalent Functions, Grundlehren der Mathematischen Wissenschaften; Springer: New York, NY, USA; Berlin/Hiedelberg, Germany; Tokyo, Japan, 1983. [Google Scholar]
- Srivastava, H.M.; Mishra, A.K.; Gochhayat, P. Certain subclasses of analytic and bi-univalent functions. Appl. Math. Lett. 2010, 23, 1188–1192. [Google Scholar] [CrossRef] [Green Version]
- Frasin, B.A.; Aouf, M.K. New subclasses of bi-univalent functions. Appl. Math. Lett. 2011, 24, 1569–1573. [Google Scholar] [CrossRef] [Green Version]
- Frasin, B.A. Coefficient bounds for certain classes of bi-univalent functions. Hacet. J. Math. Stat. 2014, 43, 383–389. [Google Scholar] [CrossRef] [Green Version]
- Ali, R.M.; Lee, S.K.; Ravichandran, V.; Supramaniam, S. Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions. Appl. Math. Lett. 2012, 25, 344–351. [Google Scholar] [CrossRef] [Green Version]
- Jahangiri, J.M.; Hamidi, S.G. Faber polynomial coefficient estimates for analytic bi-Bazilevic functions. Mat. Vesnik 2015, 67, 123–129. [Google Scholar]
- Srivastava, H.M.; Wanas, A.K.; Güney, H.Ö. New Families of Bi-univalent Functions Associated with the Bazilevič functions and the λ- pseudo-starlike functions. Iran. J. Sci. Technol. Trans. Sci. 2021, 45, 1799–1804. [Google Scholar] [CrossRef]
- Sivasubramanian, S.; Sivakumar, R.; Kanas, S.; Kim, S.-A. Verification of Brannan and Clunie’s conjecture for certain subclasses of bi-univalent functions. Ann. Polon. Math. 2015, 113, 295–304. [Google Scholar] [CrossRef]
- Çağlar, M.; Aslan, S. Fekete-Szegő inequalities for subclasses of bi-univalent functions satisfying subordinate conditions. AIP Conf. Proc. 2016, 1726, 020078. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Gaboury, S.; Ghanim, F. Coeffcient estimates for some general subclasses of analytic and bi-univalent functions. Afr. Mat. 2017, 28, 693–706. [Google Scholar] [CrossRef]
- Páll-Szabó, Á.O.; Oros, G.I. Coefficient Related Studies for New Classes of Bi-Univalent Functions. Mathematics 2020, 8, 1110. [Google Scholar] [CrossRef]
- Cotîrlă, L.I. New classes of analytic and bi-univalent functions. AIMS Math. 2021, 6, 10642–10651. [Google Scholar] [CrossRef]
- Wanas, A.K.; Alb Lupaș, A. Applications of Horadam Polynomials on Bazilevič Bi-Univalent Function Satisfying Subordinate Conditions. IOP Conf. Ser. J. Phys. Conf. Ser. 2019, 1294, 032003. [Google Scholar] [CrossRef]
- Abirami, C.; Magesh, N.; Yamini, J. Initial bounds for certain classes of bi-univalent functions defined by Horadam Polynomials. Abstr. Appl. Anal. 2020, 2020, 7391058. [Google Scholar] [CrossRef] [Green Version]
- Bucur, R.; Andrei, L.; Breaz, D. Coefficient bounds and Fekete-Szegő problem for a class of analytic functions defined by using a new differential operator. Appl. Math. Sci. 2015, 9, 1355–1368. [Google Scholar]
- Patila, A.B.; Naik, U.H. On Coefficient Inequalities of Certain Subclasses of Bi-Univalent Functions Involving the Sălăgean Operator. Filomat 2021, 35, 1305–1313. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Sivasubramanian, S.; Sivakumar, R. Initial coefficient bounds for a subclass of m-fold symmetric bi-univalent functions. Tbilisi Math. J. 2014, 7, 1–10. [Google Scholar] [CrossRef]
- Hamidi, S.G.; Jahangiri, J.M. Unpredictability of the coefficients of m-fold symmetric bi-starlike functions. Int. J. Math. 2014, 25, 1450064. [Google Scholar] [CrossRef]
- Eker, S.S. Coefficient bounds for subclasses of m-fold symmetric bi-univalent functions. Turkish J. Math. 2016, 40, 641–646. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Gaboury, S.; Ghanim, F. Initial coefficient estimates for some subclasses of m-fold symmetric bi-univalent functions. Acta Math. Sci. 2016, 36, 863–871. [Google Scholar] [CrossRef]
- Altinkaya, Ș.; Yalçin, S. On some subclasses of m-fold symmetric bi-univalent functions. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2018, 67, 29–36. [Google Scholar]
- Sakar, F.M.; Güney, M.O. Coefficient estimates for certain subclasses of m-fold symmetric bi-univalent functions defined by the q-derivative operator. Konuralp J. Math. 2018, 6, 279–285. [Google Scholar]
