Respiratory Proteomics Today: Are Technological Advances for the Identification of Biomarker Signatures Catching up with Their Promise? A Critical Review of the Literature in the Decade 2004–2013
Abstract
:1. Introduction
2. Outline of the Article
3. Proteomics of Lung Cancer
3.1. Cell Cultures
3.2. Serum/Plasma
3.3. Tissues
3.4. Pleural Effusions
3.5. Urine
4. Proteomics of Asthma
4.1. Plasma/Serum
4.2. Induced Sputum
4.3. Exhaled Breath Condensate
4.4. Bronchoalveolar Lavage Fluid
5. Proteomics of Cystic Fibrosis
5.1. Cell Cultures
5.2. Serum
6. Proteomics of Chronic Obstructive Pulmonary Disease
7. Proteomics of Other Respiratory Diseases
7.1. Arterial Hypertension
7.2. Graft Dysfunction
Method | Matrix | Reference |
---|---|---|
Cancer | ||
iTRAQ-2D-LC-MS/MS | A549 human lung carcinoma cell line | [25] |
Isoelectric focusing (IEF); | Human H69 and H69AR small lung cancer cell line | [26] |
1DE; iTRAQ-1D-LC-MS/MS | CL1-0 and CL1-5 lung cancer cell lines | [28] |
iTRAQ-1D-LC-MS/MS | HCC827 and PC9 cell lines | [29] |
1DE; 1D-LC-MS/MS | NSCLC cell lines | [45] |
1D-LC-MS/MS | NSCLC cell lines | [46] |
1DE; 2D-LC-MS/MS | NSCLC cell lines | [52] |
2DE; 2D-LC-MS/MS | NCI-H125 NSCLC cell line | [54] |
2D-LC-MS/MS | QU-DB and Mehr 80 LCC cell lines | [58] |
1D-LC-MS/MS | Human plasma | [60] |
2D-LC-MS/MS | [61,62] | |
2D-LC-MS/MS | Human serum | [61] |
1D-LC-MS/MS | [62,63,64,65,66,68] | |
1DE; 1D-LC-MS/MS | [67] | |
2DE; 1D-LC-MS/MS | Human lung tumor tissues | [70,77] |
1D-LC-MS/MS | [71,72] | |
iTRAQ-1D-LC-MS/MS | [73] | |
2D-LC-MS/MS | [74] | |
iTRAQ-2D-LC-MS/MS | [75] | |
IEF-1D-LC-MS/MS | [76] | |
2D-LC-MS/MS | Lung adenocarcinoma pleural effusions | [78] |
1D-LC-MS/MS | [79] | |
1DE; 1D-LC-MS/MS | Human urine | [80] |
Asthma | ||
iTRAQ-MS/MS; LC-MRM/MS | Human plasma | [81] |
1D-LC-MS/MS | Induced sputum | [82] |
1D-LC-MS/MS | Exhaled breath condensate | [6] |
1DE; 1D-LC-MS/MS | BALf | [88] |
Cystic fibrosis | ||
2DE-MS/MS; 1DE-LC-MS/MS | IB3-1 And IB3-1/S9 cell lines | [89] |
2DE; 1D-LC-MS/MS | Human serum | [90] |
COPD | ||
CapLC-MS/MS | Induced sputum | [3] |
1D-LC-MS/MS | Exhaled breath condensate | [8] |
1D-LC-MS/MS | BALf | [93] |
“Minor” respiratory diseases | ||
1DE; 1D-LC-MS/MS | Human lung tissue | [94] |
Size exclusion chromatography (SEC); 1D-LC-MS/MS | BALf | [95] |
8. Novel Potential Biomarkers Discovered
Proteins | Matrix |
---|---|
Cancer | |
Transglutaminase 2 | A549 human lung carcinoma cell line |
b1 integrin | |
Yes-associated protein 1 (YAP1) | |
Cathepsin D | |
Transforming growth factor β -induced protein ig-h3 (β ig-h3) | |
Periostin | |
Interleukin-8 (IL 8) | |
Insulin-like growth factor-binding protein 3/6 | |
Serca 2 | Human H69 and H69AR small lung cancer cell line |
Plectin | |
Vimentin | |
Fibroblast growth factor-19 (FGF-19) | H358 human non-small cell lung adenocarcinoma cell line |
P53-modulated secreted proteins | |
Retinal dehydrogenase (ALIA1) | CL1-0 and CL1-5 lung cancer cell lines |
Peroxiredoxin-I (PRDX1) | |
Nidogen 1 (NID-1) | |
Collagen alpha-1 (VI) chain (COL6A1) | |
Matrix metalloprotease 1 (MMP-1) | |
Matrix metalloprotease 7 (MMP-7) | |
Metalloprotease inhibitor 1 (TIMP1) | |
Urokinase-type plasminogen activator (uPA) | |
Alpha-1-antitrypsin (AAT) | |
Tyrosine-protein kinase (c-Src) | |
Transcription factor Myc (c-Myc) | |
Signal transducer and activator of transcription protein (STAT) | |
C4b-binding protein (C4BP) | |
Ubiquitin associated and SH3 domain-containing protein B | HCC827 and PC9 cell lines |
NADH dehydrogenase (ubiquinone) | NSCLC cell lines |
1 alpha subcomplex 5 (NDUFA5) | |
Peroxiredoxin 4 (PRDX4) | |
Thymopoietin (TMPO) | |
Epidermal growth factor receptor (EGFR) | |
c-Met | |
Anaplastic lymphoma receptor tyrosine kinase (ALK) | |
Platelet-derived growth factor receptor α (PDGFR-α) | |
Discoidin domain receptor tyrosine kinase 1 (DDR1) | |
Tumor necrosis factor-a-converting enzyme (ADAM-17) | H23, H520, H460 and H1688 cell lines |
Soluble tumor necrosis factor-receptor type I (sTNF RI) | |
Pentraxin 3 | |
Osteoprotegerin | |
Follistatin | |
Stathmin | QU-DB and Mehr 80 LCC cell lines |
Vimentin | |
Epidermal fatty acid-binding protein | |
Interleukin-25 (IL-25) | |
Transgelin-2 | |
Chloride intracellular channel 4 (CLIC4) | |
Stress-induced phosphoprotein I | |
Fragments derived from Fibrinopeptide A | Human serum |
Fragments derived from Apolipoprotein APOA4 | |
Fragment derived from Limbin (LBN) | |
Fragment derived from amiloride-sensitive cation channel 4 (ACCN4) | |
Progastrin—releasing peptide (ProGRP) | |
α2-macroglobulin (α-2M) | |
Serum amyloid A (SAA) | |
Interleukin-1β (IL-1β) | |
Interleukin 6-6 (IL-6) | |
Annexin-I | |
P-glycoprotein 9.5 | |
14-3-3 theta | |
