Terminomics Methodologies and the Completeness of Reductive Dimethylation: A Meta-Analysis of Publicly Available Datasets
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Selection
2.2. Data Search and Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Lenasi, T.; Barboric, M. Mutual relationships between transcription and pre-mRNA processing in the synthesis of mRNA. Wiley Interdiscip. Rev. RNA 2013, 4, 139–154. [Google Scholar] [CrossRef] [PubMed]
- Marshall, N.C.; Finlay, B.B.; Overall, C.M. Sharpening Host Defenses during Infection: Proteases Cut to the Chase. Mol. Cell. Proteom. 2017, 16 (Suppl. 1), S161–S171. [Google Scholar] [CrossRef]
- Hartmann, E.M.; Armengaud, J. N-terminomics and proteogenomics, getting off to a good start. Proteomics 2014, 14, 2637–2646. [Google Scholar] [CrossRef] [PubMed]
- Muller, S.A.; Findeiss, S.; Pernitzsch, S.R.; Wissenbach, D.K.; Stadler, P.F.; Hofacker, I.L.; von Bergen, M.; Kalkhof, S. Identification of new protein coding sequences and signal peptidase cleavage sites of Helicobacter pylori strain 26695 by proteogenomics. J. Proteom. 2013, 86, 27–42. [Google Scholar] [CrossRef] [PubMed]
- Castellana, N.E.; Payne, S.H.; Shen, Z.; Stanke, M.; Bafna, V.; Briggs, S.P. Discovery and revision of Arabidopsis genes by proteogenomics. Proc. Natl. Acad. Sci. USA 2008, 105, 21034–21038. [Google Scholar] [CrossRef] [PubMed]
- Castellana, N.; Bafna, V. Proteogenomics to discover the full coding content of genomes: A computational perspective. J. Proteom. 2010, 73, 2124–2135. [Google Scholar] [CrossRef]
- Boguski, M.S.; McIntosh, M.W. Biomedical informatics for proteomics. Nature 2003, 422, 233–237. [Google Scholar] [CrossRef]
- Johnson, R.S.; Davis, M.T.; Taylor, J.A.; Patterson, S.D. Informatics for protein identification by mass spectrometry. Methods 2005, 35, 223–236. [Google Scholar] [CrossRef]
- Cottrell, J.S. Protein identification using MS/MS data. J. Proteom. 2011, 74, 1842–1851. [Google Scholar] [CrossRef]
- Tacchi, J.L.; Raymond, B.B.; Haynes, P.A.; Berry, I.J.; Widjaja, M.; Bogema, D.R.; Woolley, L.K.; Jenkins, C.; Minion, F.C.; Padula, M.P.; et al. Post-translational processing targets functionally diverse proteins in Mycoplasma hyopneumoniae. Open Biol. 2016, 6, 150210. [Google Scholar] [CrossRef] [PubMed]
- Deutscher, A.T.; Jenkins, C.; Minion, F.C.; Seymour, L.M.; Padula, M.P.; Dixon, N.E.; Walker, M.J.; Djordjevic, S.P. Repeat regions R1 and R2 in the P97 paralogue Mhp271 of Mycoplasma hyopneumoniae bind heparin, fibronectin and porcine cilia. Mol. Microbiol. 2010, 78, 444–458. [Google Scholar] [CrossRef]
- Bogema, D.R.; Scott, N.E.; Padula, M.P.; Tacchi, J.L.; Raymond, B.B.; Jenkins, C.; Cordwell, S.J.; Minion, F.C.; Walker, M.J.; Djordjevic, S.P. Sequence TTKF ↓ QE defines the site of proteolytic cleavage in Mhp683 protein, a novel glycosaminoglycan and cilium adhesin of Mycoplasma hyopneumoniae. J. Biol. Chem. 2011, 286, 41217–41229. [Google Scholar] [CrossRef] [PubMed]
- Deutscher, A.T.; Tacchi, J.L.; Minion, F.C.; Padula, M.P.; Crossett, B.; Bogema, D.R.; Jenkins, C.; Kuit, T.A.; Walker, M.J.; Djordjevic, S.P. Mycoplasma hyopneumoniae Surface proteins Mhp385 and Mhp384 bind host cilia and glycosaminoglycans and are endoproteolytically processed by proteases that recognize different cleavage motifs. J. Proteome Res. 2012, 11, 1924–1936. [Google Scholar] [CrossRef] [PubMed]
