Terminomics Methodologies and the Completeness of Reductive Dimethylation: A Meta-Analysis of Publicly Available Datasets
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Selection
2.2. Data Search and Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Lenasi, T.; Barboric, M. Mutual relationships between transcription and pre-mRNA processing in the synthesis of mRNA. Wiley Interdiscip. Rev. RNA 2013, 4, 139–154. [Google Scholar] [CrossRef] [PubMed]
- Marshall, N.C.; Finlay, B.B.; Overall, C.M. Sharpening Host Defenses during Infection: Proteases Cut to the Chase. Mol. Cell. Proteom. 2017, 16 (Suppl. 1), S161–S171. [Google Scholar] [CrossRef]
- Hartmann, E.M.; Armengaud, J. N-terminomics and proteogenomics, getting off to a good start. Proteomics 2014, 14, 2637–2646. [Google Scholar] [CrossRef] [PubMed]
- Muller, S.A.; Findeiss, S.; Pernitzsch, S.R.; Wissenbach, D.K.; Stadler, P.F.; Hofacker, I.L.; von Bergen, M.; Kalkhof, S. Identification of new protein coding sequences and signal peptidase cleavage sites of Helicobacter pylori strain 26695 by proteogenomics. J. Proteom. 2013, 86, 27–42. [Google Scholar] [CrossRef] [PubMed]
- Castellana, N.E.; Payne, S.H.; Shen, Z.; Stanke, M.; Bafna, V.; Briggs, S.P. Discovery and revision of Arabidopsis genes by proteogenomics. Proc. Natl. Acad. Sci. USA 2008, 105, 21034–21038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castellana, N.; Bafna, V. Proteogenomics to discover the full coding content of genomes: A computational perspective. J. Proteom. 2010, 73, 2124–2135. [Google Scholar] [CrossRef]
- Boguski, M.S.; McIntosh, M.W. Biomedical informatics for proteomics. Nature 2003, 422, 233–237. [Google Scholar] [CrossRef]
- Johnson, R.S.; Davis, M.T.; Taylor, J.A.; Patterson, S.D. Informatics for protein identification by mass spectrometry. Methods 2005, 35, 223–236. [Google Scholar] [CrossRef]
- Cottrell, J.S. Protein identification using MS/MS data. J. Proteom. 2011, 74, 1842–1851. [Google Scholar] [CrossRef] [Green Version]
- Tacchi, J.L.; Raymond, B.B.; Haynes, P.A.; Berry, I.J.; Widjaja, M.; Bogema, D.R.; Woolley, L.K.; Jenkins, C.; Minion, F.C.; Padula, M.P.; et al. Post-translational processing targets functionally diverse proteins in Mycoplasma hyopneumoniae. Open Biol. 2016, 6, 150210. [Google Scholar] [CrossRef] [PubMed]
- Deutscher, A.T.; Jenkins, C.; Minion, F.C.; Seymour, L.M.; Padula, M.P.; Dixon, N.E.; Walker, M.J.; Djordjevic, S.P. Repeat regions R1 and R2 in the P97 paralogue Mhp271 of Mycoplasma hyopneumoniae bind heparin, fibronectin and porcine cilia. Mol. Microbiol. 2010, 78, 444–458. [Google Scholar] [CrossRef] [Green Version]
- Bogema, D.R.; Scott, N.E.; Padula, M.P.; Tacchi, J.L.; Raymond, B.B.; Jenkins, C.; Cordwell, S.J.; Minion, F.C.; Walker, M.J.; Djordjevic, S.P. Sequence TTKF ↓ QE defines the site of proteolytic cleavage in Mhp683 protein, a novel glycosaminoglycan and cilium adhesin of Mycoplasma hyopneumoniae. J. Biol. Chem. 2011, 286, 41217–41229. [Google Scholar] [CrossRef] [PubMed]
