Next-Generation Protein–Ligand Interaction Networks: APEX as a Powerful Technology
Abstract
:1. Introduction
2. Peroxidase
3. APX: A Robust Intracellular Peroxidase
4. Catalytic Mechanism of APX
5. Engineering APX
6. High-Resolution Mapping with APEX
Biotinylation as Post-Translational Modification (PTM)
7. APEX Technology to Study DNA and RNA
8. Advantages and Challenges
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sundberg, E.J. Structural Basis of Antibody-Antigen Interactions. Methods Mol. Biol. 2009, 524, 23–36. [Google Scholar] [CrossRef] [PubMed]
- Syriopoulou, A.; Markopoulos, I.; Tzakos, A.G.; Mavromoustakos, T. Ligand-Receptor Interactions and Drug Design. Methods Mol. Biol. 2021, 2266, 89–104. [Google Scholar] [CrossRef] [PubMed]
- Hatty, C.R.; Le Brun, A.P.; Lake, V.; Clifton, L.A.; Liu, G.J.; James, M.; Banati, R.B. Investigating the Interactions of the 18kDa Translocator Protein and Its Ligand PK11195 in Planar Lipid Bilayers. Biochim. Biophys. Acta 2014, 1838, 1019–1030. [Google Scholar] [CrossRef] [PubMed]
- Rivas-Pardo, J.A.; Alegre-Cebollada, J.; Ramírez-Sarmiento, C.A.; Fernandez, J.M.; Guixé, V. Identifying Sequential Substrate Binding at the Single-Molecule Level by Enzyme Mechanical Stabilization. ACS Nano 2015, 9, 3996–4005. [Google Scholar] [CrossRef]
- Wagner, B.; Tharmann, R.; Haase, I.; Fischer, M.; Bausch, A.R. Cytoskeletal Polymer Networks: The Molecular Structure of Cross-Linkers Determines Macroscopic Properties. Proc. Natl. Acad. Sci. USA 2006, 103, 13974–13978. [Google Scholar] [CrossRef]
- Swain, B.C.; Rout, J.; Tripathy, U. Interaction of Vitamin B12 with β-Lactoglobulin: A Computational Study. J. Biomol. Struct. Dyn. 2022, 40, 2146–2155. [Google Scholar] [CrossRef]
- Egea, P.F.; Klaholz, B.P.; Moras, D. Ligand-Protein Interactions in Nuclear Receptors of Hormones. FEBS Lett. 2000, 476, 62–67. [Google Scholar] [CrossRef]
- Feng, Y.; Yan, Y.; He, J.; Tao, H.; Wu, Q.; Huang, S.Y. Docking and Scoring for Nucleic Acid–Ligand Interactions: Principles and Current Status. Drug Discov. Today 2022, 27, 838–847. [Google Scholar] [CrossRef]
- Lee, Y.C. Biochemistry of Carbohydrate-protein Interaction 1. FASEB J. 1992, 6, 3193–3200. [Google Scholar] [CrossRef]
- Xu, L.Z.; Sánchez, R.; Sali, A.; Heintz, N. Ligand Specificity of Brain Lipid-Binding Protein. J. Biol. Chem. 1996, 271, 24711–24719. [Google Scholar] [CrossRef]
- Young, P.R. Protein Hormones and Their Receptors. Curr. Opin. Biotechnol. 1992, 3, 408–421. [Google Scholar] [CrossRef] [PubMed]
- Martell, J.D.; Deerinck, T.J.; Sancak, Y.; Poulos, T.L.; Mootha, V.K.; Sosinsky, G.E.; Ellisman, M.H.; Ting, A.Y. Engineered Ascorbate Peroxidase as a Genetically Encoded Reporter for Electron Microscopy. Nat. Biotechnol. 2012, 30, 1143–1148. [Google Scholar] [CrossRef] [PubMed]
- Caverzan, A.; Passaia, G.; Rosa, S.B.; Ribeiro, C.W.; Lazzarotto, F.; Margis-Pinheiro, M. Plant Responses to Stresses: Role of Ascorbate Peroxidase in the Antioxidant Protection. Genet. Mol. Biol. 2012, 35, 1011–1019. [Google Scholar] [CrossRef] [PubMed]
- Lam, S.S.; Martell, J.D.; Kamer, K.J.; Deerinck, T.J.; Ellisman, M.H.; Mootha, V.K.; Ting, A.Y. Directed Evolution of APEX2 for Electron Microscopy and Proximity Labeling. Nat. Methods 2014, 12, 51–54. [Google Scholar] [CrossRef]
- Hung, V.; Udeshi, N.D.; Lam, S.S.; Loh, K.H.; Cox, K.J.; Pedram, K.; Carr, S.A.; Ting, A.Y. Spatially Resolved Proteomic Mapping in Living Cells with the Engineered Peroxidase APEX2. Nat. Protoc. 2016, 11, 456–475. [Google Scholar] [CrossRef]
- Mittler, R. Oxidative Stress, Antioxidants and Stress Tolerance. Trends Plant Sci. 2002, 7, 405–410. [Google Scholar] [CrossRef]
- Koua, D.; Cerutti, L.; Falquet, L.; Sigrist, C.J.A.; Theiler, G.; Hulo, N.; Dunand, C. PeroxiBase: A Database with New Tools for Peroxidase Family Classification. Nucleic Acids Res. 2009, 37, D261–D266. [Google Scholar] [CrossRef]
- Patterson, W.R.; Poulos, T.L. Crystal Structure of Recombinant Pea Cytosolic Ascorbate Peroxidase. Biochemistry 1995, 34, 4331–4341. [Google Scholar] [CrossRef]
- Lad, L.; Mewies, M.; Raven, E.L. Substrate Binding and Catalytic Mechanism in Ascorbate Peroxidase: Evidence for Two Ascorbate Binding Sites. Biochemistry 2002, 41, 13774–13781. [Google Scholar] [CrossRef]
- Zémocký, M. Phylogenetic Relationships in Class I of the Superfamily of Bacterial, Fungal, and Plant Peroxidases. Eur. J. Biochem. 2004, 271, 3297–3309. [Google Scholar] [CrossRef]
- Morgenstern, I.; Klopman, S.; Hibbett, D.S. Molecular Evolution and Diversity of Lignin Degrading Heme Peroxidases in the Agaricomycetes. J. Mol. Evol. 2008, 66, 243–257. [Google Scholar] [CrossRef] [PubMed]
- Mathé, C.; Barre, A.; Jourda, C.; Dunand, C. Evolution and Expression of Class III Peroxidases. Arch. Biochem. Biophys. 2010, 500, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Welinder, K.G. Covalent Structure of the Glycoprotein Horseradish Peroxidase (EC 1.11.1.7). FEBS Lett. 1976, 72, 19–23. [Google Scholar] [CrossRef] [PubMed]
- Welinder, K.G. Amino Acid Sequence Studies of Horseradish Peroxidase. Amino and Carboxyl Termini, Cyanogen Bromide and Tryptic Fragments, the Complete Sequence, and Some Structural Characteristics of Horseradish Peroxidase C. Eur. J. Biochem. 1979, 96, 483–502. [Google Scholar] [CrossRef]
- Mayer, G.; Bendayan, M. Biotinyl-Tyramide: A Novel Approach for Electron Microscopic Immunocytochemistry. J. Histochem. Cytochem. 1997, 45, 1449–1454. [Google Scholar] [CrossRef]
- Litovchick, L. Detection of an Antigen on an Immunoblot. Cold Spring Harb. Protoc. 2019, 2019, 616–621. [Google Scholar] [CrossRef]
- Bobrow, M.N.; Litt, G.J.; Shaughnessy, K.J.; Mayer, P.C.; Conlon, J. The Use of Catalyzed Reporter Deposition as a Means of Signal Amplification in a Variety of Formats. J. Immunol. Methods 1992, 150, 145–149. [Google Scholar] [CrossRef]