- Jarocki, V.M.; Santos, J.; Tacchi, J.L.; Raymond, B.B.; Deutscher, A.T.; Jenkins, C.; Padula, M.P.; Djordjevic, S.P. MHJ_0461 is a multifunctional leucine aminopeptidase on the surface of Mycoplasma hyopneumoniae. Open Biol. 2015, 5, 140175. [Google Scholar] [CrossRef]
- Raymond, B.B.; Jenkins, C.; Seymour, L.M.; Tacchi, J.L.; Widjaja, M.; Jarocki, V.M.; Deutscher, A.T.; Turnbull, L.; Whitchurch, C.B.; Padula, M.P.; et al. Proteolytic processing of the cilium adhesin MHJ_0194 (P123J) in Mycoplasma hyopneumoniae generates a functionally diverse array of cleavage fragments that bind multiple host molecules. Cell. Microbiol. 2015, 17, 425–444. [Google Scholar] [CrossRef] [PubMed]
- Seymour, L.M.; Deutscher, A.T.; Jenkins, C.; Kuit, T.A.; Falconer, L.; Minion, F.C.; Crossett, B.; Padula, M.; Dixon, N.E.; Djordjevic, S.P.; et al. A processed multidomain mycoplasma hyopneumoniae adhesin binds fibronectin, plasminogen, and swine respiratory cilia. J. Biol. Chem. 2010, 285, 33971–33978. [Google Scholar] [CrossRef] [PubMed]
- Seymour, L.M.; Jenkins, C.; Deutscher, A.T.; Raymond, B.B.; Padula, M.P.; Tacchi, J.L.; Bogema, D.R.; Eamens, G.J.; Woolley, L.K.; Dixon, N.E.; et al. Mhp182 (P102) binds fibronectin and contributes to the recruitment of plasmin(ogen) to the Mycoplasma hyopneumoniae cell surface. Cell. Microbiol. 2012, 14, 81–94. [Google Scholar] [CrossRef]
- Robinson, M.W.; Buchtmann, K.A.; Jenkins, C.; Tacchi, J.L.; Raymond, B.B.; To, J.; Roy Chowdhury, P.; Woolley, L.K.; Labbate, M.; Turnbull, L.; et al. MHJ_0125 is an M42 glutamyl aminopeptidase that moonlights as a multifunctional adhesin on the surface of Mycoplasma hyopneumoniae. Open Biol. 2013, 3, 130017. [Google Scholar] [CrossRef] [PubMed]
- Wilton, J.; Jenkins, C.; Cordwell, S.J.; Falconer, L.; Minion, F.C.; Oneal, D.C.; Djordjevic, M.A.; Connolly, A.; Barchia, I.; Walker, M.J.; et al. Mhp493 (P216) is a proteolytically processed, cilium and heparin binding protein of Mycoplasma hyopneumoniae. Mol. Microbiol. 2009, 71, 566–582. [Google Scholar] [CrossRef]
- Djordjevic, S.P.; Cordwell, S.J.; Djordjevic, M.A.; Wilton, J.; Minion, F.C. Proteolytic processing of the Mycoplasma hyopneumoniae cilium adhesin. Infect. Immun. 2004, 72, 2791–2802. [Google Scholar] [CrossRef] [PubMed]
- Jarocki, V.M.; Tacchi, J.L.; Djordjevic, S.P. Non-proteolytic functions of microbial proteases increase pathological complexity. Proteomics 2015, 15, 1075–1088. [Google Scholar] [CrossRef] [PubMed]
- Tacchi, J.L.; Raymond, B.B.; Jarocki, V.M.; Berry, I.J.; Padula, M.P.; Djordjevic, S.P. Cilium adhesin P216 (MHJ_0493) is a target of ectodomain shedding and aminopeptidase activity on the surface of Mycoplasma hyopneumoniae. J. Proteome Res. 2014, 13, 2920–2930. [Google Scholar] [CrossRef] [PubMed]
- Fortelny, N.; Pavlidis, P.; Overall, C.M. The path of no return—Truncated protein N-termini and current ignorance of their genesis. Proteomics 2015, 15, 2547–2552. [Google Scholar] [CrossRef] [PubMed]