- Deutscher, A.T.; Tacchi, J.L.; Minion, F.C.; Padula, M.P.; Crossett, B.; Bogema, D.R.; Jenkins, C.; Kuit, T.A.; Walker, M.J.; Djordjevic, S.P. Mycoplasma hyopneumoniae Surface proteins Mhp385 and Mhp384 bind host cilia and glycosaminoglycans and are endoproteolytically processed by proteases that recognize different cleavage motifs. J. Proteome Res. 2012, 11, 1924–1936. [Google Scholar] [CrossRef] [PubMed]
- Jarocki, V.M.; Santos, J.; Tacchi, J.L.; Raymond, B.B.; Deutscher, A.T.; Jenkins, C.; Padula, M.P.; Djordjevic, S.P. MHJ_0461 is a multifunctional leucine aminopeptidase on the surface of Mycoplasma hyopneumoniae. Open Biol. 2015, 5, 140175. [Google Scholar] [CrossRef]
- Raymond, B.B.; Jenkins, C.; Seymour, L.M.; Tacchi, J.L.; Widjaja, M.; Jarocki, V.M.; Deutscher, A.T.; Turnbull, L.; Whitchurch, C.B.; Padula, M.P.; et al. Proteolytic processing of the cilium adhesin MHJ_0194 (P123J) in Mycoplasma hyopneumoniae generates a functionally diverse array of cleavage fragments that bind multiple host molecules. Cell. Microbiol. 2015, 17, 425–444. [Google Scholar] [CrossRef] [PubMed]
- Seymour, L.M.; Deutscher, A.T.; Jenkins, C.; Kuit, T.A.; Falconer, L.; Minion, F.C.; Crossett, B.; Padula, M.; Dixon, N.E.; Djordjevic, S.P.; et al. A processed multidomain mycoplasma hyopneumoniae adhesin binds fibronectin, plasminogen, and swine respiratory cilia. J. Biol. Chem. 2010, 285, 33971–33978. [Google Scholar] [CrossRef] [PubMed]
- Seymour, L.M.; Jenkins, C.; Deutscher, A.T.; Raymond, B.B.; Padula, M.P.; Tacchi, J.L.; Bogema, D.R.; Eamens, G.J.; Woolley, L.K.; Dixon, N.E.; et al. Mhp182 (P102) binds fibronectin and contributes to the recruitment of plasmin(ogen) to the Mycoplasma hyopneumoniae cell surface. Cell. Microbiol. 2012, 14, 81–94. [Google Scholar] [CrossRef]
- Robinson, M.W.; Buchtmann, K.A.; Jenkins, C.; Tacchi, J.L.; Raymond, B.B.; To, J.; Roy Chowdhury, P.; Woolley, L.K.; Labbate, M.; Turnbull, L.; et al. MHJ_0125 is an M42 glutamyl aminopeptidase that moonlights as a multifunctional adhesin on the surface of Mycoplasma hyopneumoniae. Open Biol. 2013, 3, 130017. [Google Scholar] [CrossRef] [PubMed]
- Wilton, J.; Jenkins, C.; Cordwell, S.J.; Falconer, L.; Minion, F.C.; Oneal, D.C.; Djordjevic, M.A.; Connolly, A.; Barchia, I.; Walker, M.J.; et al. Mhp493 (P216) is a proteolytically processed, cilium and heparin binding protein of Mycoplasma hyopneumoniae. Mol. Microbiol. 2009, 71, 566–582. [Google Scholar] [CrossRef]
- Djordjevic, S.P.; Cordwell, S.J.; Djordjevic, M.A.; Wilton, J.; Minion, F.C. Proteolytic processing of the Mycoplasma hyopneumoniae cilium adhesin. Infect. Immun. 2004, 72, 2791–2802. [Google Scholar] [CrossRef] [PubMed]
- Jarocki, V.M.; Tacchi, J.L.; Djordjevic, S.P. Non-proteolytic functions of microbial proteases increase pathological complexity. Proteomics 2015, 15, 1075–1088. [Google Scholar] [CrossRef] [PubMed]
- Tacchi, J.L.; Raymond, B.B.; Jarocki, V.M.; Berry, I.J.; Padula, M.P.; Djordjevic, S.P. Cilium adhesin P216 (MHJ_0493) is a target of ectodomain shedding and aminopeptidase activity on the surface of Mycoplasma hyopneumoniae. J. Proteome Res. 2014, 13, 2920–2930. [Google Scholar] [CrossRef] [PubMed]
- Fortelny, N.; Pavlidis, P.; Overall, C.M. The path of no return—Truncated protein N-termini and current ignorance of their genesis. Proteomics 2015, 15, 2547–2552. [Google Scholar] [CrossRef] [PubMed]
