Fractional Synthesis Rates of Individual Proteins in Rat Soleus and Plantaris Muscles
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Blaauw, B.; Schiaffino, S.; Reggiani, C. Mechanisms modulating skeletal muscle phenotype. Compr. Physiol. 2013, 3, 1645–1687. [Google Scholar]
- Pette, D.; Staron, R.S. Myosin isoforms, muscle fiber types, and transitions. Microsc. Res. Tech. 2000, 50, 500–509. [Google Scholar] [CrossRef]
- Okumura, N.; Hashida-Okumura, A.; Kita, K.; Matsubae, M.; Matsubara, T.; Takao, T.; Nagai, K. Proteomic analysis of slow- and fast-twitch skeletal muscles. Proteomics 2005, 5, 2896–2906. [Google Scholar] [CrossRef]
- Drexler, H.C.A.; Ruhs, A.; Konzer, A.; Mendler, L.; Bruckskotten, M.; Looso, M.; Günther, S.; Boettger, T.; Krüger, M.; Braun, T. On marathons and Sprints: An integrated quantitative proteomics and transcriptomics analysis of differences between slow and fast muscle fibers. Mol. Cell. Proteom. MCP 2012, 11, M111.010801. [Google Scholar] [CrossRef] [Green Version]
- Henriksson, J.; Salmons, S.; Lowry, O.H. Chronic stimulation of mammalian muscle: Enzyme and metabolic changes in individual fibres. Biomed. Biochim. Acta 1989, 48, S445–S454. [Google Scholar]
- Sherwin, A.L.; Karpati, G.; Bulcke, J.A. Immunohistochemical localization of creatine phosphokinase in skeletal muscle. Proc. Natl. Acad. Sci. USA 1969, 64, 171–175. [Google Scholar] [CrossRef] [Green Version]
- Rakus, D.; Gizak, A.; Deshmukh, A.; Wiśniewski, J.R. Absolute quantitative profiling of the key metabolic pathways in slow and fast skeletal muscle. J. Proteome Res. 2015, 14, 1400–1411. [Google Scholar] [CrossRef]
- Murgia, M.; Toniolo, L.; Nagaraj, N.; Ciciliot, S.; Vindigni, V.; Schiaffino, S.; Reggiani, C.; Mann, M. Single Muscle Fiber Proteomics Reveals Fiber-Type-Specific Features of Human Muscle Aging. Cell Rep. 2017, 19, 2396–2409. [Google Scholar] [CrossRef] [Green Version]
- Lewis, S.E.; Kelly, F.J.; Goldspink, D.F. Pre- and post-natal growth and protein turnover in smooth muscle, heart and slow- and fast-twitch skeletal muscles of the rat. Biochem. J. 1984, 217, 517–526. [Google Scholar] [CrossRef] [Green Version]
- Burd, N.A.; Tang, J.E.; Moore, D.R.; Phillips, S.M. Exercise training and protein metabolism: Influences of contraction, protein intake, and sex-based differences. J. Appl. Physiol. (1985) 2009, 106, 1692–1701. [Google Scholar] [CrossRef]
- Martin-Perez, M.; Villén, J. Determinants and Regulation of Protein Turnover in Yeast. Cell Syst. 2017, 5, 283–294.e5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kristensen, A.R.; Gsponer, J.; Foster, L.J. Protein synthesis rate is the predominant regulator of protein expression during differentiation. Mol. Syst. Biol. 2013, 9, 689. [Google Scholar] [CrossRef] [PubMed]
- Hammond, D.E.; Claydon, A.J.; Simpson, D.M.; Edward, D.; Stockley, P.; Hurst, J.L.; Beynon, R.J. Proteome Dynamics: Tissue Variation in the Kinetics of Proteostasis in Intact Animals. Mol. Cell. Proteom. MCP 2016, 15, 1204–1219. [Google Scholar] [CrossRef] [Green Version]