- Bastos, P.A.; da Costa, J.P.; Vitorino, R. A glimpse into the modulation of post-translational modifications of human-colonizing bacteria. J. Proteom. 2017, 152, 254–275. [Google Scholar] [CrossRef]
- Cain, J.A.; Solis, N.; Cordwell, S.J. Beyond gene expression: The impact of protein post-translational modifications in bacteria. J. Proteom. 2014, 97, 265–286. [Google Scholar] [CrossRef] [PubMed]
- Han, K.-K.; Belaiche, D.; Moreau, O.; Briand, G. Current developments in stepwise edman degradation of peptides and proteins. Int. J. Biochem. 1985, 17, 429–445. [Google Scholar] [CrossRef]
- Lobas, A.A.; Verenchikov, A.N.; Goloborodko, A.A.; Levitsky, L.I.; Gorshkov, M.V. Combination of Edman degradation of peptides with liquid chromatography/mass spectrometry workflow for peptide identification in bottom-up proteomics. Rapid Commun. Mass Spectrom. 2013, 27, 391–400. [Google Scholar] [CrossRef] [PubMed]
- Edman, P. A method for the determination of amino acid sequence in peptides. Arch. Biochem. 1949, 22, 475. [Google Scholar] [CrossRef] [PubMed]
- Berry, I.J.; Steele, J.R.; Padula, M.P.; Djordjevic, S.P. The application of terminomics for the identification of protein start sites and proteoforms in bacteria. Proteomics 2016, 16, 257–272. [Google Scholar] [CrossRef] [PubMed]
- Lorenzatto, K.R.; Kim, K.; Ntai, I.; Paludo, G.P.; Camargo de Lima, J.; Thomas, P.M.; Kelleher, N.L.; Ferreira, H.B. Top Down Proteomics Reveals Mature Proteoforms Expressed in Subcellular Fractions of the Echinococcus granulosus Preadult Stage. J. Proteome Res. 2015, 14, 4805–4814. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Huang, X.; Kelleher, N.L. Epiproteomics: Quantitative analysis of histone marks and codes by mass spectrometry. Curr. Opin. Chem. Biol. 2016, 33, 142–150. [Google Scholar] [CrossRef]
- Roth, M.J.; Parks, B.A.; Ferguson, J.T.; Boyne, M.T., 2nd; Kelleher, N.L. “Proteotyping”: Population proteomics of human leukocytes using top down mass spectrometry. Anal. Chem. 2008, 80, 2857–2866. [Google Scholar] [CrossRef]
- Kulak, N.A.; Geyer, P.E.; Mann, M. Loss-less nano-fractionator for high sensitivity, high coverage proteomics. Mol. Cell. Proteom. 2017, 16, 694–705. [Google Scholar] [CrossRef]
- Kulak, N.A.; Pichler, G.; Paron, I.; Nagaraj, N.; Mann, M. Minimal, encapsulated proteomic-sample processing applied to copy-number estimation in eukaryotic cells. Nat. Methods 2014, 11, 319–324. [Google Scholar] [CrossRef] [PubMed]
- Meier, F.; Geyer, P.E.; Virreira Winter, S.; Cox, J.; Mann, M. BoxCar acquisition method enables single-shot proteomics at a depth of 10,000 proteins in 100 minutes. Nat. Methods 2018, 15, 440–448. [Google Scholar] [CrossRef] [PubMed]
- Durbin, K.R.; Fornelli, L.; Fellers, R.T.; Doubleday, P.F.; Narita, M.; Kelleher, N.L. Quantitation and Identification of Thousands of Human Proteoforms below 30 kDa. J. Proteome Res. 2016, 15, 976–982. [Google Scholar] [CrossRef] [PubMed]
- Doucet, A.; Overall, C.M. Protease proteomics: Revealing protease in vivo functions using systems biology approaches. Mol. Asp. Med. 2008, 29, 339–358. [Google Scholar] [CrossRef] [PubMed]