- Bastos, P.A.; da Costa, J.P.; Vitorino, R. A glimpse into the modulation of post-translational modifications of human-colonizing bacteria. J. Proteom. 2017, 152, 254–275. [Google Scholar] [CrossRef]
- Cain, J.A.; Solis, N.; Cordwell, S.J. Beyond gene expression: The impact of protein post-translational modifications in bacteria. J. Proteom. 2014, 97, 265–286. [Google Scholar] [CrossRef] [PubMed]
- Han, K.-K.; Belaiche, D.; Moreau, O.; Briand, G. Current developments in stepwise edman degradation of peptides and proteins. Int. J. Biochem. 1985, 17, 429–445. [Google Scholar] [CrossRef]
- Lobas, A.A.; Verenchikov, A.N.; Goloborodko, A.A.; Levitsky, L.I.; Gorshkov, M.V. Combination of Edman degradation of peptides with liquid chromatography/mass spectrometry workflow for peptide identification in bottom-up proteomics. Rapid Commun. Mass Spectrom. 2013, 27, 391–400. [Google Scholar] [CrossRef] [PubMed]
- Edman, P. A method for the determination of amino acid sequence in peptides. Arch. Biochem. 1949, 22, 475. [Google Scholar] [CrossRef] [PubMed]
- Berry, I.J.; Steele, J.R.; Padula, M.P.; Djordjevic, S.P. The application of terminomics for the identification of protein start sites and proteoforms in bacteria. Proteomics 2016, 16, 257–272. [Google Scholar] [CrossRef] [PubMed]
- Lorenzatto, K.R.; Kim, K.; Ntai, I.; Paludo, G.P.; Camargo de Lima, J.; Thomas, P.M.; Kelleher, N.L.; Ferreira, H.B. Top Down Proteomics Reveals Mature Proteoforms Expressed in Subcellular Fractions of the Echinococcus granulosus Preadult Stage. J. Proteome Res. 2015, 14, 4805–4814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, Y.; Huang, X.; Kelleher, N.L. Epiproteomics: Quantitative analysis of histone marks and codes by mass spectrometry. Curr. Opin. Chem. Biol. 2016, 33, 142–150. [Google Scholar] [CrossRef]
- Roth, M.J.; Parks, B.A.; Ferguson, J.T.; Boyne, M.T., 2nd; Kelleher, N.L. “Proteotyping”: Population proteomics of human leukocytes using top down mass spectrometry. Anal. Chem. 2008, 80, 2857–2866. [Google Scholar] [CrossRef]
- Kulak, N.A.; Geyer, P.E.; Mann, M. Loss-less nano-fractionator for high sensitivity, high coverage proteomics. Mol. Cell. Proteom. 2017, 16, 694–705. [Google Scholar] [CrossRef]
- Kulak, N.A.; Pichler, G.; Paron, I.; Nagaraj, N.; Mann, M. Minimal, encapsulated proteomic-sample processing applied to copy-number estimation in eukaryotic cells. Nat. Methods 2014, 11, 319–324. [Google Scholar] [CrossRef] [PubMed]
- Meier, F.; Geyer, P.E.; Virreira Winter, S.; Cox, J.; Mann, M. BoxCar acquisition method enables single-shot proteomics at a depth of 10,000 proteins in 100 minutes. Nat. Methods 2018, 15, 440–448. [Google Scholar] [CrossRef] [PubMed]
- Durbin, K.R.; Fornelli, L.; Fellers, R.T.; Doubleday, P.F.; Narita, M.; Kelleher, N.L. Quantitation and Identification of Thousands of Human Proteoforms below 30 kDa. J. Proteome Res. 2016, 15, 976–982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doucet, A.; Overall, C.M. Protease proteomics: Revealing protease in vivo functions using systems biology approaches. Mol. Asp. Med. 2008, 29, 339–358. [Google Scholar] [CrossRef] [PubMed]