- Camera, D.M.; Burniston, J.G.; Pogson, M.A.; Smiles, W.J.; Hawley, J.A. Dynamic proteome profiling of individual proteins in human skeletal muscle after a high-fat diet and resistance exercise. FASEB J. 2017, 31, 5478–5494. [Google Scholar] [CrossRef] [Green Version]
- Balagopal, P.; Nair, K.S.; Stirewalt, W.S. Isolation of myosin heavy chain from small skeletal muscle samples by preparative continuous elution gel electrophoresis: Application to measurement of synthesis rate in human and animal tissue. Anal. Biochem. 1994, 221, 72–77. [Google Scholar] [CrossRef]
- Hasten, D.L.; Morris, G.S.; Ramanadham, S.; Yarasheski, K.E. Isolation of human skeletal muscle myosin heavy chain and actin for measurement of fractional synthesis rates. Am. J. Physiol. 1998, 275, E1092–E1099. [Google Scholar] [CrossRef] [Green Version]
- Doherty, M.K.; Whitehead, C.; McCormack, H.; Gaskell, S.J.; Beynon, R.J. Proteome dynamics in complex organisms: Using stable isotopes to monitor individual protein turnover rates. Proteomics 2005, 5, 522–533. [Google Scholar] [CrossRef]
- Hesketh, S.; Srisawat, K.; Sutherland, H.; Jarvis, J.; Burniston, J. On the rate of synthesis of individual proteins within and between different striated muscles of the rat. Proteomes 2016, 4, 12. [Google Scholar] [CrossRef] [Green Version]
- Srisawat, K.; Hesketh, K.; Cocks, M.; Strauss, J.; Edwards, B.J.; Lisboa, P.J.; Shepherd, S.; Burniston, J.G. Reliability of Protein Abundance and Synthesis Measurements in Human Skeletal Muscle. Proteomics 2019, e1900194. [Google Scholar] [CrossRef]
- Holwerda, A.M.; Bouwman, F.G.; Nabben, M.; Wang, P.; van Kranenburg, J.; Gijsen, A.P.; Burniston, J.G.; Mariman, E.C.M.; van Loon, L.J.C. Endurance-Type Exercise Increases Bulk and Individual Mitochondrial Protein Synthesis Rates in Rats. Int. J. Sport Nutr. Exerc. Metab. 2020, 1–12. [Google Scholar] [CrossRef]
- Burniston, J.G. Investigating Muscle Protein Turnover on a Protein-by-Protein Basis Using Dynamic Proteome Profiling. In Omics Approaches to Understanding Muscle Biology; Springer: Berlin, Germany, 2019; pp. 171–190. [Google Scholar]
- Busch, R.; Kim, Y.K.; Neese, R.A.; Schade-Serin, V.; Collins, M.; Awada, M.; Gardner, J.L.; Beysen, C.; Marino, M.E.; Misell, L.M.; et al. Measurement of protein turnover rates by heavy water labeling of nonessential amino acids. Biochim. Biophys. Acta 2006, 1760, 730–744. [Google Scholar] [CrossRef] [PubMed]
- Xiao, G.G.; Garg, M.; Lim, S.; Wong, D.; Go, V.L.; Lee, W.-N.P. Determination of protein synthesis in vivo using labeling from deuterated water and analysis of MALDI-TOF spectrum. J. Appl. Physiol. (Bethesda Md. 1985) 2008, 104, 828–836. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shankaran, M.; King, C.L.; Angel, T.E.; Holmes, W.E.; Li, K.W.; Colangelo, M.; Price, J.C.; Turner, S.M.; Bell, C.; Hamilton, K.L.; et al. Circulating protein synthesis rates reveal skeletal muscle proteome dynamics. J. Clin. Investig. 2016, 126, 288–302. [Google Scholar] [CrossRef] [PubMed]
