Ovarian Cancer: Tumor-Specific Urinary Micro-Peptides Profiling as Potential Biomarkers for Early Diagnosis
Abstract
:1. Introduction
2. Experimental Section
2.1. Ethical Considerations
2.2. Study Design, Sites, and Duration
2.3. Study Population
2.4. Samples
2.5. Determination of Tumor Biomarker CA125 Using ELISA Technique [GenAsia Biotech Co. Ltd, Shanghai, China]
2.6. Polyacrylamide Gel -SDS Gel Electrophoresis (PAGE-SDS Electrophoresis)
Urine Protein Precipitation
2.7. Sequencing and Identification of Selected Urine Peptides
2.8. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Global Cancer Observatory. Available online: https://gco.iarc.fr/ (accessed on 9 July 2020).
- Abuidris, D.O.; Weng, H.Y.; Elhaj, A.M.; Eltayeb, E.A.; Elsanousi, M.; Ibnoof, R.S.; Mohammed, S.I. Incidence and survival rates of ovarian cancer in low-income women in Sudan. Mol. Clin. Oncol. 2016, 5, 823–828. [Google Scholar] [CrossRef] [Green Version]
- Badgwell, D.; Bast, R.C. Early detection of ovarian cancer. Dis. Markers 2007, 23, 397–410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holalkere, N.S.; Katur, A.M.; Lee, S.I. Issues in imaging malignant neoplasms of the female reproductive system. Curr. Probl. Diagn. Radiol. 2009, 38, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Clarke-Pearson, D.L. Screening for Ovarian Cancer. N. Engl. J. Med. 2009, 361, 170–177. [Google Scholar] [CrossRef]
- Moyer, V.A. Screening for ovarian cancer: U.S. Preventive services task force reaffirmation recommendation statement. Ann. Intern. Med. 2012, 157, 900–904. [Google Scholar] [CrossRef] [PubMed]
- Rossing, M.A.A.; Wicklund, K.G.; Cushing-Haugen, K.L.; Weiss, N.S. Predictive value of symptoms for early detection of ovarian cancer. J. Natl. Cancer Inst. 2010, 102, 222–229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiu, F.; Liu, H.; Dong, Z.; Feng, Y.; Zhang, X.; Tian, Y. Searching for Potential Ovarian Cancer Biomarkers with Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. Am. J. Biomed. Sci. 2009, 1, 80–90. [Google Scholar] [CrossRef] [PubMed]
- Hanash, S.; Taguchi, A. Application of proteomics to cancer early detection. Cancer J. 2011, 17, 423–428. [Google Scholar] [CrossRef] [Green Version]
- Sarojini, S.; Tamir, A.; Lim, H.; Li, S.; Zhang, S.; Goy, A.; Suh, K.S. Early detection biomarkers for ovarian cancer. J. Oncol. 2012. [Google Scholar] [CrossRef] [Green Version]
- Belczacka, I.; Latosinska, A.; Metzger, J.; Marx, D.; Vlahou, A.; Mischak, H.; Frantzi, M. Proteomics biomarkers for solid tumors: Current status and future prospects. Mass Spectrom. Rev. 2018, 38, 49–78. [Google Scholar] [CrossRef]
- Lee, C.; Im, E.; Moon, P.; Baek, M. Discovery of a diagnostic biomarker for colon cancer through proteomic profiling of small extracellular vesicles. BMC Cancer 2018, 18, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, X.; Jing, Y.; Xu, H. Mining for missed sORF-encoded peptides. Expert Rev. Proteom. 2018, 16, 257–266. [Google Scholar] [CrossRef]
- BLAST: Basic Local Alignment Search Tool. Available online: https://blast.ncbi.nlm.nih.gov/Blast.cgi (accessed on 9 July 2020).
- The European Bioinformatics Institute (EMBL-EBI). Available online: https://www.ebi.ac.uk/ (accessed on 9 July 2020).