- Veitch, N.C. Horseradish Peroxidase: A Modern View of a Classic Enzyme. Phytochemistry 2004, 65, 249–259. [Google Scholar] [CrossRef]
- Badejo, A.A.; Wada, K.; Gao, Y.; Maruta, T.; Sawa, Y.; Shigeoka, S.; Ishikawa, T. Translocation and the Alternative D-Galacturonate Pathway Contribute to Increasing the Ascorbate Level in Ripening Tomato Fruits Together with the D-Mannose/L-Galactose Pathway. J. Exp. Bot. 2012, 63, 229–239. [Google Scholar] [CrossRef]
- Maruta, T.; Sawa, Y.; Shigeoka, S.; Ishikawa, T. Diversity and Evolution of Ascorbate Peroxidase Functions in Chloroplasts: More than Just a Classical Antioxidant Enzyme? Plant Cell Physiol. 2016, 57, 1377–1386. [Google Scholar] [CrossRef]
- Zámocký, M.; Furtmüller, P.G.; Obinger, C. Evolution of Structure and Function of Class I Peroxidases. Arch. Biochem. Biophys. 2010, 500, 45–57. [Google Scholar] [CrossRef] [PubMed]
- Taqui Khan, M.M.; Martell, A.E. Metal Ion and Metal Chelate Catalyzed Oxidation of Ascorbic Acid by Molecular Oxygen. I. Cupric and Ferric Ion Catalyzed Oxidation. J. Am. Chem. Soc. 1967, 89, 4176–4185. [Google Scholar] [CrossRef] [PubMed]
- Bodannes, R.S.; Chan, P.C. Ascorbic Acid as a Scavenger of Singlet Oxygen. FEBS Lett. 1979, 105, 195–196. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, F.K.; Menezes-Benavente, L.; Margis, R.; Margis-Pinheiro, M. Analysis of the Molecular Evolutionary History of the Ascorbate Peroxidase Gene Family: Inferences from the Rice Genome. J. Mol. Evol. 2004, 59, 761–770. [Google Scholar] [CrossRef]
- Chen, G.X.; Asada, K. Ascorbate Peroxidase in Tea Leaves: Occurrence of Two Isozymes and the Differences in Their Enzymatic and Molecular Properties. Plant Cell Physiol. 1989, 30, 987–998. [Google Scholar] [CrossRef]
- Miyake, C.; Asada, K. Thylakoid-Bound Ascorbate Peroxidase in Spinach Chloroplasts and Photoreduction of Its Primary Oxidation Product Monodehydroascorbate Radicals in Thylakoids. Plant Cell Physiol. 1992, 33, 541–553. [Google Scholar] [CrossRef]
- Yamaguchi, K.; Mori, H.; Nishimura, M. A Novel Isoenzyme of Ascorbate Peroxidase Localized on Glyoxysomal and Leaf Peroxisomal Membranes in Pumpkin. Plant Cell Physiol. 1995, 36, 1157–1162. [Google Scholar] [CrossRef]
- Kagawa, T.; Beevers, H. The Development of Microbodies (Glyoxysomes and Leaf Peroxisomes) in Cotyledons of Germinating Watermelon Seedlings. Plant Physiol. 1975, 55, 258–264. [Google Scholar] [CrossRef]
- Bunkelmann, J.R.; Trelease, R.N. Ascorbate Peroxidase: A Prominent Membrane Protein in Oilseed Glyoxysomes. Plant Physiol. 1996, 110, 589–598. [Google Scholar] [CrossRef]
- Han, S.H.; Park, Y.J.; Park, C.M. Light Primes the Thermally Induced Detoxification of Reactive Oxygen Species during Development of Thermotolerance in Arabidopsis. Plant Cell Physiol. 2019, 60, 230–241. [Google Scholar] [CrossRef]
- Chew, O.; Whelan, J.; Millar, A.H. Molecular Definition of the Ascorbate-Glutathione Cycle in Arabidopsis Mitochondria Reveals Dual Targeting of Antioxidant Defenses in Plants. J. Biol. Chem. 2003, 278, 46869–46877. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.H.; Tripathi, B.N.; Chung, M.S.; Cho, C.; Lee, S.; Kim, J.H.; Bai, H.W.; Bae, H.J.; Cho, J.Y.; Chung, B.Y.; et al. Functional Switching of Ascorbate Peroxidase 2 of Rice (OsAPX2) between Peroxidase and Molecular Chaperone. Sci. Rep. 2018, 8, 9171. [Google Scholar] [CrossRef] [PubMed]
- Kaur, S.; Prakash, P.; Bak, D.-H.; Hong, S.H.; Cho, C.; Chung, M.-S.; Kim, J.-H.; Lee, S.; Bai, H.-W.; Lee, S.Y.; et al. Regulation of Dual Activity of Ascorbate Peroxidase 1 From Arabidopsis Thaliana by Conformational Changes and Posttranslational Modifications. Front. Plant Sci. 2021, 12, 678111. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.L.; Hu, Y.; Udeshi, N.D.; Lau, T.Y.; Wirtz-Peitz, F.; He, L.; Ting, A.Y.; Carr, S.A.; Perrimon, N. Proteomic Mapping in Live Drosophila Tissues Using an Engineered Ascorbate Peroxidase. Proc. Natl. Acad. Sci. USA 2015, 112, 12093–12098. [Google Scholar] [CrossRef]
- Hwang, J.; Espenshade, P.J. Proximity-Dependent Biotin Labelling in Yeast Using the Engineered Ascorbate Peroxidase APEX2. Biochem. J. 2016, 473, 2463–2469. [Google Scholar] [CrossRef]
- Welinder, K.G. Superfamily of Plant, Fungal and Bacterial Peroxidases. Curr. Opin. Struct. Biol. 1992, 2, 388–393. [Google Scholar] [CrossRef]
- Patterson, W.R.; Poulos, T.L. Characterization and Crystallization of Recombinant Pea Cytosolic Ascorbate Peroxidase. J. Biol. Chem. 1994, 269, 17020–17024. [Google Scholar] [CrossRef]
- Sharp, K.H.; Moody, P.C.E.; Brown, K.A.; Raven, E.L. Crystal Structure of the Ascorbate Peroxidase-Salicylhydroxamic Acid Complex. Biochemistry 2004, 43, 8644–8651. [Google Scholar] [CrossRef]
- Sharp, K.H.; Mewies, M.; Moody, P.C.E.; Raven, E.L. Crystal Structure of the Ascorbate Peroxidase-Ascorbate Complex. Nat. Struct. Biol. 2003, 10, 303–307. [Google Scholar] [CrossRef]
- Macdonald, I.K.; Badyal, S.K.; Ghamsari, L.; Moody, P.C.E.; Raven, E.L. Interaction of Ascorbate Peroxidase with Substrates: A Mechanistic and Structural Analysis. Biochemistry 2006, 45, 7808–7817. [Google Scholar] [CrossRef]
- Kwon, H.; Basran, J.; Casadei, C.M.; Fielding, A.J.; Schrader, T.E.; Ostermann, A.; Devos, J.M.; Aller, P.; Blakeley, M.P.; Moody, P.C.E.; et al. Direct Visualization of a Fe(IV)-OH Intermediate in a Heme Enzyme. Nat. Commun. 2016, 7, 13445. [Google Scholar] [CrossRef] [PubMed]
- Efimov, I.; Papadopoulou, N.D.; McLean, K.J.; Badyal, S.K.; Macdonald, I.K.; Munro, A.W.; Moody, P.C.E.; Raven, E.L. The Redox Properties of Ascorbate Peroxidase. Biochemistry 2007, 46, 8017–8023. [Google Scholar] [CrossRef] [PubMed]