- Holmes, W.E.; Angel, T.E.; Li, K.W.; Hellerstein, M.K. Dynamic Proteomics: In Vivo Proteome-Wide Measurement of Protein Kinetics Using Metabolic Labeling. Methods Enzymol. 2015, 561, 219–276. [Google Scholar]
- Wilkinson, D.J.; Brook, M.S.; Smith, K.; Atherton, P.J. Stable isotope tracers and exercise physiology: Past, present and future. J. Physiol. 2017, 595, 2873–2882. [Google Scholar] [CrossRef] [Green Version]
- Murphy, C.H.; Shankaran, M.; Churchward-Venne, T.A.; Mitchell, C.J.; Kolar, N.M.; Burke, L.M.; Hawley, J.A.; Kassis, A.; Karagounis, L.G.; Li, K.; et al. Effect of resistance training and protein intake pattern on myofibrillar protein synthesis and proteome kinetics in older men in energy restriction. J. Physiol. 2018, 596, 2091–2120. [Google Scholar] [CrossRef] [Green Version]
- Scalzo, R.L.; Peltonen, G.L.; Binns, S.E.; Shankaran, M.; Giordano, G.R.; Hartley, D.A.; Klochak, A.L.; Lonac, M.C.; Paris, H.L.; Szallar, S.E.; et al. Greater muscle protein synthesis and mitochondrial biogenesis in males compared with females during sprint interval training. FASEB J. 2014, 28, 2705–2714. [Google Scholar] [CrossRef]
- Jaleel, A.; Short, K.R.; Asmann, Y.W.; Klaus, K.A.; Morse, D.M.; Ford, G.C.; Nair, K.S. In vivo measurement of synthesis rate of individual skeletal muscle mitochondrial proteins. Am. J. Physiol. Endocrinol. Metab. 2008, 295, E1255–E1268. [Google Scholar] [CrossRef]
- Papageorgopoulos, C.; Caldwell, K.; Schweingrubber, H.; Neese, R.A.; Shackleton, C.H.L.; Hellerstein, M. Measuring synthesis rates of muscle creatine kinase and myosin with stable isotopes and mass spectrometry. Anal. Biochem. 2002, 309, 1–10. [Google Scholar] [CrossRef]
- Shankaran, M.; Shearer, T.W.; Stimpson, S.A.; Turner, S.M.; King, C.; Wong, P.-Y.A.; Shen, Y.; Turnbull, P.S.; Kramer, F.; Clifton, L.; et al. Proteome-wide muscle protein fractional synthesis rates predict muscle mass gain in response to a selective androgen receptor modulator in rats. Am. J. Physiol. Endocrinol. Metab. 2016, 310, E405–E417. [Google Scholar] [CrossRef] [Green Version]
- Claydon, A.J.; Thom, M.D.; Hurst, J.L.; Beynon, R.J. Protein turnover: Measurement of proteome dynamics by whole animal metabolic labelling with stable isotope labelled amino acids. Proteomics 2012, 12, 1194–1206. [Google Scholar] [CrossRef] [PubMed]
- Karunadharma, P.P.; Basisty, N.; Chiao, Y.A.; Dai, D.F.; Drake, R.; Levy, N.; Koh, W.J.; Emond, M.J.; Kruse, S.; Marcinek, D.; et al. Respiratory chain protein turnover rates in mice are highly heterogeneous but strikingly conserved across tissues, ages, and treatments. FASEB J. 2015, 29, 3582–3592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kruse, S.E.; Karunadharma, P.P.; Basisty, N.; Johnson, R.; Beyer, R.P.; MacCoss, M.J.; Rabinovitch, P.S.; Marcinek, D.J. Age modifies respiratory complex I and protein homeostasis in a muscle type-specific manner. Aging Cell 2016, 15, 89–99. [Google Scholar] [CrossRef]