Laminin-receptor-like 1 | |
Cancer antigen 125 (CA-125) | Human lung tissue |
Cell-surface glycoprotein 44 (CD44) | |
Thyroid transcription factor 1 (TTF-1) | |
Surfactant protein A (SP-A) | |
Periostin | |
Multimerin-2 | |
Antigen CD 166 (CD-166) | |
Lysosome-associated membrane glycoprotein-2 (LAMP-2) | |
Glutathione S-transferase P1 | Human lung tissue |
Heat-shock protein beta-1 | |
Creatine kinase brain-type | |
p21 activated kinases | |
Heat-shock protein 47 (HSP 47) | |
Various cytokeratins | |
Mucin 5B (MUC 5B) | |
Clusterin | Human urine |
Kallikrein | |
Gelsolin | |
Leucine-rich α 2-glycoprotein | |
α-1-antichymotrypsin | |
Asthma | |
α-1B-glycoprotein | Human plasma |
Inter-α (globulin) inhibitor H4 isoform 2 precursor | |
Transthyretin | |
Fibronectin 1 | |
Isoform 2 | |
Preprotein (FN1) | |
Alpha-1-antitrypsin (AAT) | Induced sputum |
Secretoglobin family A1 member 1 (SCGB1A1) | |
Complement component 3 (C3) | |
Acute-phase heme binding protein (HPX) | |
Matrix metalloprotease 7 (MMP-7) | BALf |
Matrix metalloprotease 8 (MMP-8) | |
Matrix metalloprotease 9 (MMP-9) | |
Matrix metalloprotease 20 (MMP-20) | |
Long palate lung and nasal epithelium carcinoma-associated protein 1 (LPLUNC1) | |
Cystic fibrosis | |
Keratin 18 | IB3-1 And IB3-1/S9 cell lines |
3-hydroxy-3-methylglutaryl-CoA synthase I | |
Ubiquitin carboxy-terminal hydrolase L1 | |
Translationally controlled tumor protein | |
Guanylate cyclase activator 1C | |
Heat shock protein 27 | |
Apolipoprotein A-I | Human serum |
Apolipoprotein B-100 | |
Vitamin D binding protein | |
Alpha-1-antitrypsin (AAT) | |
Mucin 16 | |
Angiotensinogen | |
Vinculin | |
Aspartyl-tRNA synthetase | |
Alpha-1-antitrypsin (AAT) | Induced sputum |
Antileukoproteinase (SLPI) | |
Palate, lung and nasal epithelium clone (PLUNC) proteins | |
Histone 4 | |
Several cytokines | EBC |
Type I cytokeratin | |
Type II cytokeratin | |
Alpha-1-antitrypsin (AAT) | |
Surfactant protein A (SP-A) isoforms | |
Calgranulin A | |
Calgranulin B | |
Cathepsin B | BALf |
ATP synthase | |
Chaperonin | |
“Minor respiratory diseases” | |
Chloride intracellular channel protein 1 | Human lung tissue |
Chloride intracellular channel protein 4 | |
Periostin | |
Haptoglobin | |
Transcriptional activator protein Pur-alpha | |
Advanced glycosylation end product-specific receptor (RAGE) | |
Annexin A3 | |
Mucins | BALf |
Matrix metalloprotease 9 (MMP-9) | |
Myeloperoxidase |
9. Ten Years of Technological Advances in Respiratory Proteomics
10. Other Techniques for Biomarker Discovery
Method | Advantages | Disadvantages |
---|---|---|
LC-MS |
|
|
CE-MS |
|
|
IACE |
| Apparently not one of the disadvantages indicated for other techniques is observed in this capillary electrophoretic approach. |
11. Concluding Remarks and Future Perspectives
Supplementary Materials
Supplementary File 1Acknowledgments
Authors’ Contribution
Conflicts of Interest
References
- Drake, R.R.; Cazare, L.H.; Semmes, O.J.; Wadsworth, J.T. Serum, salivary and tissue proteomics for discovery of biomarkers for head and neck cancers. Expert Rev. Mol. Diagn. 2005, 5, 93–100. [Google Scholar] [CrossRef]
- Morita, A.; Miyagi, E.; Yasumitsu, H.; Kawasaki, H.; Hirano, H.; Hirahara, F. Proteomic search for potential diagnostic markers and therapeutic targets for ovarian clear cell adenocarcinoma. Proteomics 2006, 6, 5880–5890. [Google Scholar] [CrossRef]
- Casado, B.; Iadarola, P.; Pannell, L.K.; Luisetti, M.; Corsico, A.; Ansaldo, E.; Ferrarotti, I.; Boschetto, P.; Baraniuk, J.N. Protein expression in sputum of smokers and chronic obstructive pulmonary disease patients: A pilot study by CapLC-ESI-Q-TOF. J. Proteome Res. 2007, 6, 4615–4623. [Google Scholar] [CrossRef]
- Zhou, J.Y.; Hanfelt, J.; Peng, J. Clinical proteomics in neurodegenerative diseases. Proteomics Clin. Appl. 2007, 1, 1342–1350. [Google Scholar] [CrossRef]
- Kentsis, A.; Monigatti, F.; Dorff, K.; Campagne, F.; Bachur, R.; Steen, H. Urine proteomics for profiling of human disease using high accuracy mass spectrometry. Proteomics Clin. Appl. 2009, 3, 1052–1061. [Google Scholar] [CrossRef]
- Bloemen, K.; van den Heuvel, R.; Govarts, E.; Hooyberghs, J.; Nelen, V.; Witters, E.; Desager, K.; Schoeters, G. A new approach to study exhaled proteins as potential biomarkers for asthma. Clin. Exp. Allergy 2011, 41, 346–356. [Google Scholar] [CrossRef]
- Whelan, S.A.; He, J.; Lu, M.; Souda, P.; Saxton, R.E.; Faull, K.F.; Whitelegge, J.P.; Chang, H.R. Mass spectrometry (LC-MS/MS) identified proteomic biosignatures of breast cancer in proximal fluid. J. Proteome Res. 2012, 11, 5034–5045. [Google Scholar] [CrossRef]