- Poulos, T.L. Heme Enzyme Structure and Function. Chem. Rev. 2014, 114, 3919–3962. [Google Scholar] [CrossRef] [PubMed]
- Moody, P.C.E.; Raven, E.L. The Nature and Reactivity of Ferryl Heme in Compounds i and II. Acc. Chem. Res. 2018, 51, 427–435. [Google Scholar] [CrossRef]
- Cvjetan, N.; Walde, P. Ferric Heme b in Aqueous Micellar and Vesicular Systems: State-of-the-Art and Challenges. Q. Rev. Biophys. 2023, 56, e1. [Google Scholar] [CrossRef]
- Ansari, M.; Bhattacharjee, S.; Pantazis, D.A. Correlating Structure with Spectroscopy in Ascorbate Peroxidase Compound II. J. Am. Chem. Soc. 2024, 146, 9640–9656. [Google Scholar] [CrossRef]
- Efimov, I.; Badyal, S.K.; Metcalfe, C.L.; MacDonald, I.; Gumiero, A.; Raven, E.L.; Moody, P.C.E. Proton Delivery to Ferryl Heme in a Heme Peroxidase: Enzymatic Use of the Grotthuss Mechanism. J. Am. Chem. Soc. 2011, 133, 15376–15383. [Google Scholar] [CrossRef]
- Kwon, H.; Basran, J.; Pathak, C.; Hussain, M.; Freeman, S.L.; Fielding, A.J.; Bailey, A.J.; Stefanou, N.; Sparkes, H.A.; Tosha, T.; et al. XFEL Crystal Structures of Peroxidase Compound II. Angew. Chemie Int. Ed. 2021, 60, 14578–14585. [Google Scholar] [CrossRef]
- Chin, D.C.; Senthil Kumar, R.; Suen, C.S.; Chien, C.Y.; Hwang, M.J.; Hsu, C.H.; Xuhan, X.; Lai, Z.X.; Yeh, K.W. Plant Cytosolic Ascorbate Peroxidase with Dual Catalytic Activity Modulates Abiotic Stress Tolerances. iScience 2019, 16, 31–49. [Google Scholar] [CrossRef]
- Mittler, R.; Zilinskas, B.A. Molecular Cloning and Nucleotide Sequence Analysis of a CDNA Encoding Pea Cytosolic Ascorbate Peroxidase. FEBS Lett. 1991, 289, 257–259. [Google Scholar] [CrossRef]
- Caldwell, C.R.; Turano, F.J.; McMahon, M.B. Identification of Two Cytosolic Ascorbate Peroxidase CDNAs from Soybean Leaves and Characterization of Their Products by Functional Expression in E. Coli. Planta 1997, 204, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Dalton, D.A.; Diaz Del Castillo, L.; Kahn, M.L.; Joyner, S.L.; Chatfield, J.M. Heterologous Expression and Characterization of Soybean Cytosolic Ascorbate Peroxidase. Arch. Biochem. Biophys. 1996, 328, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Marquez, L.A.; Quitoriano, M.; Zilinskas, B.A.; Dunford, H.B. Kinetic and Spectral Properties of Pea Cytosolic Ascorbate Peroxidase. FEBS Lett. 1996, 389, 153–156. [Google Scholar] [CrossRef] [PubMed]
- Wada, N.; Kinoshita, S.; Matsuo, M.; Amako, K.; Miyake, C.; Asada, K. Purification and Molecular Properties of Ascorbate Peroxidase from Bovine Eye. Biochem. Biophys. Res. Commun. 1998, 242, 256–261. [Google Scholar] [CrossRef]
- Zhang, Q.; Lee, W.C.A.; Paul, D.L.; Ginty, D.D. Multiplexed Peroxidase-Based Electron Microscopy Labeling Enables Simultaneous Visualization of Multiple Cell Types. Nat. Neurosci. 2019, 22, 828–839. [Google Scholar] [CrossRef]
- Ke, M.; Yuan, X.; He, A.; Yu, P.; Chen, W.; Shi, Y.; Hunter, T.; Zou, P.; Tian, R. Spatiotemporal Profiling of Cytosolic Signaling Complexes in Living Cells by Selective Proximity Proteomics. Nat. Commun. 2021, 12, 71. [Google Scholar] [CrossRef]
- Seligman, A.M.; Karnovsky, M.J.; Wasserkrug, H.L.; Hanker, J.S. Nondroplet Ultrastructural Demonstration of Cytochrome Oxidase Activity with a Polymerizing Osmiophilic Reagent, Diaminobenzidine (DAB). J. Cell Biol. 1968, 38, 1–14. [Google Scholar] [CrossRef]
- Grabenbauer, M. Correlative Light and Electron Microscopy of GFP. Methods Cell Biol. 2012, 111, 117–138. [Google Scholar] [CrossRef]
- Hanker, J.S.; Romanovicz, D.K.; Padykula, H.A. Tissue Fixation and Osmium Black Formation with Nonvolatile Octavalent Osmium Compounds. Histochemistry 1976, 49, 263–291. [Google Scholar] [CrossRef]
- Rhee, H.W.; Zou, P.; Udeshi, N.D.; Martell, J.D.; Mootha, V.K.; Carr, S.A.; Ting, A.Y. Proteomic Mapping of Mitochondria in Living Cells via Spatially Restricted Enzymatic Tagging. Science 2013, 339, 1328–1331. [Google Scholar] [CrossRef]
- Martell, J.D.; Deerinck, T.J.; Lam, S.S.; Ellisman, M.H.; Ting, A.Y. Electron Microscopy Using the Genetically Encoded APEX2 Tag in Cultured Mammalian Cells. Nat. Protoc. 2017, 12, 1792–1816. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.R.; Lee, T.J.; Oh, S.; Li, C.; Song, J.H.A.; Marshall, B.; Zhi, W.; Kwon, S.H. Ascorbate Peroxidase-mediated in Situ Labelling of Proteins in Secreted Exosomes. J. Extracell. Vesicles 2022, 11, e12239. [Google Scholar] [CrossRef] [PubMed]
- Rae, J.; Ferguson, C.; Ariotti, N.; Webb, R.I.; Cheng, H.H.; Mead, J.L.; Riches, J.D.; Hunter, D.J.B.; Martel, N.; Baltos, J.; et al. A Robust Method for Particulate Detection of a Genetic Tag for 3D Electron Microscopy. Elife 2021, 10, e64630. [Google Scholar] [CrossRef] [PubMed]
- Green, A.P.; Hayashi, T.; Mittl, P.R.E.; Hilvert, D. A Chemically Programmed Proximal Ligand Enhances the Catalytic Properties of a Heme Enzyme. J. Am. Chem. Soc. 2016, 138, 11344–11352. [Google Scholar] [CrossRef]
- Becker, J.T.; Auerbach, A.A.; Harris, R.S. APEX3—An Optimized Tool for Rapid and Unbiased Proximity Labeling. J. Mol. Biol. 2023, 435, 168145. [Google Scholar] [CrossRef]
- Han, Y.; Branon, T.C.; Martell, J.D.; Boassa, D.; Shechner, D.; Ellisman, M.H.; Ting, A. Directed Evolution of Split APEX2 Peroxidase. ACS Chem. Biol. 2019, 14, 619–635. [Google Scholar] [CrossRef]
- Xue, M.; Hou, J.; Wang, L.; Cheng, D.; Lu, J.; Zheng, L.; Xu, T. Optimizing the Fragment Complementation of APEX2 for Detection of Specific Protein-Protein Interactions in Live Cells. Sci. Rep. 2017, 7, 12039. [Google Scholar] [CrossRef]
- Huang, M.; Sen; Lin, W.C.; Chang, J.H.; Cheng, C.H.; Wang, H.Y.; Mou, K.Y. The Cysteine-Free Single Mutant C32S of APEX2 Is a Highly Expressed and Active Fusion Tag for Proximity Labeling Applications. Protein Sci. 2019, 28, 1703–1712. [Google Scholar] [CrossRef]