- Miller, B.F.; Pharaoh, G.A.; Hamilton, K.L.; Peelor, F.F.; Kirkland, J.L.; Freeman, W.M.; Mann, S.N.; Kinter, M.; Price, J.C.; Stout, M.B. Short-term Calorie Restriction and 17alpha-Estradiol Administration Elicit Divergent Effects on Proteostatic Processes and Protein Content in Metabolically Active Tissues. J. Gerontol. A Biol. Sci. Med. Sci. 2020, 75, 849–857. [Google Scholar] [CrossRef] [PubMed]
- Kabsch, W.; Fritz-Wolf, K. Mitochondrial creatine kinase—A square protein. Curr. Opin. Struct. Biol. 1997, 7, 811–818. [Google Scholar] [CrossRef]
- Gasier, H.G.; Fluckey, J.D.; Previs, S.F. The application of 2H2O to measure skeletal muscle protein synthesis. Nutr. Metab. 2010, 7, 31. [Google Scholar] [CrossRef] [Green Version]
- Kallabis, S.; Abraham, L.; Müller, S.; Dzialas, V.; Türk, C.; Wiederstein, J.L.; Bock, T.; Nolte, H.; Nogara, L.; Blaauw, B. High-throughput proteomics fiber typing (ProFiT) for comprehensive characterization of single skeletal muscle fibers. Skelet. Muscle 2020, 10, 1–18. [Google Scholar] [CrossRef]
- van der Vusse, G.J. Albumin as fatty acid transporter. Drug Metab. Pharm. 2009, 24, 300–307. [Google Scholar] [CrossRef]
- Jeffery, S.; Edwards, Y.; Carter, N. Distribution of CAIII in fetal and adult human tissue. Biochem. Genet. 1980, 18, 843–849. [Google Scholar] [CrossRef]
Acc. | Description | Soleus | Plantaris | p Value | BH |
---|---|---|---|---|---|
ADT1 | ADP/ATP translocase 1 | 2.65 ± 0.075 | 2.83 ± 0.142 | 0.1512 | 0.2403 |
ALBU | Albumin | 5.01 ± 0.62 | 5.21 ± 3.82 | 0.6379 | 0.7385 |
ALDOA | Fructose bisphosphate aldolase α | 2.89 ± 1.106 | 2.49 ± 0.12 | 0.5682 | 0.7232 |
ATPA | ATP synthase α | 2.33 ± 0.378 | 2.77 ± 0.197 | 0.1455 | 0.2264 |
ATPB | ATP synthase β | 2.52 ± 0.257 | 2.98 ± 0.094 | 0.0416 | 0.0832 |
CAH3 | Carbonic anhydrase 3 | 1.71 ± 0.389 | 1.77 ± 0.208 | 0.8376 | 0.9020 |
ENOB | β-enolase | 2.45 ± 0.352 | 1.69 ± 0.053 | 0.0207 | 0.0579 |
G3P | Glyceraldehyde-3-phosphate dehydrogenase | 2.19 ± 0.167 | 1.82 ± 0.082 | 0.0271 | 0.0632 |
HBB1 | Haemoglobin β-1 | 1.49 ± 0.119 | 1.95 ± 0.163 | 0.0166 | 0.0579 |
KAD1 | Adenylate kinase isoenzyme 1 | 1.56 ± 0.66 | 2.46 ± 0.629 | 0.2232 | 0.3153 |
KCRM | Creatine kinase M-type | 2.26 ± 0.372 | 2.09 ± 0.039 | 0.4734 | 0.6628 |
KCRS | Creatine kinase S-type | 2.52 ± 0.375 | 4.99 ± 0.669 | 0.0050 | 0.0349 |
KPYM | Pyruvate Kinase | 1.7 ± 0.246 | 2.61 ± 0.099 | 0.0039 | 0.0349 |
MDHM | Malate dehydrogenase, mitochondrial | 2.31 ± 0.341 | 2.41 ± 0.078 | 0.6253 | 0.7295 |
MYG | Myoglobin | 1.54 ± 0.152 | 2.03 ± 0.077 | 0.0075 | 0.0349 |
MYL3 | Myosin essential light chain, slow/ventricular | 2.26 ± 0.255 | 2.26 ± 0.088 | 0.9670 | 0.9670 |
PGAM2 | Phosphoglycerate mutase 2 | 1.79 ± 0.199 | 2.07 ± 0.146 | 0.1602 | 0.2403 |
PGM1 | Phosphoglucomutase-1 | 1.05 ± 0.051 | 2.4 ± 0.328 | 0.0118 | 0.0531 |
TPIS | Triosephosphate isomerase | 1.88 ± 0.232 | 1.41 ± 0.194 | 0.0535 | 0.0936 |