- Fumagalli, M.; Ferrari, F.; Luisetti, M.; Stolk, J.; Hiemstra, P.S.; Capuano, D.; Viglio, S.; Fregonese, L.; Cerveri, I.; Corana, F.; et al. Profiling the proteome of exhaled breath condensate in healthy smokers and COPD patients by LC-MS/MS. Int. J. Mol. Sci. 2012, 13, 13894–13910. [Google Scholar] [CrossRef]
- Dias, G.S.; Oliveira, J.L.; Vicente, J.; Martin-Sanchez, F. Integrating medical and genomic data: A successful example for rare diseases. Stud. Health Technol. Inform. 2006, 124, 125–130. [Google Scholar]
- Vilasi, A.; Capasso, G. Proteomics and tubulopathies. J. Nephrol. 2010, 23, 221–227. [Google Scholar]
- Qualtieri, A.; Urso, E.; Le Pera, M.; Sprovieri, T.; Bossio, S.; Gambardella, A.; Quattrone, A. Proteomic profiling of cerebrospinal fluid in Creutzfeldt-Jakob disease. Expert Rev. Proteomics 2010, 7, 907–917. [Google Scholar] [CrossRef]
- Caubet, C.; Lacroix, C.; Decramer, S.; Drube, J.; Ehrich, J.H.; Mischak, H.; Bascands, J.L.; Schanstra, J.P. Advances in urinary proteome analysis and biomarker discovery in pediatric renal disease. Pediatr. Nephrol. 2010, 25, 27–35. [Google Scholar] [CrossRef]
- Füvesi, J.; Hanrieder, J.; Bencsik, K.; Rajda, C.; Kovács, S.K.; Kaizer, L.; Beniczky, S.; Vécsei, L; Bergquist, J. Proteomic analysis of cerebrospinal fluid in a fulminant case of multiple sclerosis. Int. J. Mol. Sci. 2012, 13, 7676–7693. [Google Scholar] [CrossRef]
- Rabilloud, T. Two-dimensional gel electrophoresis in proteomics: Old, old fashioned, but it still climbs up the mountains. Proteomics 2002, 2, 3–10. [Google Scholar] [CrossRef]
- Wong, S.C.; Chan, C.M.; Ma, B.B.; Lam, M.Y.; Choi, G.C.; Au, T.C.; Chan, A.S.; Chan, A.T. Advanced proteomic technologies for cancer biomarker discovery. Expert Rev. Proteomics 2009, 6, 123–134. [Google Scholar] [CrossRef]
- Pérès, S.; Molina, L.; Salvetat, N.; Granier, C.; Molina, F. A new method for 2D gel spot alignment: Application to the analysis of large sample sets in clinical proteomics. BMC Bioinform. 2008, 9, e460. [Google Scholar] [CrossRef]
- Rabilloud, T.; Chevallet, M.; Luche, S.; Lelong, C. Two-dimensional gel electrophoresis in proteomics: Past, present and future. J. Proteomics 2010, 73, 2064–2077. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, K.; Kuramitsu, Y.; Murakami, K.; Ryozawa, S.; Taba, K.; Kaino, S.; Zhang, X.; Sakaida, I.; Nakamura, K. Proteomic differential display analysis for TS-1-resistant and -sensitive pancreatic cancer cells using two-dimensional gel electrophoresis and mass spectrometry. Anticancer Res. 2011, 31, 2103–2108. [Google Scholar]
- Hosseinifar, H.; Gourabi, H.; Salekdeh, G.H.; Alikhani, M.; Mirshahvaladi, S.; Sabbaghian, M.; Modarresi, T.; Gilani, M.A. Study of sperm protein profile in men with and without varicocele using two-dimensional gel electrophoresis. Urology 2013, 81, 293–300. [Google Scholar] [CrossRef]
- Von Löhneysen, K.; Scott, T.M.; Soldau, K.; Xu, X.; Friedman, J.S. Assessment of the red cell proteome of young patients with unexplained hemolytic anemia by two-dimensional differential in-gel electrophoresis (DIGE). PLoS One 2012, 7, e34237. [Google Scholar]
- Balch, W.E.; Yates, J.R., 3rd. Application of mass spectrometry to study proteomics and interactomics in cystic fibrosis. Methods Mol. Biol. 2011, 742, 227–247. [Google Scholar] [CrossRef]
- Chen, H.; Wang, D.; Bai, C.; Wang, X. Proteomics-based biomarkers in chronic obstructive pulmonary disease. J. Proteome Res. 2010, 9, 2798–2808. [Google Scholar] [CrossRef]
- Crameri, R. The potential of proteomics and peptidomics for allergy and asthma research. Allergy 2005, 60, 1227–1237. [Google Scholar] [CrossRef]
- Hirsch, J.; Hansen, K.C.; Burlingame, A.L.; Matthay, M.A. Proteomics: Current techniques and potential applications to lung disease. Am. J. Physiol. Lung Cell. Mol. Physiol. 2004, 287, L1–L23. [Google Scholar] [CrossRef]
- Keshamouni, V.G.; Michailidis, G.; Grasso, C.S.; Anthwal, S.; Strahler, J.R.; Walker, A.; Arenberg, D.A.; Reddy, R.C.; Akulapalli, S.; Thannickal, V.J.; et al. Differential protein expression profiling by iTRAQ-2DLC-MS/MS of lung cancer cells undergoing epithelial-mesenchymal transition reveals a migratory/invasive phenotype. J. Proteome Res. 2006, 5, 1143–1154. [Google Scholar] [CrossRef]
- Eriksson, H.; Lengqvist, J.; Hedlund, J.; Uhlén, K.; Orre, L.M.; Bjellqvist, B.; Persson, B.; Lehtiö, J.; Jakobsson, P.J. Quantitative membrane proteomics applying narrow range peptide isoelectric focusing for studies of small cell lung cancer resistance mechanisms. Proteomics 2008, 8, 3008–3018. [Google Scholar] [CrossRef]
- Chenau, J.; Michelland, S.; de Fraipont, F.; Josserand, V.; Coll, J.L.; Favrot, M.C.; Seve, M. The cell line secretome, a suitable tool for investigating proteins released in vivo by tumors: Application to the study of p53-modulated proteins secreted in lung cancer cells. J. Proteome Res. 2009, 8, 4579–4591. [Google Scholar] [CrossRef]