- Jagdeo, J.M.; Dufour, A.; Klein, T.; Solis, N.; Kleifeld, O.; Kizhakkedathu, J.; Luo, H.; Overall, C.M.; Jan, E. N-Terminomics TAILS Identifies Host Cell Substrates of Poliovirus and Coxsackievirus B3 3C Proteinases That Modulate Virus Infection. J. Virol. 2018, 92, e02211-17. [Google Scholar] [CrossRef]
- Biniossek, M.L.; Niemer, M.; Maksimchuk, K.; Mayer, B.; Fuchs, J.; Huesgen, P.F.; McCafferty, D.G.; Turk, B.; Fritz, G.; Mayer, J.; et al. Identification of Protease Specificity by Combining Proteome-Derived Peptide Libraries and Quantitative Proteomics. Mol. Cell. Proteom. 2016, 15, 2515–2524. [Google Scholar] [CrossRef]
- Impens, F.; Rolhion, N.; Radoshevich, L.; Becavin, C.; Duval, M.; Mellin, J.; Garcia Del Portillo, F.; Pucciarelli, M.G.; Williams, A.H.; Cossart, P. N-terminomics identifies Prli42 as a membrane miniprotein conserved in Firmicutes and critical for stressosome activation in Listeria monocytogenes. Nat. Microbiol. 2017, 2, 17005. [Google Scholar] [CrossRef]
- Stroh, J.G.; Loulakis, P.; Lanzetti, A.J.; Xie, J. LC-mass spectrometry analysis of N- and C-terminal boundary sequences of polypeptide fragments by limited proteolysis. J. Am. Soc Mass Spectrom. 2005, 16, 38–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Staes, A.; Impens, F.; Van Damme, P.; Ruttens, B.; Goethals, M.; Demol, H.; Timmerman, E.; Vandekerckhove, J.; Gevaert, K. Selecting protein N-terminal peptides by combined fractional diagonal chromatography. Nat. Protoc. 2011, 6, 1130–1141. [Google Scholar] [CrossRef] [PubMed]
- Kleifeld, O.; Doucet, A.; Prudova, A.; auf dem Keller, U.; Gioia, M.; Kizhakkedathu, J.N.; Overall, C.M. Identifying and quantifying proteolytic events and the natural N terminome by terminal amine isotopic labeling of substrates. Nat. Protoc. 2011, 6, 1578–1611. [Google Scholar] [CrossRef] [PubMed]
- Ahram, M.; Springer, D.L. Large-scale proteomic analysis of membrane proteins. Expert Rev. Proteom. 2004, 1, 293–302. [Google Scholar] [CrossRef] [PubMed]
- Yagoub, D.; Tay, A.P.; Chen, Z.; Hamey, J.J.; Cai, C.; Chia, S.Z.; Hart-Smith, G.; Wilkins, M.R. Proteogenomic Discovery of a Small, Novel Protein in Yeast Reveals a Strategy for the Detection of Unannotated Short Open Reading Frames. J. Proteome Res. 2015, 14, 5038–5047. [Google Scholar] [CrossRef] [PubMed]
- Wilhelm, M.; Schlegl, J.; Hahne, H.; Moghaddas Gholami, A.; Lieberenz, M.; Savitski, M.M.; Ziegler, E.; Butzmann, L.; Gessulat, S.; Marx, H.; et al. Mass-spectrometry-based draft of the human proteome. Nature 2014, 509, 582–587. [Google Scholar] [CrossRef] [PubMed]
- Coorssen, J.; Yergey, A. Proteomics Is Analytical Chemistry: Fitness-for-Purpose in the Application of Top-Down and Bottom-Up Analyses. Proteomes 2015, 3, 440. [Google Scholar] [CrossRef]
- Oliveira, B.M.; Coorssen, J.R.; Martins-de-Souza, D. 2DE: The phoenix of proteomics. J. Proteom. 2014, 104, 140–150. [Google Scholar] [CrossRef]
- Lange, P.F.; Overall, C.M. Protein TAILS: When termini tell tales of proteolysis and function. Curr. Opin. Chem. Biol. 2013, 17, 73–82. [Google Scholar] [CrossRef]
- Eckhard, U.; Marino, G.; Butler, G.S.; Overall, C.M. Positional proteomics in the era of the human proteome project on the doorstep of precision medicine. Biochimie 2016, 122, 110–118. [Google Scholar] [CrossRef] [Green Version]