- Libbing, C.L.; Versagli, C.A. Catalase mediates the survival of anchorage-independent ovarian cancer cells [abstract]. In Proceedings of the American Association for Cancer Research Annual Meeting 2017, Washington, DC, USA, 1–5 April 2017. [Google Scholar] [CrossRef]
- Rodríguez, R.B.; Martínez-Cordero, E.; Santiago, J. The Relevance of Alpha-1-Acid Glycoprotein in Human Cancer: A Mini-review. Adv. Can. Res. Clin. Imaging 2019, 2. [Google Scholar] [CrossRef]
- Nicolussi, A.; D’Inzeo, S.; Capalbo, C.; Giannini, G.; Coppa, A. The role of peroxiredoxins in cancer. Mol. Clin. Oncol. 2017, 6, 139–153. [Google Scholar] [CrossRef] [Green Version]
- McLemore, M.R.; Miaskowski, C.; Aouizerat, B.E.; Chen, L.M.; Dodd, M.J. Epidemiological and genetic factors associated with ovarian cancer. Cancer Nurs. 2009, 32, 281–288. [Google Scholar] [CrossRef] [PubMed]
- Bankhead, C.R.; Collins, C.; Stokes-Lampard, H.; Rose, P.; Wilson, S.; Clements, A.; Mant, D.; Kehoe, S.T.; Austoker, J. Identifying symptoms of ovarian cancer: A qualitative and quantitative study. BJOG Int. J. Obstet. Gynaecol. 2008, 115, 1008–1014. [Google Scholar] [CrossRef] [PubMed]
- Rosen, D.G.; Yang, G.; Liu, G.; Mercado-Uribe, I.; Chang, B.; Xiao, X.S. Ovarian cancer: pathology, biology, and disease models. Front. Biosci. 2009, 14, 2089–2102. [Google Scholar] [CrossRef] [Green Version]
- Tanvir, I.; Riaz, S.; Hussain, A.; Mehboob, R.; Shams, M.; Khan, H. Hospital-based study of epithelial malignancies of endometrial cancer frequency in Lahore, Pakistan, and common diagnostic pitfalls. Pathol. Res. Int. 2014, 2014, 5. [Google Scholar] [CrossRef]
- Whitwell, H.J.; Worthington, J.; Blyuss, O.; Gentry-Maharaj, A.; Ryan, A.; Gunu, R.; Timms, J.F. Improved early detection of ovarian cancer using longitudinal multimarker models. Br. J. Cancer 2020, 122, 847–856. [Google Scholar] [CrossRef] [Green Version]
- Moore, R.G.; Brown, A.K.; Miller, M.C.; Skates, S.; Allard, W.J.; Verch, T.; Bast, R.C., Jr. The use of multiple novel tumor biomarkers for the detection of ovarian carcinoma in patients with a pelvic mass. Gynecol. Oncol. 2008, 108, 402–408. [Google Scholar] [CrossRef]
- Smith, C.R.; Batruch, J.; Bauça, J.M.; Kosanam, H.; Ridley, J.; Bernardini, M.Q.; Leung, F.; Diamandis, E.P.; Kulasingam, V. Deciphering the peptidome of urine from ovarian cancer patients and healthy controls. Clin. Proteomics 2014, 11, 1–10. [Google Scholar] [CrossRef] [Green Version]
Study Groups: | Age (yrs ± SD) | Presentation | Disease Stage | |||||
---|---|---|---|---|---|---|---|---|
Abdominal | Pelvic | Vaginal | Stage I/II | Stage III/IV | ||||
Discomfort | pain | bleeding | ||||||
Apparently healthy | 46.5 ± 28 | Nil | Nil | Nil | ||||
(n=200) | ||||||||
Study patients | 42.5 ± 23 | >90% | >90% | 1% | 34/112 | 78/112 | ||
(n = 112) | −30.40% | −69.40% | ||||||
Urinary micro-peptides: | +ve | +ve | ||||||
(Patients with urinary peptides = 70) | 10%/25.7% | 24.3%/40% | ||||||
Patients with Urinary peptides and C125 reactivity: | 6/26 (23.2%) | |||||||
Histological Types: | Sero adenocarcinoma | mucinous adenocarcinoma | other types | |||||
91/112(81.2%) | 11/112(9.8%) | 10/122(9.0%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murgan, S.S.; Abd Elaziz, F.J.; Nasr, A.M.A.; Elfaki, M.E.E.; Khalil, E.A.G. Ovarian Cancer: Tumor-Specific Urinary Micro-Peptides Profiling as Potential Biomarkers for Early Diagnosis. Proteomes 2020, 8, 32. https://doi.org/10.3390/proteomes8040032
Murgan SS, Abd Elaziz FJ, Nasr AMA, Elfaki MEE, Khalil EAG. Ovarian Cancer: Tumor-Specific Urinary Micro-Peptides Profiling as Potential Biomarkers for Early Diagnosis. Proteomes. 2020; 8(4):32. https://doi.org/10.3390/proteomes8040032
Chicago/Turabian StyleMurgan, Sulafa S., Faisal J. Abd Elaziz, Abubakr M. A. Nasr, Mona E. E. Elfaki, and Eltahir A. G. Khalil. 2020. "Ovarian Cancer: Tumor-Specific Urinary Micro-Peptides Profiling as Potential Biomarkers for Early Diagnosis" Proteomes 8, no. 4: 32. https://doi.org/10.3390/proteomes8040032