- Jagdeo, J.M.; Dufour, A.; Klein, T.; Solis, N.; Kleifeld, O.; Kizhakkedathu, J.; Luo, H.; Overall, C.M.; Jan, E. N-Terminomics TAILS Identifies Host Cell Substrates of Poliovirus and Coxsackievirus B3 3C Proteinases That Modulate Virus Infection. J. Virol. 2018, 92, e02211-17. [Google Scholar] [CrossRef]
- Biniossek, M.L.; Niemer, M.; Maksimchuk, K.; Mayer, B.; Fuchs, J.; Huesgen, P.F.; McCafferty, D.G.; Turk, B.; Fritz, G.; Mayer, J.; et al. Identification of Protease Specificity by Combining Proteome-Derived Peptide Libraries and Quantitative Proteomics. Mol. Cell. Proteom. 2016, 15, 2515–2524. [Google Scholar] [CrossRef]
- Impens, F.; Rolhion, N.; Radoshevich, L.; Becavin, C.; Duval, M.; Mellin, J.; Garcia Del Portillo, F.; Pucciarelli, M.G.; Williams, A.H.; Cossart, P. N-terminomics identifies Prli42 as a membrane miniprotein conserved in Firmicutes and critical for stressosome activation in Listeria monocytogenes. Nat. Microbiol. 2017, 2, 17005. [Google Scholar] [CrossRef]
- Stroh, J.G.; Loulakis, P.; Lanzetti, A.J.; Xie, J. LC-mass spectrometry analysis of N- and C-terminal boundary sequences of polypeptide fragments by limited proteolysis. J. Am. Soc Mass Spectrom. 2005, 16, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Staes, A.; Impens, F.; Van Damme, P.; Ruttens, B.; Goethals, M.; Demol, H.; Timmerman, E.; Vandekerckhove, J.; Gevaert, K. Selecting protein N-terminal peptides by combined fractional diagonal chromatography. Nat. Protoc. 2011, 6, 1130–1141. [Google Scholar] [CrossRef] [PubMed]
- Kleifeld, O.; Doucet, A.; Prudova, A.; auf dem Keller, U.; Gioia, M.; Kizhakkedathu, J.N.; Overall, C.M. Identifying and quantifying proteolytic events and the natural N terminome by terminal amine isotopic labeling of substrates. Nat. Protoc. 2011, 6, 1578–1611. [Google Scholar] [CrossRef] [PubMed]
- Ahram, M.; Springer, D.L. Large-scale proteomic analysis of membrane proteins. Expert Rev. Proteom. 2004, 1, 293–302. [Google Scholar] [CrossRef] [PubMed]
- Yagoub, D.; Tay, A.P.; Chen, Z.; Hamey, J.J.; Cai, C.; Chia, S.Z.; Hart-Smith, G.; Wilkins, M.R. Proteogenomic Discovery of a Small, Novel Protein in Yeast Reveals a Strategy for the Detection of Unannotated Short Open Reading Frames. J. Proteome Res. 2015, 14, 5038–5047. [Google Scholar] [CrossRef] [PubMed]
- Wilhelm, M.; Schlegl, J.; Hahne, H.; Moghaddas Gholami, A.; Lieberenz, M.; Savitski, M.M.; Ziegler, E.; Butzmann, L.; Gessulat, S.; Marx, H.; et al. Mass-spectrometry-based draft of the human proteome. Nature 2014, 509, 582–587. [Google Scholar] [CrossRef] [PubMed]
- Coorssen, J.; Yergey, A. Proteomics Is Analytical Chemistry: Fitness-for-Purpose in the Application of Top-Down and Bottom-Up Analyses. Proteomes 2015, 3, 440. [Google Scholar] [CrossRef]
- Oliveira, B.M.; Coorssen, J.R.; Martins-de-Souza, D. 2DE: The phoenix of proteomics. J. Proteom. 2014, 104, 140–150. [Google Scholar] [CrossRef]
- Lange, P.F.; Overall, C.M. Protein TAILS: When termini tell tales of proteolysis and function. Curr. Opin. Chem. Biol. 2013, 17, 73–82. [Google Scholar] [CrossRef]
- Eckhard, U.; Marino, G.; Butler, G.S.; Overall, C.M. Positional proteomics in the era of the human proteome project on the doorstep of precision medicine. Biochimie 2016, 122, 110–118. [Google Scholar] [CrossRef]