- Chiu, K.H.; Chang, Y.H.; Wu, Y.S.; Lee, S.H.; Liao, P.C. Quantitative secretome analysis reveals that COL6A1 is a metastasis-associated protein using stacking gel-aided purification combined with iTRAQ labeling. J. Proteome Res. 2011, 10, 1110–1125. [Google Scholar] [CrossRef]
- Haura, E.B.; Müller, A.; Breitwieser, F.P.; Li, J.; Grebien, F.; Colinge, J.; Bennett, K.L. Using iTRAQ combined with tandem affinity purification to enhance low-abundance proteins associated with somatically mutated EGFR core complexes in lung cancer. J. Proteome Res. 2011, 10, 182–190. [Google Scholar] [CrossRef]
- Thompson, A.; Schäfer, J.; Kuhn, K.; Kienle, S.; Schwarz, J.; Schmidt, G.; Neumann, T.; Johnstone, R.; Mohammed, A.K.; Hamon, C. Tandem mass tags: A novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal. Chem. 2003, 75, 1895–1904. [Google Scholar] [CrossRef]
- Wiese, S.; Reidegeld, K.A.; Meyer, H.E.; Warscheid, B. Protein labeling by iTRAQ: A new tool for quantitative mass spectrometry in proteome research. Proteomics 2007, 7, 340–350. [Google Scholar] [CrossRef]
- Kojima, S.; Nara, K.; Rifkin, D.B. Requirement for transglutaminase in the activation of latent transforming growth factor-beta in bovine endothelial cells. J. Cell Biol. 1993, 121, 439–448. [Google Scholar] [CrossRef]
- Rosenthal, A.K.; Gohr, C.M.; Henry, L.A.; Le, M. Participation of transglutaminase in the activation of latent transforming growth factor beta1 in aging articular cartilage. Arthritis Rheum. 2000, 43, 1729–1733. [Google Scholar] [CrossRef]
- Takenaka, K.; Shibuya, M.; Takeda, Y.; Hibino, S.; Gemma, A.; Ono, Y.; Kudoh, S. Altered expression and function of beta1 integrins in a highly metastatic human lung adenocarcinoma cell line. Int. J. Oncol. 2000, 17, 1187–1194. [Google Scholar]
- Arboleda, M.J.; Lyons, J.F.; Kabbinavar, F.F.; Bray, M.R.; Snow, B.E.; Ayala, R.; Danino, M.; Karlan, B.Y.; Slamon, D.J. Overexpression of AKT2/protein kinase Bbeta leads to up-regulation of beta1 integrins, increased invasion, and metastasis of human breast and ovarian cancer cells. Cancer Res. 2003, 63, 196–206. [Google Scholar]
- Bhowmick, N.A.; Zent, R.; Ghiassi, M.; McDonnell, M.; Moses, H.L. Integrin beta 1 signaling is necessary for transforming growth factor-beta activation of p38MAPK and epithelial plasticity. J. Biol. Chem. 2001, 276, 46707–46713. [Google Scholar]
- Pinton, P.; Ferrari, D.; Rapizzi, E.; di Virgilio, F.; Pozzan, T.; Rizzuto, R. The Ca2+ concentration of the endoplasmic reticulum is a key determinant of ceramide-induced apoptosis: Significance for the molecular mechanism of Bcl-2 action. EMBO J. 2001, 20, 2690–2701. [Google Scholar] [CrossRef]
- Takahashi, T.; Carbone, D.; Takahashi, T.; Nau, M.M.; Hida, T.; Linnoila, I.; Ueda, R.; Minna, J.D. Wild-type but not mutant p53 suppresses the growth of human lung cancer cells bearing multiple genetic lesions. Cancer Res. 1992, 52, 2340–2343. [Google Scholar]
- Lin, B.C.; Desnoyers, L.R. FGF19 and cancer. Adv. Exp. Med. Biol. 2012, 728, 183–194. [Google Scholar] [CrossRef]
- Gouyer, V.; Conti, M.; Devos, P.; Zerimech, F.; Copin, M.C.; Créme, E.; Wurtz, A.; Porte, H.; Huet, G. Tissue inhibitor of metalloproteinase 1 is an independent predictor of prognosis in patients with nonsmall cell lung carcinoma who undergo resection with curative intent. Cancer 2005, 103, 1676–1684. [Google Scholar] [CrossRef]
- Hundsdorfer, B.; Zeilhofer, H.F.; Bock, K.P.; Dettmar, P.; Schmitt, M.; Kolk, A.; Pautke, C.; Horch, H.H. Tumour-associated urokinase-type plasminogen activator (uPA) and its inhibitor PAI-1 in normal and neoplastic tissues of patients with squamous cell cancer of the oral cavity-clinical relevance and prognostic value. J. Craniomaxillofac. Surg. 2005, 33, 191–196. [Google Scholar] [CrossRef]
- El-Akawi, Z.J.; Al-Hindawi, F.K.; Bashir, N.A. Alpha-1 antitrypsin (alpha1-AT) plasma levels in lung, prostate and breast cancer patients. Neuro Endocrinol. Lett. 2008, 29, 482–484. [Google Scholar]
- El-Akawi, Z.J.; Abu-Awad, A.M.; Sharara, A.M.; Khader, Y. The importance of alpha-1 antitrypsin (alpha1-AT) and neopterin serum levels in the evaluation of non-small cell lung and prostate cancer patients. Neuro Endocrinol. Lett. 2010, 31, 113–116. [Google Scholar]
- Lampe, A.K.; Bushby, K.M. Collagen VI related muscle disorders. J. Med. Genet. 2005, 42, 673–685. [Google Scholar] [CrossRef]
- Zhang, G.; Fang, B.; Liu, R.Z.; Lin, H.; Kinose, F.; Bai, Y.; Oguz, U.; Remily-Wood, E.R.; Li, J.; Altiok, S.; et al. Mass spectrometry mapping of epidermal growth factor receptor phosphorylation related to oncogenic mutations and tyrosine kinase inhibitor sensitivity. J. Proteome Res. 2011, 10, 305–319. [Google Scholar] [CrossRef]