- Raven, E.L. Understanding Functional Diversity and Substrate Specificity in Haem Peroxidases: What Can We Learn from Ascorbate Peroxidase? Nat. Prod. Rep. 2003, 20, 367–381. [Google Scholar] [CrossRef]
- Sharp, K.H.; Moody, P.C.E.; Raven, E.L. A New Framework for Understanding Substrate Binding and Functional Diversity in Haem Peroxidases. Dalton Trans. 2003, 3, 4208–4215. [Google Scholar] [CrossRef]
- Çelik, A.; Cullis, P.M.; Lloyd Raven, E. Catalytic Oxidation of P-Cresol by Ascorbate Peroxidase. Arch. Biochem. Biophys. 2000, 373, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Onele, A.O.; Chasov, A.V.; Trifonova, T.V.; Minibayeva, F.V. Ascorbate Peroxidase of Moss Dicranum Scoparium: Gene Identification and Enzyme Activity. Dokl. Biochem. Biophys. 2019, 489, 380–384. [Google Scholar] [CrossRef] [PubMed]
- Leskinen, H.L.; Udvadia, A.J. Development and Validation of a Proximity Labeling Fusion Protein Construct to Identify the Protein-Protein Interactions of Transcription Factors. Methods Mol. Biol. 2025, 2848, 269–297. [Google Scholar] [CrossRef] [PubMed]
- Debski, D.; Smulik, R.; Zielonka, J.; Michałowski, B.; Jakubowska, M.; Debowska, K.; Adamus, J.; Marcinek, A.; Kalyanaraman, B.; Sikora, A. Mechanism of Oxidative Conversion of Amplex® Red to Resorufin: Pulse Radiolysis and Enzymatic Studies. Free Radic. Biol. Med. 2016, 95, 323–332. [Google Scholar] [CrossRef]
- Vilen, Z.; Reeves, A.E.; O’Leary, T.R.; Joeh, E.; Kamasawa, N.; Huang, M.L. Cell Surface Engineering Enables Surfaceome Profiling. ACS Chem. Biol. 2023, 18, 701–710. [Google Scholar] [CrossRef]
- Lee, S.Y.; Kang, M.G.; Shin, S.; Kwak, C.; Kwon, T.; Seo, J.K.; Kim, J.S.; Rhee, H.W. Architecture Mapping of the Inner Mitochondrial Membrane Proteome by Chemical Tools in Live Cells. J. Am. Chem. Soc. 2017, 139, 3651–3662. [Google Scholar] [CrossRef]
- An, J.; Kim, S.; Shrinidhi, A.; Kim, J.; Banna, H.; Sung, G.; Park, K.M.; Kim, K. Purification of Protein Therapeutics via High-Affinity Supramolecular Host–Guest Interactions. Nat. Biomed. Eng. 2020, 4, 1044–1052. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, G.; Wang, P.; Li, Z.; Yue, T.; Wang, J.; Zou, P. Expanding APEX2 Substrates for Proximity-Dependent Labeling of Nucleic Acids and Proteins in Living Cells. Angew. Chemie Int. Ed. Engl. 2019, 58, 11763–11767. [Google Scholar] [CrossRef]
- Qin, W.; Cheah, J.S.; Xu, C.; Messing, J.; Freibaum, B.D.; Boeynaems, S.; Taylor, J.P.; Udeshi, N.D.; Carr, S.A.; Ting, A.Y. Dynamic Mapping of Proteome Trafficking within and between Living Cells by TransitID. Cell 2023, 186, 3307-3324.e30. [Google Scholar] [CrossRef]
- Li, Y.; Tian, C.; Liu, K.; Zhou, Y.; Yang, J.; Zou, P. A Clickable APEX Probe for Proximity-Dependent Proteomic Profiling in Yeast. Cell Chem. Biol. 2020, 27, 858-865.e8. [Google Scholar] [CrossRef]
- Oakley, J.V.; Buksh, B.F.; Fernández, D.F.; Oblinsky, D.G.; Seath, C.P.; Geri, J.B.; Scholes, G.D.; MacMillan, D.W.C. Radius Measurement via Super-Resolution Microscopy Enables the Development of a Variable Radii Proximity Labeling Platform. Proc. Natl. Acad. Sci. USA 2022, 119, e2203027119. [Google Scholar] [CrossRef] [PubMed]
- Samavarchi-Tehrani, P.; Samson, R.; Gingras, A.C. Proximity Dependent Biotinylation: Key Enzymes and Adaptation to Proteomics Approaches. Mol. Cell. Proteomics 2020, 19, 757–773. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.J.; Sun, Y.; Soares, A.R.; Fai, C.; Picciotto, M.R.; Guo, J.U. Alternative Translation Initiation Produces Synaptic Organizer Proteoforms with Distinct Localization and Functions. Mol. Cell 2024, 84, 3967-3978.e8. [Google Scholar] [CrossRef] [PubMed]
- Clinton, L.K.; Blurton-Jones, M.; Myczek, K.; Trojanowski, J.Q.; LaFerla, F.M. Synergistic Interactions between Abeta, Tau, and Alpha-Synuclein: Acceleration of Neuropathology and Cognitive Decline. J. Neurosci. 2010, 30, 7281–7289. [Google Scholar] [CrossRef]
- Seidi, A.; Muellner-Wong, L.S.; Rajendran, E.; Tjhin, E.T.; Dagley, L.F.; Aw, V.Y.T.; Faou, P.; Webb, A.I.; Tonkin, C.J.; van Dooren, G.G. Elucidating the Mitochondrial Proteome of Toxoplasma Gondii Reveals the Presence of a Divergent Cytochrome c Oxidase. eLife 2018, 7, e38131. [Google Scholar] [CrossRef]
- Singer-Krüger, B.; Fröhlich, T.; Franz-Wachtel, M.; Nalpas, N.; Macek, B.; Jansen, R.P. APEX2-Mediated Proximity Labeling Resolves Protein Networks in Saccharomyces Cerevisiae Cells. FEBS J. 2020, 287, 325–344. [Google Scholar] [CrossRef]
- Vélez-Ramírez, D.E.; Shimogawa, M.M.; Ray, S.S.; Lopez, A.; Rayatpisheh, S.; Langousis, G.; Gallagher-Jones, M.; Dean, S.; Wohlschlegel, J.A.; Hill, K.L. APEX2 Proximity Proteomics Resolves Flagellum Subdomains and Identifies Flagellum Tip-Specific Proteins in Trypanosoma Brucei. mSphere 2021, 6, e01090-20. [Google Scholar] [CrossRef]
- Mavylutov, T.; Chen, X.; Guo, L.; Yang, J. APEX2- Tagging of Sigma 1-Receptor Indicates Subcellular Protein Topology with Cytosolic N-Terminus and ER Luminal C-Terminus. Protein Cell 2018, 9, 733–737. [Google Scholar] [CrossRef]
- Müller, M.; James, C.; Lenz, C.; Urlaub, H.; Kehlenbach, R.H. Probing the Environment of Emerin by Enhanced Ascorbate Peroxidase 2 (APEX2)-Mediated Proximity Labeling. Cells 2020, 9, 605. [Google Scholar] [CrossRef]
- Tran, J.R.; Paulson, D.I.; Moresco, J.J.; Adam, S.A.; Yates, J.R.; Goldman, R.D.; Zheng, Y. An Apex2 Proximity Ligation Method for Mapping Interactions with the Nuclear Lamina. J. Cell Biol. 2021, 220, e202002129. [Google Scholar] [CrossRef]
- Xiao, Z.; Huang, C.; Ge, H.; Wang, Y.; Duan, X.; Wang, G.; Zheng, L.; Dong, J.; Huang, X.; Zhang, Y.; et al. Proximity Labeling Facilitates Defining the Proteome Neighborhood of Photosystem II Oxygen Evolution Complex in a Model Cyanobacterium. Mol. Cell. Proteomics 2022, 21, 100440. [Google Scholar] [CrossRef] [PubMed]