- Gevaert, K.; Vandekerckhove, J. COFRADIC™: The Hubble telescope of proteomics. Drug Discov. Today TARGETS 2004, 3, 16–22. [Google Scholar] [CrossRef]
- Venne, A.S.; Solari, F.A.; Faden, F.; Paretti, T.; Dissmeyer, N.; Zahedi, R.P. An improved workflow for quantitative N-terminal charge-based fractional diagonal chromatography (ChaFRADIC) to study proteolytic events in Arabidopsis thaliana. Proteomics 2015, 15, 2458–2469. [Google Scholar] [CrossRef] [PubMed]
- Lai, Z.W.; Gomez-Auli, A.; Keller, E.; Mayer, B.; Biniossek, M.; Schilling, O. Enrichment of protein N-termini by charge reversal of internal peptides. Proteomics 2015, 15, 2470–2478. [Google Scholar] [CrossRef]
- Thingholm, T.E.; Jørgensen, T.J.D.; Jensen, O.N.; Larsen, M.R. Highly selective enrichment of phosphorylated peptides using titanium dioxide. Nat. Protoc. 2006, 1, 1929–1935. [Google Scholar] [CrossRef] [PubMed]
- Boutilier, J.M.; Warden, H.; Doucette, A.A.; Wentzell, P.D. Chromatographic behaviour of peptides following dimethylation with H2/D2-formaldehyde: Implications for comparative proteomics. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2012, 908, 59–66. [Google Scholar] [CrossRef]
- Mommen, G.P.M.; van de Waterbeemd, B.; Meiring, H.D.; Kersten, G.; Heck, A.J.R.; de Jong, A.P.J.M. Unbiased selective isolation of protein N-terminal peptides from complex proteome samples using phospho tagging (PTAG) and TiO(2)-based depletion. Mol. Cell. Proteom. 2012, 11, 832–842. [Google Scholar] [CrossRef]
- Guryca, V.; Lamerz, J.; Ducret, A.; Cutler, P. Qualitative improvement and quantitative assessment of N-terminomics. Proteomics 2012, 12, 1207–1216. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Roxas, B.A. An assessment of false discovery rates and statistical significance in label-free quantitative proteomics with combined filters. BMC Bioinform. 2009, 10, 43. [Google Scholar] [CrossRef] [PubMed]
- Gupta, N.; Bandeira, N.; Keich, U.; Pevzner, P.A. Target-decoy approach and false discovery rate: When things may go wrong. J. Am. Soc. Mass Spectrom. 2011, 22, 1111–1120. [Google Scholar] [CrossRef]
- Barboza, R.; Cociorva, D.; Xu, T.; Barbosa, V.C.; Perales, J.; Valente, R.H.; França, F.M.G.; Yates, J.R.; Carvalho, P.C. Can the false-discovery rate be misleading? Proteomics 2011, 11, 4105–4108. [Google Scholar] [CrossRef] [PubMed]
- Jentoft, N.; Dearborn, D.G. Labeling of proteins by reductive methylation using sodium cyanoborohydride. J. Biol. Chem. 1979, 254, 4359–4365. [Google Scholar] [PubMed]
- Means, G.E.; Feeney, R.E. Reductive alkylation of amino groups in proteins. Biochemistry 1968, 7, 2192–2201. [Google Scholar] [CrossRef] [PubMed]
- Feeney, R.E.; Blankenhorn, G.; Dixon, H.B. Carbonyl-amine reactions in protein chemistry. Adv. Protein Chem. 1975, 29, 135–203. [Google Scholar] [PubMed]
- Gidley, M.J.; Sanders, J.K. Reductive methylation of proteins with sodium cyanoborohydride. Identification, suppression and possible uses of N-cyanomethyl by-products. Biochem. J. 1982, 203, 331–334. [Google Scholar] [CrossRef] [PubMed]
- Rowland, E.; Kim, J.; Bhuiyan, N.H.; van Wijk, K.J. The Arabidopsis Chloroplast Stromal N-Terminome: Complexities of Amino-Terminal Protein Maturation and Stability. Plant Physiol. 2015, 169, 1881–1896. [Google Scholar] [CrossRef]