- Rikova, K.; Guo, A.; Zeng, Q.; Possemato, A.; Yu, J.; Haack, H.; Nardone, J.; Lee, K.; Reeves, C.; Li, Y.; et al. Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell 2007, 131, 1190–1203. [Google Scholar] [CrossRef]
- Wu, H.Y.; Tseng, V.S.; Chen, L.C.; Chang, H.Y.; Chuang, I.C.; Tsay, Y.G.; Liao, P.C. Identification of tyrosine-phosphorylated proteins associated with lung cancer metastasis using label-free quantitative analyses. J. Proteome Res. 2010, 9, 4102–4112. [Google Scholar] [CrossRef]
- Yu, G.; Xiao, C.L.; Lu, C.H.; Jia, H.T.; Ge, F.; Wang, W.; Yin, X.F.; Jia, H.L.; He, J.X.; He, Q.Y. Phosphoproteome profile of human lung cancer cell line A549. Mol. Biosyst. 2011, 7, 472–479. [Google Scholar] [CrossRef]
- Luo, X.; Liu, Y.; Wang, R.; Hu, H.; Zeng, R.; Chen, H. A high-quality secretome of A549 cells aided the discovery of C4b-binding protein as a novel serum biomarker for non-small cell lung cancer. J. Proteomics 2011, 74, 528–538. [Google Scholar] [CrossRef]
- Sitek, B.; Waldera-Lupa, D.M.; Poschmann, G.; Meyer, H.E.; Stühler, K. Application of label-free proteomics for differential analysis of lung carcinoma cell line A549. Methods Mol. Biol. 2012, 893, 241–248. [Google Scholar] [CrossRef]
- Lou, X.; Xiao, T.; Zhao, K.; Wang, H.; Zheng, H.; Lin, D.; Lu, Y.; Gao, Y.; Cheng, S.; Liu, S.; et al. Cathepsin D is secreted from M-BE cells: Its potential role as a biomarker of lung cancer. J. Proteome Res. 2007, 6, 1083–1092. [Google Scholar] [CrossRef]
- Park, H.J.; Kim, B.G.; Lee, S.J.; Heo, S.H.; Kim, J.Y.; Kwon, T.H.; Lee, E.B.; Ryoo, H.M.; Cho, J.Y. Proteomic profiling of endothelial cells in human lung cancer. J. Proteome Res. 2008, 7, 1138–1150. [Google Scholar] [CrossRef]
- Schmid, M.C.; Bisoffi, M.; Wetterwald, A.; Gautschi, E.; Thalmann, G.N.; Mitola, S.; Bussolino, F.; Cecchini, M.G. Insulin-like growth factor binding protein-3 is overexpressed in endothelial cells of mouse breast tumor vessels. Int. J. Cancer 2003, 103, 577–586. [Google Scholar] [CrossRef]
- Rodríguez-Ulloa, A.; Ramos, Y.; Gil, J.; Perera, Y.; Castellanos-Serra, L.; García, Y.; Betancourt, L.; Besada, V.; González, L.J.; Fernández-de-Cossio, J.; et al. Proteomic profile regulated by the anticancer peptide CIGB-300 in non-small cell lung cancer (NSCLC) cells. J. Proteome Res. 2010, 9, 5473–5483. [Google Scholar] [CrossRef]
- Laramas, M.; Pasquier, D.; Filhol, O.; Ringeisen, F.; Descotes, J.L.; Cochet, C. Nuclear localization of protein kinase CK2 catalytic subunit (CK2alpha) is associated with poor prognostic factors in human prostate cancer. Eur. J. Cancer 2007, 43, 928–934. [Google Scholar] [CrossRef]
- Kim, J.S.; Eom, J.I.; Cheong, J.W.; Choi, A.J.; Lee, J.K.; Yang, W.I.; Min, Y.H. Protein kinase CK2alpha as an unfavorable prognostic marker and novel therapeutic target in acute myeloid leukemia. Clin. Cancer Res. 2007, 13, 1019–1028. [Google Scholar] [CrossRef]
- Planque, C.; Kulasingam, V.; Smith, C.R.; Reckamp, K.; Goodglick, L.; Diamandis, E.P. Identification of five candidate lung cancer biomarkers by proteomics analysis of conditioned media of four lung cancer cell lines. Mol. Cell. Proteomics 2009, 8, 2746–2758. [Google Scholar] [CrossRef]
- Yousefi, Z.; Sarvari, J.; Nakamura, K.; Kuramitsu, Y.; Ghaderi, A.; Mojtahedi, Z. Secretomic analysis of large cell lung cancer cell lines using two-dimensional gel electrophoresis coupled to mass spectrometry. Folia Histochem. Cytobiol. 2012, 50, 368–374. [Google Scholar] [CrossRef]
- Shin, H.S.; Kim, J.; Heo, S.C.; Kwon, Y.W.; Kim, Y.M.; Kim, I.S.; Lee, T.G.; Kim, J.H. Proteomic identification of betaig-h3 as a lysophosphatidic acid-induced secreted protein of human mesenchymal stem cells: Paracrine activation of A549 lung adenocarcinoma cells by betaig-h3. Mol. Cell. Proteomics 2012, 11. [Google Scholar] [CrossRef]
- Fujii, K.; Nakano, T.; Kanazawa, M.; Akimoto, S.; Hirano, T.; Kato, H.; Nishimura, T. Clinical-scale high-throughput human plasma proteome analysis: Lung adenocarcinoma. Proteomics 2005, 5, 1150–1159. [Google Scholar] [CrossRef]
- Faca, V.; Pitteri, S.J.; Newcomb, L.; Glukhova, V.; Phanstiel, D.; Krasnoselsky, A.; Zhang, Q.; Struthers, J.; Wang, H.; Eng, J.; et al. Contribution of protein fractionation to depth of analysis of the serum and plasma proteomes. J. Proteome Res. 2007, 6, 3558–3565. [Google Scholar] [CrossRef]
- Zeng, X.; Hood, B.L.; Sun, M.; Conrads, T.P.; Day, R.S.; Weissfeld, J.L.; Siegfried, J.M.; Bigbee, W.L. Lung cancer serum biomarker discovery using glycoprotein capture and liquid chromatography mass spectrometry. J. Proteome Res. 2010, 9, 6440–6449. [Google Scholar] [CrossRef]