- Gevaert, K.; Vandekerckhove, J. COFRADIC™: The Hubble telescope of proteomics. Drug Discov. Today TARGETS 2004, 3, 16–22. [Google Scholar] [CrossRef]
- Venne, A.S.; Solari, F.A.; Faden, F.; Paretti, T.; Dissmeyer, N.; Zahedi, R.P. An improved workflow for quantitative N-terminal charge-based fractional diagonal chromatography (ChaFRADIC) to study proteolytic events in Arabidopsis thaliana. Proteomics 2015, 15, 2458–2469. [Google Scholar] [CrossRef] [PubMed]
- Lai, Z.W.; Gomez-Auli, A.; Keller, E.; Mayer, B.; Biniossek, M.; Schilling, O. Enrichment of protein N-termini by charge reversal of internal peptides. Proteomics 2015, 15, 2470–2478. [Google Scholar] [CrossRef]
- Thingholm, T.E.; Jørgensen, T.J.D.; Jensen, O.N.; Larsen, M.R. Highly selective enrichment of phosphorylated peptides using titanium dioxide. Nat. Protoc. 2006, 1, 1929–1935. [Google Scholar] [CrossRef] [PubMed]
- Boutilier, J.M.; Warden, H.; Doucette, A.A.; Wentzell, P.D. Chromatographic behaviour of peptides following dimethylation with H2/D2-formaldehyde: Implications for comparative proteomics. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2012, 908, 59–66. [Google Scholar] [CrossRef]
- Mommen, G.P.M.; van de Waterbeemd, B.; Meiring, H.D.; Kersten, G.; Heck, A.J.R.; de Jong, A.P.J.M. Unbiased selective isolation of protein N-terminal peptides from complex proteome samples using phospho tagging (PTAG) and TiO(2)-based depletion. Mol. Cell. Proteom. 2012, 11, 832–842. [Google Scholar] [CrossRef]
- Guryca, V.; Lamerz, J.; Ducret, A.; Cutler, P. Qualitative improvement and quantitative assessment of N-terminomics. Proteomics 2012, 12, 1207–1216. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Roxas, B.A. An assessment of false discovery rates and statistical significance in label-free quantitative proteomics with combined filters. BMC Bioinform. 2009, 10, 43. [Google Scholar] [CrossRef] [PubMed]
- Gupta, N.; Bandeira, N.; Keich, U.; Pevzner, P.A. Target-decoy approach and false discovery rate: When things may go wrong. J. Am. Soc. Mass Spectrom. 2011, 22, 1111–1120. [Google Scholar] [CrossRef]
- Barboza, R.; Cociorva, D.; Xu, T.; Barbosa, V.C.; Perales, J.; Valente, R.H.; França, F.M.G.; Yates, J.R.; Carvalho, P.C. Can the false-discovery rate be misleading? Proteomics 2011, 11, 4105–4108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jentoft, N.; Dearborn, D.G. Labeling of proteins by reductive methylation using sodium cyanoborohydride. J. Biol. Chem. 1979, 254, 4359–4365. [Google Scholar] [PubMed]
- Means, G.E.; Feeney, R.E. Reductive alkylation of amino groups in proteins. Biochemistry 1968, 7, 2192–2201. [Google Scholar] [CrossRef] [PubMed]
- Feeney, R.E.; Blankenhorn, G.; Dixon, H.B. Carbonyl-amine reactions in protein chemistry. Adv. Protein Chem. 1975, 29, 135–203. [Google Scholar] [PubMed]
- Gidley, M.J.; Sanders, J.K. Reductive methylation of proteins with sodium cyanoborohydride. Identification, suppression and possible uses of N-cyanomethyl by-products. Biochem. J. 1982, 203, 331–334. [Google Scholar] [CrossRef] [PubMed]
- Rowland, E.; Kim, J.; Bhuiyan, N.H.; van Wijk, K.J. The Arabidopsis Chloroplast Stromal N-Terminome: Complexities of Amino-Terminal Protein Maturation and Stability. Plant Physiol. 2015, 169, 1881–1896. [Google Scholar] [CrossRef]