- Friedman, M.; Williams, L.D.; Masri, M.S. Reductive alkylation of proteins with aromatic aldehydes and sodium cyanoborohydride. Int. J. Pept. Protein Res. 1974, 6, 183–185. [Google Scholar] [CrossRef]
- Lange, P.F.; Huesgen, P.F.; Overall, C.M. TopFIND 2.0--linking protein termini with proteolytic processing and modifications altering protein function. Nucleic Acids Res. 2012, 40, D351–D361. [Google Scholar] [CrossRef]
- Hsu, J.L.; Huang, S.Y.; Shiea, J.T.; Huang, W.Y.; Chen, S.H. Beyond quantitative proteomics: Signal enhancement of the a1 ion as a mass tag for peptide sequencing using dimethyl labeling. J. Proteome Res. 2005, 4, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Krusemark, C.J.; Ferguson, J.T.; Wenger, C.D.; Kelleher, N.L.; Belshaw, P.J. Global amine and acid functional group modification of proteins. Anal. Chem. 2008, 80, 713–720. [Google Scholar] [CrossRef]
- Boersema, P.J.; Raijmakers, R.; Lemeer, S.; Mohammed, S.; Heck, A.J.R. Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics. Nat. Protoc. 2009, 4, 484–494. [Google Scholar] [CrossRef] [PubMed]
- Jhan, S.Y.; Huang, L.J.; Wang, T.F.; Chou, H.H.; Chen, S.H. Dimethyl Labeling Coupled with Mass Spectrometry for Topographical Characterization of Primary Amines on Monoclonal Antibodies. Anal. Chem. 2017, 89, 4255–4263. [Google Scholar] [CrossRef] [PubMed]
- Boersema, P.J.; Aye, T.T.; van Veen, T.A.; Heck, A.J.; Mohammed, S. Triplex protein quantification based on stable isotope labeling by peptide dimethylation applied to cell and tissue lysates. Proteomics 2008, 8, 4624–4632. [Google Scholar] [CrossRef] [PubMed]
- Roperto, S.; Varano, M.; Russo, V.; Lucà, R.; Cagiola, M.; Gaspari, M.; Ceccarelli, D.M.; Cuda, G.; Roperto, F. Proteomic analysis of protein purified derivative of Mycobacterium bovis. J. Transl. Med. 2017, 15, 68. [Google Scholar] [CrossRef] [PubMed]
- Salih, M.; Demmers, J.A.; Bezstarosti, K.; Leonhard, W.N.; Losekoot, M.; van Kooten, C.; Gansevoort, R.T.; Peters, D.J.; Zietse, R.; Hoorn, E.J.; et al. Proteomics of Urinary Vesicles Links Plakins and Complement to Polycystic Kidney Disease. J. Am. Soc. Nephrol. 2016, 27, 3079–3092. [Google Scholar] [CrossRef] [PubMed]
- Varano, M.; Gaspari, M.; Quirino, A.; Cuda, G.; Liberto, M.C.; Foca, A. Temperature-dependent regulation of the Ochrobactrum anthropi proteome. Proteomics 2016, 16, 3019–3024. [Google Scholar] [CrossRef] [PubMed]
Reference (Year) | Reaction Conditions | Reactant Concentrations | Significant Observations |
---|---|---|---|
Friedman et al. [66] (1974) | 4–16 h (room temperature) Alcohol/lithium acetate buffer pH 5.2 | ~11 mM NaBH3CN ~11 mM aldehyde (various) | Modification of lysine resides ranged from 40–90% using different aldehyde reagents, between protein molecules and different amino acid residues |
Jentoft et al. [61] (1979) | 2–24 h (22 °C) HEPES buffer pH 7.5 | 20 mM NaBH3CN Concentration formaldehyde ~ concentration of lysyl residues in sample | 80–90% dimethyl conversion of lysine residues with a 6 fold excess of formaldehyde Lower concentrations of NaBH3CN (5 mM to 20 mM) yielded in the highest modifications of lysyl residues Maximal rates of labelling observed at pH 8 |