- Zeng, X.; Hood, B.L.; Zhao, T.; Conrads, T.P.; Sun, M.; Gopalakrishnan, V.; Grover, H.; Day, R.S.; Weissfeld, J.L.; Wilson, D.O.; et al. Lung cancer serum biomarker discovery using label-free liquid chromatography-tandem mass spectrometry. J. Thorac. Oncol. 2011, 6, 725–734. [Google Scholar] [CrossRef]
- Ueda, K.; Saichi, N.; Takami, S.; Kang, D.; Toyama, A.; Daigo, Y.; Ishikawa, N.; Kohno, N.; Tamura, K.; Shuin, T.; et al. A comprehensive peptidome profiling technology for the identification of early detection biomarkers for lung adenocarcinoma. PLoS One 2011, 6, e18567. [Google Scholar] [CrossRef]
- Torsetnes, S.B.; Nordlund, M.S.; Paus, E.; Halvorsen, T.G.; Reubsaet, L. Digging deeper into the field of the small cell lung cancer tumor marker ProGRP: A method for differentiation of its isoforms. J. Proteome Res. 2013, 12, 412–420. [Google Scholar] [CrossRef]
- Oh, J.H.; Craft, J.M.; Townsend, R.; Deasy, J.O.; Bradley, J.D.; El Naqa, I. A bioinformatics approach for biomarker identification in radiation-induced lung inflammation from limited proteomics data. J. Proteome Res. 2011, 10, 1406–1415. [Google Scholar] [CrossRef]
- Sung, H.J.; Ahn, J.M.; Yoon, Y.H.; Rhim, T.Y.; Park, C.S.; Park, J.Y.; Lee, S.Y.; Kim, J.W.; Cho, J.Y. Identification and validation of SAA as a potential lung cancer biomarker and its involvement in metastatic pathogenesis of lung cancer. J. Proteome Res. 2011, 10, 1383–1395. [Google Scholar] [CrossRef]
- Qin, J.; Choi, G.; Li, L.; Wang, H.; Pitteri, S.J.; Pereira-Faca, S.R.; Krasnoselsky, A.L.; Randolph, T.W.; Omenn, G.S.; Edelstein, C.; et al. Occurrence of autoantibodies to AnnexinI, 14-3-3 Theta and LAMR1 in prediagnostic lung cancer sera. J. Clin. Oncol. 2008, 26, 5060–5066. [Google Scholar] [CrossRef]
- Yildiz, P.B.; Shyr, Y.; Rahman, J.S.M.; Wardwell, N.R.; Zimmerman, L.J.; Shakthour, B.; Gray, W.H.; Chen, S.; Li, M.; Roder, H.; et al. Diagnostic accuracy of MALDI mass spectrometric analysis of unfractionated serum in lung cancer. J. Thorac. Oncol. 2007, 2, 893–901. [Google Scholar] [CrossRef]
- Marko-Varga, G.; Lindberg, H.; Löfdahl, C.G.; Jönsson, P.; Hansson, L.; Dahlbäck, M.; Lindquist, E.; Johansson, L.; Foster, M.; Fehniger, T.E. Discovery of biomarker candidates within disease by protein profiling: Principles and concepts. J. Proteome Res. 2005, 4, 1200–1212. [Google Scholar] [CrossRef]
- Kawamura, T.; Nomura, M.; Tojo, H.; Fujii, K.; Hamasaki, H.; Mikami, S.; Bando, Y.; Kato, H.; Nishimura, T. Proteomic analysis of laser-microdissected paraffin-embedded tissues: (1) Stage-related protein candidates upon non-metastatic lung adenocarcinoma. J. Proteomics 2010, 73, 1089–1099. [Google Scholar] [CrossRef]
- Nishimura, T.; Nomura, M.; Tojo, H.; Hamasaki, H.; Fukuda, T.; Fujii, K.; Mikami, S.; Bando, Y.; Kato, H. Proteomic analysis of laser-microdissected paraffin-embedded tissues: (2) MRM assay for stage-related proteins upon non-metastatic lung adenocarcinoma. J. Proteomics 2010, 73, 1100–1110. [Google Scholar] [CrossRef]
- Li, Y.; Wang, X.; Ao, M.; Gabrielson, E.; Askin, F.; Zhang, H.; Li, Q.K. Aberrant mucin5B expression in lung adenocarcinomas detected by iTRAQ labeling quantitative proteomics and immunohistochemistry. Clin. Proteomics 2013, 10, 15–24. [Google Scholar] [CrossRef]
- Wei, Y.; Tong, J.; Taylor, P.; Strumpf, D.; Ignatchenko, V.; Pham, N.A.; Yanagawa, N.; Liu, G.; Jurisica, I.; Shepherd, F.A.; et al. Primary tumor xenografts of human lung adeno and squamous cell carcinoma express distinct proteomic signatures. J. Proteome Res. 2011, 10, 161–174. [Google Scholar] [CrossRef]
- Zeng, G.Q.; Zhang, P.F.; Deng, X.; Yu, F.L.; Li, C.; Xu, Y.; Yi, H.; Li, M.Y.; Hu, R.; Zuo, J.H.; et al. Identification of candidate biomarkers for early detection of human lung squamous cell cancer by quantitative proteomics. Mol. Cell. Proteomics 2012, 11. [Google Scholar] [CrossRef]
- Kikuchi, T.; Hassanein, M.; Amann, J.M.; Liu, Q.; Slebos, R.J.C.; Rahman, S.M.J.; Kaufman, J.M.; Zhang, X.; Hoeksema, M.D.; Harris, B.K.; et al. In-depth proteomic analisys of nonsmall cell lung cancer to discover molecular targets and candidate biomarkers. Mol. Cell. Proteomics 2012, 11, 916–932. [Google Scholar] [CrossRef]
- Poschmann, G.; Sitek, B.; Sipos, B.; Ulrich, A.; Wiese, S.; Stephan, C.; Warscheid, B.; Kloppel, G.; Vander Borght, A.; Ramaekers, F.C.S.; Meyer, H.E.; Sthuler, K. Identification of proteomic differences between squamous cell carcinoma of the lung and bronchial epithelium. Mol. Cell. Proteomics 2009, 8, 1105–1116. [Google Scholar] [CrossRef]
- Tyan, Y.C.; Wu, H.Y.; Lai, W.W.; Su, W.C.; Liao, P.C. Proteomic profiling of human pleural effusion using two-dimensional nano liquid chromatography tandem mass spectrometry. J. Proteome Res. 2005, 4, 1274–1286. [Google Scholar] [CrossRef]