- Charneau, S.; de Oliveira, L.S.; Zenonos, Z.; Hopp, C.S.; Bastos, I.M.D.; Loew, D.; Lombard, B.; Pandolfo Silveira, A.; de Carvalho Nardeli Basílio Lobo, G.; Bao, S.N.; et al. APEX2-Based Proximity Proteomic Analysis Identifies Candidate Interactors for Plasmodium Falciparum Knob-Associated Histidine-Rich Protein in Infected Erythrocytes. Sci. Rep. 2024, 14, 11242. [Google Scholar] [CrossRef] [PubMed]
- Hung, V.; Zou, P.; Rhee, H.W.; Udeshi, N.D.; Cracan, V.; Svinkina, T.; Carr, S.A.; Mootha, V.K.; Ting, A.Y. Proteomic Mapping of the Human Mitochondrial Intermembrane Space in Live Cells via Ratiometric APEX Tagging. Mol. Cell 2014, 55, 332–341. [Google Scholar] [CrossRef] [PubMed]
- Hung, V.; Lam, S.S.; Udeshi, N.D.; Svinkina, T.; Guzman, G.; Mootha, V.K.; Carr, S.A.; Ting, A.Y. Proteomic Mapping of Cytosol-Facing Outer Mitochondrial and ER Membranes in Living Human Cells by Proximity Biotinylation. eLife 2017, 6, e24463. [Google Scholar] [CrossRef]
- Mick, D.U.; Rodrigues, R.B.; Leib, R.D.; Adams, C.M.; Chien, A.S.; Gygi, S.P.; Nachury, M.V. Proteomics of Primary Cilia by Proximity Labeling. Dev. Cell 2015, 35, 497–512. [Google Scholar] [CrossRef]
- Cho, I.T.; Adelmant, G.; Lim, Y.; Marto, J.A.; Cho, G.; Golden, J.A. Ascorbate Peroxidase Proximity Labeling Coupled with Biochemical Fractionation Identifies Promoters of Endoplasmic Reticulum–Mitochondrial Contacts. J. Biol. Chem. 2017, 292, 16382–16392. [Google Scholar] [CrossRef]
- Markmiller, S.; Soltanieh, S.; Server, K.L.; Mak, R.; Jin, W.; Fang, M.Y.; Luo, E.C.; Krach, F.; Yang, D.; Sen, A.; et al. Context-Dependent and Disease-Specific Diversity in Protein Interactions within Stress Granules. Cell 2018, 172, 590-604.e13. [Google Scholar] [CrossRef]
- Lobingier, B.T.; Hüttenhain, R.; Eichel, K.; Miller, K.B.; Ting, A.Y.; von Zastrow, M.; Krogan, N.J. An Approach to Spatiotemporally Resolve Protein Interaction Networks in Living Cells. Cell 2017, 169, 350-360.e12. [Google Scholar] [CrossRef]
- Paek, J.; Kalocsay, M.; Staus, D.P.; Wingler, L.; Pascolutti, R.; Paulo, J.A.; Gygi, S.P.; Kruse, A.C. Multidimensional Tracking of GPCR Signaling via Peroxidase-Catalyzed Proximity Labeling. Cell 2017, 169, 338-349.e11. [Google Scholar] [CrossRef]
- Reeves, A.E.; Huang, M.L. Proximity Labeling Technologies to Illuminate Glycan–Protein Interactions. Curr. Opin. Chem. Biol. 2023, 72, 102233. [Google Scholar] [CrossRef]
- Vilen, Z.; Joeh, E.; Critcher, M.; Parker, C.G.; Huang, M.L. Proximity Tagging Identifies the Glycan-Mediated Glycoprotein Interactors of Galectin-1 in Muscle Stem Cells. ACS Chem. Biol. 2021, 16, 1994–2003. [Google Scholar] [CrossRef] [PubMed]
- Jing, J.; He, L.; Sun, A.; Quintana, A.; Ding, Y.; Ma, G.; Tan, P.; Liang, X.; Zheng, X.; Chen, L.; et al. Proteomic Mapping of ER-PM Junctions Identifies STIMATE as a Regulator of Ca2+ Influx. Nat. Cell Biol. 2015, 17, 1339–1347. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Udeshi, N.D.; Deerinck, T.J.; Svinkina, T.; Ellisman, M.H.; Carr, S.A.; Ting, A.Y. Proximity Biotinylation as a Method for Mapping Proteins Associated with MtDNA in Living Cells. Cell Chem. Biol. 2017, 24, 404–414. [Google Scholar] [CrossRef] [PubMed]
- Ting, A.Y.; Stawski, P.S.; Draycott, A.S.; Udeshi, N.D.; Lehrman, E.K.; Wilton, D.K.; Svinkina, T.; Deerinck, T.J.; Ellisman, M.H.; Stevens, B.; et al. Proteomic Analysis of Unbounded Cellular Compartments: Synaptic Clefts. Cell 2016, 166, 1295-1307.e21. [Google Scholar] [CrossRef]
- Trifault, B.; Mamontova, V.; Burger, K. In Vivo Proximity Labeling of Nuclear and Nucleolar Proteins by a Stably Expressed, DNA Damage-Responsive NONO-APEX2 Fusion Protein. Front. Mol. Biosci. 2022, 9, 914873. [Google Scholar] [CrossRef]
- Li, X.; Zhou, J.; Zhao, W.; Wen, Q.; Wang, W.; Peng, H.; Gao, Y.; Bouchonville, K.J.; Offer, S.M.; Chan, K.; et al. Defining Proximity Proteome of Histone Modifications by Antibody-Mediated Protein A-APEX2 Labeling. Genomics Proteomics Bioinforma. 2022, 20, 87–100. [Google Scholar] [CrossRef]
- Udeshi, N.D.; Pedram, K.; Svinkina, T.; Fereshetian, S.; Myers, S.A.; Aygun, O.; Krug, K.; Clauser, K.; Ryan, D.; Ast, T.; et al. Antibodies to Biotin Enable Large-Scale Detection of Biotinylation Sites on Proteins. Nat. Methods 2017, 14, 1167–1170. [Google Scholar] [CrossRef]
- Lee, S.Y.; Kang, M.G.; Park, J.S.; Lee, G.; Ting, A.Y.; Rhee, H.W. APEX Fingerprinting Reveals the Subcellular Localization of Proteins of Interest. Cell Rep. 2016, 15, 1837–1847. [Google Scholar] [CrossRef]
- Mihelc, E.M.; Angel, S.; Stahelin, R.V.; Mattoo, S. The CryoAPEX Method for Electron Microscopy Analysis of Membrane Protein Localization within Ultrastructurally-Preserved Cells. J. Vis. Exp. 2020, 2020, e60677. [Google Scholar] [CrossRef]
- Sengupta, R.; Poderycki, M.J.; Mattoo, S. CryoAPEX—An Electron Tomography Tool for Subcellular Localization of Membrane Proteins. J. Cell Sci. 2019, 132, jcs222315. [Google Scholar] [CrossRef]
- Wu, J.-W.; Wang, C.-W.; Hong, W.Y.; Jang, A.C.C.; Chang, Y.-C. Detecting Native Protein-Protein Interactions by APEX2 Proximity Labeling in Drosophila Tissues. Bio-Protocol 2024, 14, e5090. [Google Scholar] [CrossRef] [PubMed]
- Reinke, A.W.; Mak, R.; Troemel, E.R.; Ben, E.J. In Vivo Mapping of Tissue- and Subcellular-Specific Proteomes in Caenorhabditis Elegans. Sci. Adv. 2017, 3, e1602426. [Google Scholar] [CrossRef]
- Rosenberg, A.; Sibley, L.D. Toxoplasma Gondii Secreted Effectors Co-Opt Host Repressor Complexes to Inhibit Necroptosis. Cell Host Microbe 2021, 29, 1186–1198.e8. [Google Scholar] [CrossRef] [PubMed]