Hsu et al. [68] (2005) | Sodium acetate buffer pH 5–85 min | ~22 mM NaBH3CN ~52 mM formaldehyde | Observation of immonium ion signal with dimethyl labelling |
Krusemark et al. [69] (2008) | 2 h, room temperature 300 mM triethanolamine and 6 mM Guanidine–HCL buffer pH 7.5 20% MeOH 1 mg/mL protein | 30 mM Pyridine-BH3 (reducing agent) 20 mM formaldehyde | 4 model proteins containing various abundance of amine groups, dimethyl labelled to completeness NaBH3CN and NaBH4 found to produce side reactions resulting in reduced purity of products |
Boersema et al. [70] (2009) | 1 h, room temperature 100 mM Triethylamonium bicarbonate buffer pH 5–8.5 | ~22 mM NaBH3CN ~52 mM formaldehyde | (protocol paper) |
Kleifeld et al. [43] (2011) | 4 h—overnight incubation at 37 °C 100 mM HEPES pH 7.0 | 20 mM NaBH3CN 40 mM formaldehyde | (protocol paper) |
Jhan et al. [71] (2017) | 30 s–2h, room temperature 100 mM sodium acetate pH 5–6 | 1.4–85 mM NaBH3CN 156 mM formaldehyde | Accessibility of primary amines on the protein greatly affects dimethylation efficiency At 30 s 80% of amines were dimethylated |
PRIDE Dataset Identifier | FDR PEAKS Generated (%) | Duplicate Peptide Sequences Detected | Duplicate Sequences with Complete Labelling | Complete Labelling (%) | Duplicate Sequences with Partial Labelling | Partial Labelling (%) | Duplicate Sequences with No Dimethyl Label | Unlabeled (%) | Total Partial and Unlabeled Duplicate Sequences | Total Partial and Unlabeled (%) |
---|---|---|---|---|---|---|---|---|---|---|
PXD002785 PXD003833 (125) | 1.7 | 6658 | 5454 | 81.92 | 1161 | 17.44 | 43 | 0.65 | 1204 | 18.08 |
PRD000055 (115) | 0.6 | 5395 | 5062 | 93.83 | 315 | 5.84 | 18 | 0.33 | 333 | 6.17 |
PXD005920 (126) | 1.5 | 3269 | 2847 | 87.09 | 404 | 12.36 | 18 | 0.55 | 422 | 12.91 |
PXD003298 (127) | 1.6 | 3531 | 2893 | 81.93 | 584 | 16.54 | 54 | 1.53 | 638 | 18.07 |
PXD004654 (128) | 3.0 | 6293 | 5498 | 87.37 | 715 | 11.36 | 80 | 1.27 | 795 | 12.63 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hurtado Silva, M.; Berry, I.J.; Strange, N.; Djordjevic, S.P.; Padula, M.P. Terminomics Methodologies and the Completeness of Reductive Dimethylation: A Meta-Analysis of Publicly Available Datasets. Proteomes 2019, 7, 11. https://doi.org/10.3390/proteomes7020011
Hurtado Silva M, Berry IJ, Strange N, Djordjevic SP, Padula MP. Terminomics Methodologies and the Completeness of Reductive Dimethylation: A Meta-Analysis of Publicly Available Datasets. Proteomes. 2019; 7(2):11. https://doi.org/10.3390/proteomes7020011
Chicago/Turabian StyleHurtado Silva, Mariella, Iain J. Berry, Natalie Strange, Steven P. Djordjevic, and Matthew P. Padula. 2019. "Terminomics Methodologies and the Completeness of Reductive Dimethylation: A Meta-Analysis of Publicly Available Datasets" Proteomes 7, no. 2: 11. https://doi.org/10.3390/proteomes7020011
APA StyleHurtado Silva, M., Berry, I. J., Strange, N., Djordjevic, S. P., & Padula, M. P. (2019). Terminomics Methodologies and the Completeness of Reductive Dimethylation: A Meta-Analysis of Publicly Available Datasets. Proteomes, 7(2), 11. https://doi.org/10.3390/proteomes7020011