- Soltermann, A.; Ossola, R.; Kilgus-Hawelski, S.; von Eckardstein, A.; Suter, T.; Aebersold, R.; Moch, H. N-glycoprotein profiling of lung adenocarcinoma pleural effusions by shotgun proteomics. Cancer 2008, 114, 124–133. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Qiu, F.; Qiu, Z. Comparative analysis of the human urinary proteome by 1D SDS-PAGE and chip-HPLC-MS/MS identification of the AACT putative urinary biomarker. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2010, 878, 3395–3401. [Google Scholar] [CrossRef]
- Singh, A.; Cohen Freue, G.V.; Oosthuizen, J.L.; Kam, S.H.; Ruan, J.; Takhar, M.K.; Gauvreau, G.M.; O’Byrne, P.M.; Fitzgerald, J.M.; Boulet, L.P.; et al. Plasma proteomics can discriminate isolated early from dual responses in asthmatic individuals undergoing an allergen inhalation challenge. Proteomics Clin. Appl. 2012, 6, 476–485. [Google Scholar] [CrossRef]
- Gharib, S.A.; Nguyen, E.V.; Lai, Y.; Plampin, J.D.; Goodlett, D.R.; Hallstrand, T.S. Induced sputum proteome in healthy subjects and asthmatic patients. J. Allergy Clin. Immunol. 2011, 128, 1176–1184. [Google Scholar] [CrossRef]
- Eberini, I.; Gianazza, E.; Pastorino, U.; Sirtori, C.R. Assessment of individual lung cancer risk by the proteomic analusis of exhaled breath condensate. Expert Opin. Med. Diagn. 2008, 2, 1309–1315. [Google Scholar] [CrossRef]
- Kurova, V.S.; Anaev, E.C.; Kononikhin, A.S.; Fedorchenko, K.Y.; Popov, I.A.; Kalupov, T.L.; Beratanov, D.O.; Nikolaev, E.N.; Varfolomeev, S.D. Proteomic of exhaled breath: Methodological nuances and pitfalls. Clin. Chem. Lab. Med. 2009, 47, 706–712. [Google Scholar]
- Bloemen, K.; Hooyberghs, J.; Desager, K.; Witters, E.; Schoeters, G. Non-invasive biomarker sampling and analysis of the exhaled breath proteome. Proteomic Clin. Appl. 2009, 3, 498–504. [Google Scholar] [CrossRef]
- Noël-Georis, I.; Bernard, A.; Falmagne, P.; Wattiez, R. Proteomics as the tool to search for lung disease markers in bronchoalveolar lavage. Dis. Markers 2001, 17, 271–284. [Google Scholar] [CrossRef]
- Sabounchi-Schütt, F.; Aström, J.; Hellman, U.; Eklund, A.; Grunewald, J. Changes in bronchoalveolar lavage fluid proteins in sarcoidosis: A proteomics approach. Eur. Respir. J. 2003, 21, 414–420. [Google Scholar] [CrossRef]
- Wu, J.; Kobayashi, M.; Sousa, E.A.; Liu, W.; Cai, J.; Goldman, S.J.; Dorner, A.J.; Projan, S.J.; Kavuru, M.S.; Qiu, Y.; et al. Differential proteomic analysis of bronchoalveolar lavage fluid in asthmatics following segmental antigen challenge. Mol. Cell. Proteomics 2005, 4, 1251–1264. [Google Scholar] [CrossRef]
- Pollard, H.B.; Eidelman, O.; Jozwik, C.; Huang, W.; Srivastava, M.; Ji, X.D.; McGowan, B.; Norris, C.F.; Todo, T.; Darling, T.; et al. De novo biosynthetic profiling of high abundance proteins in cystic fibrosis lung epithelial cells. Mol. Cell. Proteomics 2006, 5, 1628–1637. [Google Scholar] [CrossRef]
- Charro, N.; Hood, B.L.; Faria, D.; Pacheco, P.; Azevedo, P.; Lopes, C.; de Almeida, A.B.; Couto, F.M.; Conrads, T.P.; Penque, D. Serum proteomics signature of cystic fibrosis patients: A complementary 2-DE and LC-MS/MS approach. J. Proteomics 2011, 74, 110–126. [Google Scholar] [CrossRef]
- Ohar, J.; Fromer, L.; Donohue, J.F. Reconsidering sex-based stereotypes of COPD. Prim. Care Respir. J. 2011, 20, 370–378. [Google Scholar] [CrossRef]
- Jain, N.K.; Thakkar, M.S.; Jain, N.; Rohan, K.A.; Sharma, M. Chronic obstructive pulmonary disease: Does gender really matter? Lung India 2011, 28, 258–262. [Google Scholar] [CrossRef]
- Kohler, M.; Sandberg, A.; Kjellqvist, S.; Thomas, A.; Karimi, R.; Nyrén, S.; Eklund, A.; Thevis, M.; Sköld, C.M.; Wheelock, Å.M. Gender differences in the bronchoalveolar lavage cell proteome of patients with chronic obstructive pulmonary disease. J. Allergy Clin. Immunol. 2013, 131, 743–751. [Google Scholar] [CrossRef]
- Abdul-Salam, V.B.; Wharton, J.; Cupitt, J.; Berryman, M.; Edwards, R.J.; Wilkins, M.R. Proteomic analysis of lung tissues from patients with pulmonary arterial hypertension. Circulation 2010, 122, 2058–2067. [Google Scholar] [CrossRef]
- Kosanam, H.; Sato, M.; Batruch, I.; Smith, C.; Keshavjee, S.; Liu, M.; Diamandis, E.P. Differential proteomic analysis of bronchoalveolar lavage fluid from lung transplant patients with and without chronic graft dysfunction. Clin. Biochem. 2012, 45, 223–230. [Google Scholar] [CrossRef]
- Deng, B.; Ye, N.; Luo, G.; Wang, Y. Separation of tissue proteins of human lung carcinomas by partial-filling capillary electrophoresis. J. Nanosci. Nanotechnol. 2005, 5, 1193–1198. [Google Scholar] [CrossRef]