- Srivastava, H.M.; Wanas, A.K. Initial Maclaurin coefficient bounds for new subclasses of analytic and m-fold symmetric bi-univalent functions defined by a linear combination. Kyungpook Math. J. 2019, 59, 493–503. [Google Scholar]
- Bulut, S.; Salehian, S.; Motamednezhad, A. Comprehensive subclass of m-fold symmetric bi-univalent functions defined by subordination. Afr. Mat. 2021, 32, 531–541. [Google Scholar] [CrossRef]
- Fekete, M.; Szegő, G. Eine bemerkung über ungerade schlichte funktionen. J. Lond. Math. Soc. 1933, 8, 85–89. [Google Scholar] [CrossRef]
- Kanas, S. An unified approach to the Fekete-Szegő problem. Appl. Math. Comput. 2012, 218, 8453–8461. [Google Scholar] [CrossRef]
- Dziok, J. A general solution of the Fekete-Szegö problem. Bound Value Probl. 2013, 98, 13. [Google Scholar] [CrossRef] [Green Version]
- Zaprawa, P. On the Fekete-Szegö problem for classes of bi-univalent functions. Bull. Belg. Math. Soc. Simon Stevin 2014, 21, 169–178. [Google Scholar] [CrossRef]
- Al-Hawary, T.; Amourah, A.; Frasin, B.A. Fekete–Szegő inequality for bi-univalent functions by means of Horadam polynomials. Bol. Soc. Mat. Mex. 2021, 27, 79. [Google Scholar] [CrossRef]
- Amourah, A.; Frasin, B.A.; Abdeljaward, T. Fekete-Szegő inequality for analytic and bi-univalent functions subordinate to Gegenbauer polynomials. J. Funct. Spaces 2021, 2021, 5574673. [Google Scholar] [CrossRef]
- Corcino, R.B. On p; q-binomial coefficients. Integers 2008, 8, A29. [Google Scholar]
- Sadjang, P.N. On the fundamental theorem of (p,q)-calculus and some (p,q)-Taylor formulas. Results Math. 2018, 73. [Google Scholar] [CrossRef]
- El-Deeb, S.M.; Bulboacă, T.; El-Matary, B.M. Maclaurin Coefficient Estimates of Bi-Univalent Functions Connected with the q-Derivative. Mathematics 2020, 8, 418. [Google Scholar] [CrossRef] [Green Version]
- Catas, A. On the Fekete-Szegö problem for certain classes of meromorphic functions using p,q-derivative operator and a p,q-wright type hypergeometric function. Symmetry 2021, 13, 2143. [Google Scholar] [CrossRef]
- Amourah, A. Fekete-Szegö inequalities for analytic and bi-univalent functions subordinate to (p,q)-Lucas Polynomials. arXiv 2020, arXiv:2004.00409. [Google Scholar]
- Wanas, A.K.; Cotîrlă, L.I. Initial coefficient estimates and Fekete-Szegő inequalities for new families of bi-univalent functions governed by (p – q) – Wanas operator. Symmetry 2021, 13, 2118. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Altinkaya, Ș.; Yalçin, S. Hankel Determinant for a Subclass of Bi-Univalent Functions Defined by Using a Symmetric q-Derivative Operator. Filomat 2018, 32, 503–516. [Google Scholar] [CrossRef]
- Babalola, K.O. On λ-pseudo-starlike function. J. Class. Anal. 2013, 3, 137–147. [Google Scholar] [CrossRef]
- Pommerenke, C. Univalent Functions; Vanderhoeck and Ruprecht: Gottingen, Germany, 1975; 376p. [Google Scholar]
- Srivastava, H.M. Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis. Iran. J. Sci. Technol. Trans. A Sci. 2020, 44, 327–344. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oros, G.I.; Cotîrlă, L.-I. Coefficient Estimates and the Fekete–Szegö Problem for New Classes of m-Fold Symmetric Bi-Univalent Functions. Mathematics 2022, 10, 129. https://doi.org/10.3390/math10010129
Oros GI, Cotîrlă L-I. Coefficient Estimates and the Fekete–Szegö Problem for New Classes of m-Fold Symmetric Bi-Univalent Functions. Mathematics. 2022; 10(1):129. https://doi.org/10.3390/math10010129
Chicago/Turabian StyleOros, Georgia Irina, and Luminiţa-Ioana Cotîrlă. 2022. "Coefficient Estimates and the Fekete–Szegö Problem for New Classes of m-Fold Symmetric Bi-Univalent Functions" Mathematics 10, no. 1: 129. https://doi.org/10.3390/math10010129
APA StyleOros, G. I., & Cotîrlă, L.-I. (2022). Coefficient Estimates and the Fekete–Szegö Problem for New Classes of m-Fold Symmetric Bi-Univalent Functions. Mathematics, 10(1), 129. https://doi.org/10.3390/math10010129