AATC | Aspartate aminotransferase, cytoplasmic | 2 ± 0.438 | - | - | - |
AATM | Aspartate aminotransferase, mitochondrial | 2.27 ± 0.216 | - | - | - |
ACON | Aconitate hydratase, mitochondrial | 2.08 ± 0.043 | - | - | - |
ACTS | Actin, α skeletal muscle | 1.16 ± 0.123 | - | - | - |
AT2A1 | Sarcoplasmic/endoplasmic reticulum calcium ATPase 1 | - | 3.42 ± 0.271 | - | - |
AT2A2 | Sarcoplasmic/endoplasmic reticulum calcium ATPase 2 | 3.64 ± 0.539 | - | - | - |
CASQ1 | Calsequestrin 1 | - | 0.81 ± 0.068 | - | - |
CO1A1 | Collagen α-1 (I) chain | 0.58 ± 0.16 | - | - | - |
COF1 | Cofilin-1 | 2.86 ± 0.131 | - | - | - |
CRYAB | α-crystallin B chain | 3.6 ± 0.349 | - | - | - |
CS044 | Uncharacterized protein C19orf44 homolog | 1.13 ± 0.196 | - | - | - |
ETFA | Electron transfer flavoprotein subunit alpha, mitochondrial | 2.35 ± 0.345 | - | - | - |
FABPH | Fatty acid-binding protein, heart | 1.96 ± 0.333 | - | - | - |
FHL1 | Four and a half LIM domains protein 1 | 2.78 ± 0.463 | - | - | - |
FLNC | Filamin-C | 3.13 ± 0.411 | - | - | - |
G6PI | Glucose-6-phosphate isomerase | - | 2.32 ± 0.836 | - | - |
H2B1 | Histone H2B type 1-α | - | 0.77 ± 0.099 | - | - |
HBA | Haemoglobin subunit α-1/2 | 1.51 ± 0.095 | - | - | - |
HBB2 | Haemoglobin subunit β-2 | 1.25 ± 0.143 | - | - | - |
HSP7C | Heat shock cognate 71 kDa protein | 2.77 ± 0.659 | - | - | - |
HSPB1 | Heat shock protein β-1 | 3.62 ± 0.38 | - | - | - |
IDHP | Isocitrate dehydrogenase [NADP], mitochondrial | 2.62 ± 0.267 | - | - | - |
LDHA | Lactate dehydrogenase α chain | - | 2.49 ± 0.55 | - | - |
LDHB | Lactate dehydrogenase β chain | 3.12 ± 0.405 | - | - | - |
MDHC | Malate dehydrogenase, cytoplasmic | 2.29 ± 0.385 | - | - | - |
MLRS | Myosin regulatory light chain 2, skeletal muscle | - | 1.65 ± 0.343 | - | - |
MLRV | Myosin regulatory light chain 2, ventricular/cardiac muscle isoform | 1.36 ± 0.3 | - | - | - |
MYH4 | Myosin heavy chain 4 | - | 2.27 ± 0.183 | - | - |
MYH8 | Myosin heavy chain 8 | - | 2.38 ± 0.14 | - | - |
MYL1 | Myosin essential light chain, fast/skeletal muscle | - | 1.64 ± 0.013 | - | - |
NDRG2 | Protein NDRG2 | 5.4 ± 0.588 | - | - | - |
PEBP1 | Phosphatidylethanolamine-binding protein 1 | 2.05 ± 0.036 | - | - | - |
PGK1 | Phosphoglycerate kinase 1 | 1.56 ± 0.314 | - | - | - |
PRVA | Parvalbumin α | 1.31 ± 0.019 | - | - | - |
PYGB | Glycogen phosphorylase, brain form | - | 3.04 ± 0.256 | - | - |
PYGM | Glycogen phosphorylase, muscle form | - | 2.86 ± 0.072 | - | - |
SODC | Superoxide dismutase [Cu-Zn] | 1.83 ± 0.225 | - | - | - |
TNNT3 | Troponin T, fast skeletal muscle | - | 3.24 ± 0.162 | - | - |
TPM1 | Tropomyosin α-1 chain | - | 1.91 ± 0.196 | - | - |
TPM2 | Tropomyosin β chain | - | 1.7 ± 0.071 | - | - |
TRFE | Serotransferrin | 5.11 ± 0.57 | - | - | - |
Citation | Organism: Muscle (n) | Stable Isotope Label (Duration, Route) | Exp Type (Number of Proteins) |
---|---|---|---|
Hasten et al., 1998. [16] | Human: Vastus lateralis (6) | [1-13C]-Leucine (14 h i.v. infusion) | Targeted (2) |