- Guzman, N.A.; Phillips, T.M. Immunoaffinity capillary electrophoresis: A new versatile tool for determining protein biomarkers in inflammatory processes. Electrophoresis 2011, 32, 1565–1578. [Google Scholar]
- Moini, M. Capillary electrophoresis mass spectrometry and its application to the analysis of biological metrices. Anal. Bioanal. Chem. 2002, 373, 466–480. [Google Scholar] [CrossRef]
- Wang, C.; Fang, X.; Lee, C.S. Recent advances in capillary electrophoresis-based proteomic techniques for biomarker discovery. In Capillary Electrophoresis of Biomolecules: Methods and Protocols; Nicola, V., Francesca, M., Eds.; Humana Press: New York, NY, USA, 2013; Volume 984, pp. 1–12. [Google Scholar]
- Simpson, D.C.; Smith, R.D. Combining capillary electrophoresis with mass spectrometry for applications in proteomics. Electrophoresis 2005, 26, 1291–1305. [Google Scholar] [CrossRef]
- Stalmach, A.; Albalat, A.; Mullen, W.; Mischak, H. Recent advances in capillary electrophoresis coupled to mass spectrometry for clinical proteomic applications. Electrophoresis 2013, 34, 1452–1464. [Google Scholar] [CrossRef]
- Li, J.; Tremblay, T.L.; Wang, C.; Attiya, S.; Harrison, D.J.; Thibault, P. Integrated system for high-throughput protein identification using a microfabricated device coupled to capillary electrophoresis/nanoelectrospray mass spectrometry. Proteomics 2001, 1, 975–986. [Google Scholar] [CrossRef]
- Hanrieder, J.; Zuberovic, A.; Bergquist, J. Surface modified capillary electrophoresis combined with in solution isoelectric focusing and MALDI-TOF/TOF MS: A gel-free multidimensional electrophoresis approach for proteomic profiling-exemplified on human follicular fluid. J. Chromatogr. A 2009, 1216, 3621–3628. [Google Scholar]
- Fang, X.; Yang, L.; Eang, W.; Song, T.; Lee, C.; Devoe, D.; Balgley, B. Comparison of electrokinetics-based multidimensional separations coupled with electrospray ionization-tandem mass spectrometry for characterization of human salivary proteins. Anal. Chem. 2007, 79, 5785–5792. [Google Scholar] [CrossRef]
- Maes, E.; Broeckx, V.; Mertens, I.; Sagaert, X.; Prenen, H.; Landuyt, B.; Schoofs, L. Analysis of the formalin-fixed paraffin-embedded tissue proteome: Pitfalls, challenges and future prospective. Amino Acids 2013, 45, 205–218. [Google Scholar] [CrossRef]
- Hassanein, M.; Rahman, J.S.; Chaurand, P.; Massion, P.P. Advances in proteomic strategies toward the early detection in lung cancer. Proc. Am. Thorac. Soc. 2011, 8, 183–188. [Google Scholar] [CrossRef]
- Mehan, M.R.; Ostroff, R.; Wilcox, S.K.; Steele, F.; Schneider, D.; Jarvis, T.C.; Baird, G.S.; Goold, L.; Janjic, N. Highly multiplexed proteomic platform for biomarker discovery, diagnostics, and therapeutics. Adv. Exp. Med. Biol. 2013, 735, 283–300. [Google Scholar]
- Stehle, F.; Schultz, K.; Seliger, B. Towards defining biomarkers indicating resistances to targeted therapies. Biochim. Biophys. Acta 2013. [Google Scholar] [CrossRef]
- Indovina, P.; Marcelli, E.; Pentimalli, F.; Tanganelli, P.; Tarro, G.; Giordano, A. Mass spectrometry-based proteomics: The road to lung cancer biomarker discovery. Mass Spectrom. Rev. 2013, 32, 129–142. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Viglio, S.; Stolk, J.; Iadarola, P.; Giuliano, S.; Luisetti, M.; Salvini, R.; Fumagalli, M.; Bardoni, A. Respiratory Proteomics Today: Are Technological Advances for the Identification of Biomarker Signatures Catching up with Their Promise? A Critical Review of the Literature in the Decade 2004–2013. Proteomes 2014, 2, 18-52. https://doi.org/10.3390/proteomes2010018
Viglio S, Stolk J, Iadarola P, Giuliano S, Luisetti M, Salvini R, Fumagalli M, Bardoni A. Respiratory Proteomics Today: Are Technological Advances for the Identification of Biomarker Signatures Catching up with Their Promise? A Critical Review of the Literature in the Decade 2004–2013. Proteomes. 2014; 2(1):18-52. https://doi.org/10.3390/proteomes2010018
Chicago/Turabian StyleViglio, Simona, Jan Stolk, Paolo Iadarola, Serena Giuliano, Maurizio Luisetti, Roberta Salvini, Marco Fumagalli, and Anna Bardoni. 2014. "Respiratory Proteomics Today: Are Technological Advances for the Identification of Biomarker Signatures Catching up with Their Promise? A Critical Review of the Literature in the Decade 2004–2013" Proteomes 2, no. 1: 18-52. https://doi.org/10.3390/proteomes2010018
APA StyleViglio, S., Stolk, J., Iadarola, P., Giuliano, S., Luisetti, M., Salvini, R., Fumagalli, M., & Bardoni, A. (2014). Respiratory Proteomics Today: Are Technological Advances for the Identification of Biomarker Signatures Catching up with Their Promise? A Critical Review of the Literature in the Decade 2004–2013. Proteomes, 2(1), 18-52. https://doi.org/10.3390/proteomes2010018