- Jaisinghani, N.; Previti, M.L.; Andrade, J.; Askenazi, M.; Ueberheide, B.; Seeliger, J.C. Proteomics from Compartment-Specific APEX2 Labeling in Mycobacterium Tuberculosis Reveals Type VII Secretion Substrates in the Cell Wall. Cell Chem. Biol. 2024, 31, 523–533.e4. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; He, C.-W.; Zhu, J.; Xie, Z. A Validated Set of Ascorbate Peroxidase-Based Organelle Markers for Electron Microscopy of Saccharomyces Cerevisiae. mSphere 2022, 7, e0010722. [Google Scholar] [CrossRef]
- Shen, C.; Zuo, Z. Zebrafish (Danio Rerio) as an Excellent Vertebrate Model for the Development, Reproductive, Cardiovascular, and Neural and Ocular Development Toxicity Study of Hazardous Chemicals. Environ. Sci. Pollut. Res. 2020, 27, 43599–43614. [Google Scholar] [CrossRef]
- Malet, J.K.; Impens, F.; Carvalho, F.; Hamon, M.A.; Cossart, P.; Ribet, D. Rapid Remodeling of the Host Epithelial Cell Proteome by the Listeriolysin O (LLO) Pore-Forming Toxin. Mol. Cell. Proteom. 2018, 17, 1627–1636. [Google Scholar] [CrossRef]
- Vorwerk, S.; Krieger, V.; Deiwick, J.; Hensel, M.; Hansmeier, N. Proteomes of Host Cell Membranes Modified by Intracellular Activities of Salmonella Enterica. Mol. Cell. Proteom. 2015, 14, 81–92. [Google Scholar] [CrossRef]
- Renuse, S.; Madugundu, A.K.; Jung, J.H.; Byeon, S.K.; Goldschmidt, H.L.; Tahir, R.; Meyers, D.; Kim, D.I.; Cutler, J.; Kim, K.P.; et al. Signature Fragment Ions of Biotinylated Peptides. J. Am. Soc. Mass Spectrom. 2020, 31, 394–404. [Google Scholar] [CrossRef]
- Chen, W.N.U.; Yu, L.R.; Strittmatter, E.F.; Thrall, B.D.; Camp, D.G.; Smith, R.D. Detection of in Situ Labeled Cell Surface Proteins by Mass Spectrometry: Application to the Membrane Subproteome of Human Mammary Epithelial Cells. Proteomics 2003, 3, 1647–1651. [Google Scholar] [CrossRef]
- Schopfer, L.M.; Champion, M.M.; Tamblyn, N.; Thompson, C.M.; Lockridge, O. Characteristic Mass Spectral Fragments of the Organophosphorus Agent FP-Biotin and FP-Biotinylated Peptides from Trypsin and Bovine Albumin (Tyr410). Anal. Biochem. 2005, 345, 122–132. [Google Scholar] [CrossRef] [PubMed]
- Santos, M.D.M.; Camillo-Andrade, A.C.; Rodriguez, A.; Durán, R. A Module for Analyzing Interactomes via APEX-MS Integrated into PatternLab for Proteomics. J. Am. Soc. Mass Spectrom. 2024, 35, 1055–1058. [Google Scholar] [CrossRef] [PubMed]
- Clasen, M.A.; Santos, M.D.M.; Kurt, L.U.; Fischer, J.; Camillo-Andrade, A.C.; Sales, L.A.; de Arruda Campos Brasil de Souza, T.; Lima, D.B.; Gozzo, F.C.; Valente, R.H.; et al. PatternLab V Handles Multiplex Spectra in Shotgun Proteomic Searches and Increases Identification. J. Am. Soc. Mass Spectrom. 2023, 34, 794–796. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.S.; Zhong, J.; Pandey, A. Common Errors in Mass Spectrometry-Based Analysis of Post-Translational Modifications. Proteomics 2016, 16, 700–714. [Google Scholar] [CrossRef]
- Creasy, D.M.; Cottrell, J.S. Unimod: Protein Modifications for Mass Spectrometry. Proteomics 2004, 4, 1534–1536. [Google Scholar] [CrossRef]
- Padrón, A.; Iwasaki, S.; Ingolia, N.T. Proximity RNA Labeling by APEX-Seq Reveals the Organization of Translation Initiation Complexes and Repressive RNA Granules. Mol. Cell 2019, 75, 875-887.e5. [Google Scholar] [CrossRef]
- Fazal, F.M.; Han, S.; Parker, K.R.; Kaewsapsak, P.; Xu, J.; Boettiger, A.N.; Chang, H.Y.; Ting, A.Y. Atlas of Subcellular RNA Localization Revealed by APEX-Seq. Cell 2019, 178, 473-490.e26. [Google Scholar] [CrossRef]
- Flynn, R.A.; Pedram, K.; Malaker, S.A.; Batista, P.J.; Smith, B.A.H.; Johnson, A.G.; George, B.M.; Majzoub, K.; Villalta, P.W.; Carette, J.E.; et al. Small RNAs Are Modified with N-Glycans and Displayed on the Surface of Living Cells. Cell 2021, 184, 3109–3124.e22. [Google Scholar] [CrossRef]
- Gao, X.D.; Tu, L.C.; Mir, A.; Rodriguez, T.; Ding, Y.; Leszyk, J.; Dekker, J.; Shaffer, S.A.; Zhu, L.J.; Wolfe, S.A.; et al. C-BERST: Defining Subnuclear Proteomic Landscapes at Genomic Elements with DCas9-APEX2. Nat. Methods 2018, 15, 433–436. [Google Scholar] [CrossRef]
- Myers, S.A.; Wright, J.; Peckner, R.; Kalish, B.T.; Zhang, F.; Carr, S.A. Discovery of Proteins Associated with a Predefined Genomic Locus via DCas9-APEX-Mediated Proximity Labeling. Nat. Methods 2018, 15, 437–439. [Google Scholar] [CrossRef]
- Wang, X.; Qin, G.; Yang, J.; Zhao, C.; Ren, J.; Qu, X. A Subcellular Selective APEX2-Based Proximity Labeling Used for Identifying Mitochondrial G-Quadruplex DNA Binding Proteins. Nucleic Acids Res. 2025, 53, gkae1259. [Google Scholar] [CrossRef] [PubMed]
- Kaewsapsak, P.; Shechner, D.M.; Mallard, W.; Rinn, J.L.; Ting, A.Y. Live-Cell Mapping of Organelle-Associated RNAs via Proximity Biotinylation Combined with Protein-RNA Crosslinking. eLife 2017, 6, e29224. [Google Scholar] [CrossRef] [PubMed]
- Benhalevy, D.; Anastasakis, D.G.; Hafner, M. Proximity-CLIP Provides a Snapshot of Protein-Occupied RNA Elements in Subcellular Compartments. Nat. Methods 2018, 15, 1074–1082. [Google Scholar] [CrossRef] [PubMed]
- Benhalevy, D.; Hafner, M. Proximity-CLIP Provides a Snapshot of Protein-Occupied RNA Elements at Subcellular Resolution and Transcriptome-Wide Scale. Methods Mol. Biol. 2020, 2166, 283–305. [Google Scholar] [CrossRef]
- Han, S.; Zhao, B.S.; Myers, S.A.; Carr, S.A.; He, C.; Ting, A.Y. RNA-Protein Interaction Mapping via MS2- or Cas13-Based APEX Targeting. Proc. Natl. Acad. Sci. USA 2020, 117, 22068–22079. [Google Scholar] [CrossRef]
- Blank, H.M.; Griffith, W.P.; Polymenis, M. Targeting APEX2 to the MRNA Encoding Fatty Acid Synthase β in Yeast Identifies Interacting Proteins That Control Its Abundance in the Cell Cycle. Mol. Biol. Cell 2023, 34, br20. [Google Scholar] [CrossRef]