Papageorgopoulos et al., 2002. [30] | Rat: Hindlimb leg and heart (2) | [5,5,5-2H3]-Leucine (24 h i.v. infusion) | Targeted (2) |
Doherty et al., 2005. [17] | Chicken: Pectoralis (3) | [2H8]-valine (5 d in diet) | Omic (8) |
Jaleel et al., 2008. [29] | Rat: Quadriceps (6) | [13C6]-phenylalanine (15 min i.v. bolus) | Omic (91) |
Claydon et al., 2012. [32] | Mice: Heart and hindlimb (2) | [2H8]-valine (12 d in diet) | Omic (56) |
Scalzo et al., 2014. [28] | Human: Vastus lateralis (22) | D2O (28 d drinking water) | Omic (381) |
Karunadharma et al., 2015. [33] | Mouse: Mitochondrial enriched fraction of Heart, Liver, Brain, Soleus and EDL (4) | [5,5,5-2H3]-Leucine (17 d in diet) | Omic (84) |
Hammond et al., 2016. [13] | Bank Vole: Heart, kidney, liver and hindlimb (2) | [13C6]-lysine (1, 5, 12, 25 and 40 d in diet) | Omic (358) |
Shankaran et al., 2016. [24] | Rat: Gastroc (4) Human: Quadriceps (2-11) | D2O (4 d drinking water) D2O (21 d drinking water) | Omic (75) Omic (273) |
Shankaran et al., 2016 [31] | Rat: Triceps, EDL, Soleus. (3-5) | D2O (4, 5 and 8 d drinking water) | Omic (125) |
Hesketh et al., 2016. [18] | Rat: Heart, diaphragm, EDL and soleus (3) | D2O (14 d drinking water) | Omic (8) |
Kruse et al., 2016. [34] | Mouse: Mitochondria enriched fraction of Soleus and EDL (8) | [5,5,5-2H3]-Leucine (28 d in diet) | Omic (745) |
Camera et al., 2017. [14] | Human: Vastus lateralis (8) | D2O (9 d drinking water) | Omic (91) |
Murphy et al., 2018. [27] | Human: Vastus lateralis (10) | D2O (28 d drinking water) | Omic (190) |
Srisawat et al., 2019. [19] | Human: Vastus lateralis (4) | D2O (14 d drinking water) | Omic (54) |
Holwerda et al., 2020. [20] | Rat: Soleus (3) | D2O (21 d drinking water) | Omic (108) |
Miller et al., 2020. [35] | Mouse: Quadriceps, Heart, Liver, White adipose tissue (5-10) | D2O (14 d drinking water) | Omic (31) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stead, C.A.; Hesketh, S.J.; Bennett, S.; Sutherland, H.; Jarvis, J.C.; Lisboa, P.J.; Burniston, J.G. Fractional Synthesis Rates of Individual Proteins in Rat Soleus and Plantaris Muscles. Proteomes 2020, 8, 10. https://doi.org/10.3390/proteomes8020010
Stead CA, Hesketh SJ, Bennett S, Sutherland H, Jarvis JC, Lisboa PJ, Burniston JG. Fractional Synthesis Rates of Individual Proteins in Rat Soleus and Plantaris Muscles. Proteomes. 2020; 8(2):10. https://doi.org/10.3390/proteomes8020010
Chicago/Turabian StyleStead, Connor A., Stuart J. Hesketh, Samuel Bennett, Hazel Sutherland, Jonathan C. Jarvis, Paulo J. Lisboa, and Jatin G. Burniston. 2020. "Fractional Synthesis Rates of Individual Proteins in Rat Soleus and Plantaris Muscles" Proteomes 8, no. 2: 10. https://doi.org/10.3390/proteomes8020010
APA StyleStead, C. A., Hesketh, S. J., Bennett, S., Sutherland, H., Jarvis, J. C., Lisboa, P. J., & Burniston, J. G. (2020). Fractional Synthesis Rates of Individual Proteins in Rat Soleus and Plantaris Muscles. Proteomes, 8(2), 10. https://doi.org/10.3390/proteomes8020010