- Friedman, M.; Williams, L.D.; Masri, M.S. Reductive alkylation of proteins with aromatic aldehydes and sodium cyanoborohydride. Int. J. Pept. Protein Res. 1974, 6, 183–185. [Google Scholar] [CrossRef]
- Lange, P.F.; Huesgen, P.F.; Overall, C.M. TopFIND 2.0--linking protein termini with proteolytic processing and modifications altering protein function. Nucleic Acids Res. 2012, 40, D351–D361. [Google Scholar] [CrossRef]
- Hsu, J.L.; Huang, S.Y.; Shiea, J.T.; Huang, W.Y.; Chen, S.H. Beyond quantitative proteomics: Signal enhancement of the a1 ion as a mass tag for peptide sequencing using dimethyl labeling. J. Proteome Res. 2005, 4, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Krusemark, C.J.; Ferguson, J.T.; Wenger, C.D.; Kelleher, N.L.; Belshaw, P.J. Global amine and acid functional group modification of proteins. Anal. Chem. 2008, 80, 713–720. [Google Scholar] [CrossRef]
- Boersema, P.J.; Raijmakers, R.; Lemeer, S.; Mohammed, S.; Heck, A.J.R. Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics. Nat. Protoc. 2009, 4, 484–494. [Google Scholar] [CrossRef] [PubMed]
- Jhan, S.Y.; Huang, L.J.; Wang, T.F.; Chou, H.H.; Chen, S.H. Dimethyl Labeling Coupled with Mass Spectrometry for Topographical Characterization of Primary Amines on Monoclonal Antibodies. Anal. Chem. 2017, 89, 4255–4263. [Google Scholar] [CrossRef] [PubMed]
- Boersema, P.J.; Aye, T.T.; van Veen, T.A.; Heck, A.J.; Mohammed, S. Triplex protein quantification based on stable isotope labeling by peptide dimethylation applied to cell and tissue lysates. Proteomics 2008, 8, 4624–4632. [Google Scholar] [CrossRef] [PubMed]
- Roperto, S.; Varano, M.; Russo, V.; Lucà, R.; Cagiola, M.; Gaspari, M.; Ceccarelli, D.M.; Cuda, G.; Roperto, F. Proteomic analysis of protein purified derivative of Mycobacterium bovis. J. Transl. Med. 2017, 15, 68. [Google Scholar] [CrossRef] [PubMed]
- Salih, M.; Demmers, J.A.; Bezstarosti, K.; Leonhard, W.N.; Losekoot, M.; van Kooten, C.; Gansevoort, R.T.; Peters, D.J.; Zietse, R.; Hoorn, E.J.; et al. Proteomics of Urinary Vesicles Links Plakins and Complement to Polycystic Kidney Disease. J. Am. Soc. Nephrol. 2016, 27, 3079–3092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varano, M.; Gaspari, M.; Quirino, A.; Cuda, G.; Liberto, M.C.; Foca, A. Temperature-dependent regulation of the Ochrobactrum anthropi proteome. Proteomics 2016, 16, 3019–3024. [Google Scholar] [CrossRef] [PubMed]
Reference (Year) | Reaction Conditions | Reactant Concentrations | Significant Observations |
---|---|---|---|
Friedman et al. [66] (1974) | 4–16 h (room temperature) Alcohol/lithium acetate buffer pH 5.2 | ~11 mM NaBH3CN ~11 mM aldehyde (various) | Modification of lysine resides ranged from 40–90% using different aldehyde reagents, between protein molecules and different amino acid residues |
Jentoft et al. [61] (1979) | 2–24 h (22 °C) HEPES buffer pH 7.5 | 20 mM NaBH3CN Concentration formaldehyde ~ concentration of lysyl residues in sample | 80–90% dimethyl conversion of lysine residues with a 6 fold excess of formaldehyde Lower concentrations of NaBH3CN (5 mM to 20 mM) yielded in the highest modifications of lysyl residues Maximal rates of labelling observed at pH 8 |