- Qin, W.; Myers, S.A.; Carey, D.K.; Carr, S.A.; Ting, A.Y. Spatiotemporally-Resolved Mapping of RNA Binding Proteins via Functional Proximity Labeling Reveals a Mitochondrial MRNA Anchor Promoting Stress Recovery. Nat. Commun. 2021, 12, 4980. [Google Scholar] [CrossRef]
- Kehrer, J.; Pietsch, E.; Ricken, D.; Strauss, L.; Heinze, J.M.; Gilberger, T.; Frischknecht, F. APEX-Based Proximity Labeling in Plasmodium Identifies a Membrane Protein with Dual Functions during Mosquito Infection. PLoS Pathog. 2024, 20, e1012788. [Google Scholar] [CrossRef]
- Bogaert, A.; Fijalkowska, D.; Staes, A.; Van de Steene, T.; Vuylsteke, M.; Stadler, C.; Eyckerman, S.; Spirohn, K.; Hao, T.; Calderwood, M.A.; et al. N-Terminal Proteoforms May Engage in Different Protein Complexes. Life Sci. Alliance 2023, 6, e202301972. [Google Scholar] [CrossRef]
- Lutomski, C.A.; Bennett, J.L.; El-Baba, T.J.; Wu, D.; Hinkle, J.D.; Burnap, S.A.; Liko, I.; Mullen, C.; Syka, J.E.P.; Struwe, W.B.; et al. Defining Proteoform-Specific Interactions for Drug Targeting in a Native Cell Signalling Environment. Nat. Chem. 2025, 17, 204–214. [Google Scholar] [CrossRef]
- Po, A.; Eyers, C.E. Top-Down Proteomics and the Challenges of True Proteoform Characterization. J. Proteome Res. 2023, 22, 3663. [Google Scholar] [CrossRef] [PubMed]
- Masuda, R.; Phyu Thant, K.P.; Kawahara, K.; Oki, H.; Kadonosono, T.; Kobayashi, Y.; Koide, T. A Yeast Two-Hybrid System to Obtain Triple-Helical Ligands from Combinatorial Random Peptide Libraries. J. Biol. Chem. 2024, 300, 107794. [Google Scholar] [CrossRef] [PubMed]
- Lee, C. Coimmunoprecipitation Assay. Methods Mol. Biol. 2007, 362, 401–406. [Google Scholar] [CrossRef] [PubMed]
- Naki, M.; Gourdomichali, O.; Zonke, K.; Kattan, F.G.; Makridakis, M.; Kontostathi, G.; Vlahou, A.; Doxakis, E. APEX2-Mediated Proximity Labeling Resolves the DDIT4-Interacting Proteome. Int. J. Mol. Sci. 2022, 23, 5189. [Google Scholar] [CrossRef]
- Ahamed, M.; Jaisinghani, N.; Li, M.; Winkeler, I.; Silva, S.; Previti, M.L.; Seeliger, J.C. Optimized APEX2 Peroxidase-Mediated Proximity Labeling in Fast- and Slow-Growing Mycobacteria. Methods Enzymol. 2022, 664, 267–289. [Google Scholar] [CrossRef]
- Kao, A.; Chiu, C.; Vellucci, D.; Yang, Y.; Patel, V.R.; Guan, S.; Randall, A.; Baldi, P.; Rychnovsky, S.D.; Huang, L. Development of a Novel Cross-Linking Strategy for Fast and Accurate Identification of Cross-Linked Peptides of Protein Complexes. Mol. Cell. Proteomics 2011, 10, M110.002170. [Google Scholar] [CrossRef]
- Sherwood, L.J.; Hayhurst, A. Periplasmic Nanobody-Apex2 Fusions Enable Facile Visualization of Ebola, Marburg, and Měnglà Virus Nucleoproteins, Alluding to Similar Antigenic Landscapes among Marburgvirus and Dianlovirus. Viruses 2019, 11, 364. [Google Scholar] [CrossRef]
- Ariotti, N.; Hall, T.E.; Parton, R.G. Correlative Light and Electron Microscopic Detection of GFP-Labeled Proteins Using Modular APEX. Methods Cell Biol. 2017, 140, 105–121. [Google Scholar] [CrossRef]
- Göös, H.; Kinnunen, M.; Salokas, K.; Tan, Z.; Liu, X.; Yadav, L.; Zhang, Q.; Wei, G.H.; Varjosalo, M. Human Transcription Factor Protein Interaction Networks. Nat. Commun. 2022, 13, 766. [Google Scholar] [CrossRef]
- Kim, D.I.; Cutler, J.A.; Na, C.H.; Reckel, S.; Renuse, S.; Madugundu, A.K.; Tahir, R.; Goldschmidt, H.L.; Reddy, K.L.; Huganir, R.L.; et al. BioSITe: A Method for Direct Detection and Quantitation of Site-Specific Biotinylation. J. Proteome Res. 2018, 17, 759–769. [Google Scholar] [CrossRef]
- Zhong, X.; Li, Q.; Polacco, B.J.; Patil, T.; Marley, A.; Foussard, H.; Khare, P.; Vartak, R.; Xu, J.; DiBerto, J.F.; et al. A Proximity Proteomics Pipeline with Improved Reproducibility and Throughput. Mol. Syst. Biol. 2024, 20, 952–971. [Google Scholar] [CrossRef] [PubMed]
- Dumrongprechachan, V.; Salisbury, R.B.; Soto, G.; Kumar, M.; MacDonald, M.L.; Kozorovitskiy, Y. Cell-Type and Subcellular Compartment-Specific APEX2 Proximity Labeling Reveals Activity-Dependent Nuclear Proteome Dynamics in the Striatum. Nat. Commun. 2021, 12, 4855. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.; Lee, S.Y.; Kang, M.G.; Jang, D.G.; Kim, J.; Rhee, H.W.; Kim, J.S. Super-Resolution Proximity Labeling with Enhanced Direct Identification of Biotinylation Sites. Commun. Biol. 2024, 7, 554. [Google Scholar] [CrossRef] [PubMed]
- Choudhury, R.; Venkatasubramani, A.V.; Hua, J.; Borsò, M.; Franconi, C.; Kinkley, S.; Forné, I.; Imhof, A. The Role of RNA in the Maintenance of Chromatin Domains as Revealed by Antibody-Mediated Proximity Labelling Coupled to Mass Spectrometry. eLife 2024, 13, e95718. [Google Scholar] [CrossRef]
- Roux, K.J.; Kim, D.I.; Raida, M.; Burke, B. A Promiscuous Biotin Ligase Fusion Protein Identifies Proximal and Interacting Proteins in Mammalian Cells. J. Cell Biol. 2012, 196, 801–810. [Google Scholar] [CrossRef]
- Kim, D.I.; Jensen, S.C.; Noble, K.A.; Kc, B.; Roux, K.H.; Motamedchaboki, K.; Roux, K.J. An Improved Smaller Biotin Ligase for BioID Proximity Labeling. Mol. Biol. Cell 2016, 27, 1188–1196. [Google Scholar] [CrossRef]
- Birnbaum, J.; Scharf, S.; Schmidt, S.; Jonscher, E.; Maria Hoeijmakers, W.A.; Flemming, S.; Toenhake, C.G.; Schmitt, M.; Sabitzki, R.; Bergmann, B.; et al. A Kelch13-Defined Endocytosis Pathway Mediates Artemisinin Resistance in Malaria Parasites. Science 2020, 367, 51–59. [Google Scholar] [CrossRef]
- Branon, T.C.; Bosch, J.A.; Sanchez, A.D.; Udeshi, N.D.; Svinkina, T.; Carr, S.A.; Feldman, J.L.; Perrimon, N.; Ting, A.Y. Efficient Proximity Labeling in Living Cells and Organisms with TurboID. Nat. Biotechnol. 2018, 36, 880–898. [Google Scholar] [CrossRef]
- Kido, K.; Yamanaka, S.; Nakano, S.; Motani, K.; Shinohara, S.; Nozawa, A.; Kosako, H.; Ito, S.; Sawasaki, T. AirID, a Novel Proximity Biotinylation Enzyme, for Analysis of Protein-Protein Interactions. eLife 2020, 9, e54983. [Google Scholar] [CrossRef]
- Schaack, G.A.; Sullivan, O.M.; Mehle, A. Identifying Protein-Protein Interactions by Proximity Biotinylation with AirID and SplitAirID. Curr. Protoc. 2023, 3, e702. [Google Scholar] [CrossRef]
- Schiapparelli, L.M.; McClatchy, D.B.; Liu, H.H.; Sharma, P.; Yates, J.R.; Cline, H.T. Direct Detection of Biotinylated Proteins by Mass Spectrometry. J. Proteome Res. 2014, 13, 3966–3978. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, K.; Zhou, Y.; Yang, J.; Zou, P. Protocol for Proximity-Dependent Proteomic Profiling in Yeast Cells by APEX and Alk-Ph Probe. STAR Protoc. 2020, 1, 100137. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez-Rus, L.I.; Vos, E.; Pantoja-Uceda, D.; Hoffka, G.; Gutierrez-Cardenas, J.; Ortega-Muñoz, M.; Risso, V.A.; Jimenez, M.A.; Kamerlin, S.C.L.; Sanchez-Ruiz, J.M. Enzyme Enhancement Through Computational Stability Design Targeting NMR-Determined Catalytic Hotspots. J. Am. Chem. Soc. 2025, 147, 14978–14996. [Google Scholar] [CrossRef] [PubMed]
- Tomasello, G.; Armenia, I.; Molla, G. The Protein Imager: A Full-Featured Online Molecular Viewer Interface with Server-Side HQ-Rendering Capabilities. Bioinformatics 2020, 36, 2909–2911. [Google Scholar] [CrossRef]
Substrates | Molecular Formula | CAS Registry Number | References |
---|---|---|---|
Hydrogen Peroxide | H2O2 | 7722-84-1 | [62] |
Ascorbic Acid | C6H8O6 | 50-81-7 | [62] |
Guaiacol | C7H8O2 | 90-05-1 | [50,62,78] |
Pyrogallol | C6H6O3 | 87-66-1 | [62] |
P-Cresol | C7H8O | 106-44-5 | [50,81] |
o-Dianisidine | C14H16N2O2 | 119-90-4 | [82] |
Salicylhydroxamic acid | C7H7NO3 | 89-73-6 | [50] |
3,3’-Diaminobenzidine | C12H14N4 | 91-95-2 | [83] |
Amplex™ Red | C14H11NO4 | 119171-73-2 | [12,84] |
Biotin-tyramide / Biotin–phenol | C18H25N3O3S | 41994-02-9 | [70] |
Biotin-LC-LC-tyramide (BxxP) | C30H47N5O5S | 851113-28-5 | [85] |
Desthiobiotin-Phenol | C18H27N3O3 | 2242902-55-0 | [86] |
Adamantane-Phenol | C24H36N2O4 | – | [87] |
Biotin-Aniline | C18H26N4O2S | 769933-15-5 | [88] |
Biotin-Naphthylamine | C23H30N4O2S | 2375201-60-6 | [88,89] |
Alkyne tyramide/Alkyne–phenol | C13H15NO2 | 1694495-59-4 | [90] |
Method/Strategy | Biological Question Addressed | Reference | |
---|---|---|---|
Organelle Mapping | Mitochondria-targeted APEX-catalyzed proximity labeling | Comprehensive proteomic mapping of mitochondrial compartments | [70] |
Mapping Intermembrane space-selective APEX biotinylation | Profiling mitochondrial intermembrane space proteome | [103] | |
APEX2-directed evolution for enhanced subcellular proteomics | Improved labeling efficiency for organelle-resolved proteomic studies | [14] | |
APEX2 proximity proteomics in Trypanosoma brucei flagellum | Resolving proteome composition of flagellum subdomains | [97] | |
APEX-based proximity labeling in Plasmodium | Identification of microneme proteins in Plasmodium berghei ookinetes | [148] | |
Protein-Protein Interactions | Multidimensional proximity labeling of GPCR complexes with APEX2 | Tracking transient signaling networks | [108] |
APEX2-mediated proximity labeling in Plasmodium falciparum infected erythrocytes | Identification of KAHRP interactors | [102] | |
CRISPR/Cas9 genome editing and APEX2 | Study of native protein–protein interactions in live Drosophila ovary tissue | [121] | |
Protein-RNA Interactions | APEX-RIP (RNA Immunoprecipitation) approach | Mapping RNAs localized to specific proteins or compartments | [142] |
Proximity-CLIP combines APEX biotinylation with UV-induced cross-linking | Maps regulatory interactions within critical cellular compartments | ||
APEX-Seq (APEX-catalyzed RNA biotinylation and sequencing) | Subcellular transcriptome profiling with spatial resolution | [136] | |
dCas13-APEX2 by a guide RNA to target unmodified hTR | Tagging of endogenous proteins | [145] | |
dCas13d-APEX2 fusion targeting FAS1 mRNA | Identification of mRNA-specific interacting proteins | [146] | |
Spatially resolved proteomics using optimized APEX2 | High-resolution mapping of cellular microdomains | [147] | |
Protein-DNA Interactions | APEX2 fusion targeting nuclear lamina and DNA-associated proteins | Mapping nuclear DNA–protein interaction landscapes | [100] |
dCas9-APEX2 adapted to DNA-associated proteins | Specific profiling of subnuclear proteomes of telomeres and centromeres | [140] | |
Proximity labeling of mitochondrial DNA G-quadruplex interactors | Identification of G4-binding proteins in mitochondrial DNA | [141] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferrer, J.M.Q.; de Oliveira, L.S.; Goulart, P.M.V.; Campos, T.A.S.; Martin, C.; Grellier, P.; Bastos, I.M.D.; Charneau, S. Next-Generation Protein–Ligand Interaction Networks: APEX as a Powerful Technology. Proteomes 2025, 13, 26. https://doi.org/10.3390/proteomes13030026
Ferrer JMQ, de Oliveira LS, Goulart PMV, Campos TAS, Martin C, Grellier P, Bastos IMD, Charneau S. Next-Generation Protein–Ligand Interaction Networks: APEX as a Powerful Technology. Proteomes. 2025; 13(3):26. https://doi.org/10.3390/proteomes13030026
Chicago/Turabian StyleFerrer, José Miguel Quintero, Lucas Silva de Oliveira, Paula Marian Vieira Goulart, Thiago Albuquerque Souza Campos, Coralie Martin, Philippe Grellier, Izabela Marques Dourado Bastos, and Sébastien Charneau. 2025. "Next-Generation Protein–Ligand Interaction Networks: APEX as a Powerful Technology" Proteomes 13, no. 3: 26. https://doi.org/10.3390/proteomes13030026
APA StyleFerrer, J. M. Q., de Oliveira, L. S., Goulart, P. M. V., Campos, T. A. S., Martin, C., Grellier, P., Bastos, I. M. D., & Charneau, S. (2025). Next-Generation Protein–Ligand Interaction Networks: APEX as a Powerful Technology. Proteomes, 13(3), 26. https://doi.org/10.3390/proteomes13030026