Hsu et al. [68] (2005) | Sodium acetate buffer pH 5–85 min | ~22 mM NaBH3CN ~52 mM formaldehyde | Observation of immonium ion signal with dimethyl labelling |
Krusemark et al. [69] (2008) | 2 h, room temperature 300 mM triethanolamine and 6 mM Guanidine–HCL buffer pH 7.5 20% MeOH 1 mg/mL protein | 30 mM Pyridine-BH3 (reducing agent) 20 mM formaldehyde | 4 model proteins containing various abundance of amine groups, dimethyl labelled to completeness NaBH3CN and NaBH4 found to produce side reactions resulting in reduced purity of products |
Boersema et al. [70] (2009) | 1 h, room temperature 100 mM Triethylamonium bicarbonate buffer pH 5–8.5 | ~22 mM NaBH3CN ~52 mM formaldehyde | (protocol paper) |
Kleifeld et al. [43] (2011) | 4 h—overnight incubation at 37 °C 100 mM HEPES pH 7.0 | 20 mM NaBH3CN 40 mM formaldehyde | (protocol paper) |
Jhan et al. [71] (2017) | 30 s–2h, room temperature 100 mM sodium acetate pH 5–6 | 1.4–85 mM NaBH3CN 156 mM formaldehyde | Accessibility of primary amines on the protein greatly affects dimethylation efficiency At 30 s 80% of amines were dimethylated |
PRIDE Dataset Identifier | FDR PEAKS Generated (%) | Duplicate Peptide Sequences Detected | Duplicate Sequences with Complete Labelling | Complete Labelling (%) | Duplicate Sequences with Partial Labelling | Partial Labelling (%) | Duplicate Sequences with No Dimethyl Label | Unlabeled (%) | Total Partial and Unlabeled Duplicate Sequences | Total Partial and Unlabeled (%) |
---|---|---|---|---|---|---|---|---|---|---|
PXD002785 PXD003833 (125) | 1.7 | 6658 | 5454 | 81.92 | 1161 | 17.44 | 43 | 0.65 | 1204 | 18.08 |
PRD000055 (115) | 0.6 | 5395 | 5062 | 93.83 | 315 | 5.84 | 18 | 0.33 | 333 | 6.17 |
PXD005920 (126) | 1.5 | 3269 | 2847 | 87.09 | 404 | 12.36 | 18 | 0.55 | 422 | 12.91 |
PXD003298 (127) | 1.6 | 3531 | 2893 | 81.93 | 584 | 16.54 | 54 | 1.53 | 638 | 18.07 |
PXD004654 (128) | 3.0 | 6293 | 5498 | 87.37 | 715 | 11.36 | 80 | 1.27 | 795 | 12.63 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hurtado Silva, M.; Berry, I.J.; Strange, N.; Djordjevic, S.P.; Padula, M.P. Terminomics Methodologies and the Completeness of Reductive Dimethylation: A Meta-Analysis of Publicly Available Datasets. Proteomes 2019, 7, 11. https://doi.org/10.3390/proteomes7020011
Hurtado Silva M, Berry IJ, Strange N, Djordjevic SP, Padula MP. Terminomics Methodologies and the Completeness of Reductive Dimethylation: A Meta-Analysis of Publicly Available Datasets. Proteomes. 2019; 7(2):11. https://doi.org/10.3390/proteomes7020011
Chicago/Turabian StyleHurtado Silva, Mariella, Iain J. Berry, Natalie Strange, Steven P. Djordjevic, and Matthew P. Padula. 2019. "Terminomics Methodologies and the Completeness of Reductive Dimethylation: A Meta-Analysis of Publicly Available Datasets" Proteomes 7, no. 2: 11. https://doi.org/10.3390/proteomes7020011
APA StyleHurtado Silva, M., Berry, I. J., Strange, N., Djordjevic, S. P., & Padula, M. P. (2019). Terminomics Methodologies and the Completeness of Reductive Dimethylation: A Meta-Analysis of Publicly Available Datasets. Proteomes, 7(2), 11. https://doi.org/10.3390/proteomes7020011