The Current State of Proteomics and Metabolomics for Inner Ear Health and Disease
Abstract
1. Introduction
2. Investigating Inner Ear Diseases through Proteomics and Metabolomics
2.1. Meniere’s Disease (MD)
2.2. Ototoxicity
2.3. Noise-Induced Hearing Loss (NIHL)
2.4. Vestibular Schwannoma (VS)
3. Recent Progress and Future Directions in Inner Ear Omics
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Srivastava, S.; Sivasankar, G.; Dua, G. Review of research on environmental noise standards/policies/guidelines and measurement methodology in high-speed rail. Noise Vib. Worldw. 2022, 53, 487–497. [Google Scholar] [CrossRef]
- Nakashima, T.; Sone, M.; Teranishi, M.; Yoshida, T.; Terasaki, H.; Kondo, M.; Yasuma, T.; Wakabayashi, T.; Nagatani, T.; Naganawa, S. A perspective from magnetic resonance imaging findings of the inner ear: Relationships among cerebrospinal, ocular and inner ear fluids. Auris Nasus Larynx 2012, 39, 345–355. [Google Scholar] [CrossRef] [PubMed]
- Thalmann, I. Proteomics and the inner ear. Dis. Markers 2001, 17, 259–270. [Google Scholar] [CrossRef] [PubMed]
- Curthoys, I.S.; Grant, J.W.; Pastras, C.J.; Brown, D.J.; Burgess, A.M.; Brichta, A.M.; Lim, R. A review of mechanical and synaptic processes in otolith transduction of sound and vibration for clinical VEMP testing. J. Neurophysiol. 2019, 122, 259–276. [Google Scholar] [CrossRef] [PubMed]
- Heine, P.A. Anatomy of the ear. Vet. Clin. Small Anim. Pract. 2004, 34, 379–395. [Google Scholar] [CrossRef] [PubMed]
- Perez-Flores, M.C.; Verschooten, E.; Lee, J.H.; Kim, H.J.; Joris, P.X.; Yamoah, E.N. Intrinsic mechanical sensitivity of mammalian auditory neurons as a contributor to sound-driven neural activity. Elife 2022, 11, e74948. [Google Scholar] [CrossRef] [PubMed]
- Neng, L.; Shi, X. Vascular pathology and hearing disorders. Curr. Opin. Physiol. 2020, 18, 79–84. [Google Scholar] [CrossRef]
- Doncheva, N.T.; Palasca, O.; Yarani, R.; Litman, T.; Anthon, C.; Groenen, M.A.M.; Stadler, P.F.; Pociot, F.; Jensen, L.J.; Gorodkin, J. Human pathways in animal models: Possibilities and limitations. Nucleic Acids Res. 2021, 49, 1859–1871. [Google Scholar] [CrossRef]
- Moshizi, S.A.; Pastras, C.J.; Sharma, R.; Mahmud, M.A.P.; Ryan, R.; Razmjou, A.; Asadnia, M. Recent advancements in bioelectronic devices to interface with the peripheral vestibular system. Biosens. Bioelectron. 2022, 214, 114521. [Google Scholar]
- Petitpré, C.; Faure, L.; Uhl, P.; Fontanet, P.; Filova, I.; Pavlinkova, G.; Adameyko, I.; Hadjab, S.; Lallemend, F. Single-cell RNA-sequencing analysis of the developing mouse inner ear identifies molecular logic of auditory neuron diversification. Nat. Commun. 2022, 13, 3878. [Google Scholar] [CrossRef]
- Gomaa, N.A.; Jimoh, Z.; Campbell, S.; Zenke, J.K.; Szczepek, A.J. Biomarkers for inner ear disorders: Scoping review on the role of biomarkers in hearing and balance disorders. Diagnostics 2020, 11, 42. [Google Scholar] [CrossRef] [PubMed]
- Achard, V.; Ceyzériat, K.; Tournier, B.B.; Frisoni, G.B.; Garibotto, V.; Zilli, T. Biomarkers to Evaluate Androgen Deprivation Therapy for Prostate Cancer and Risk of Alzheimer’s Disease and Neurodegeneration: Old Drugs, New Concerns. Front. Oncol. 2021, 11, 734881. [Google Scholar] [CrossRef]
- Mahshid, S.S.; Higazi, A.M.; Ogier, J.M.; Dabdoub, A. Extracellular Biomarkers of Inner Ear Disease and Their Potential for Point-of-Care Diagnostics. Adv. Sci. 2022, 9, 2104033. [Google Scholar] [CrossRef] [PubMed]
- Rolls, E.T.; Rauschecker, J.P.; Deco, G.; Huang, C.-C.; Feng, J. Auditory cortical connectivity in humans. Cereb. Cortex 2023, 33, 6207–6227. [Google Scholar] [CrossRef] [PubMed]
- Szeto, I.Y.Y.; Chu, D.K.H.; Chen, P.; Chu, K.C.; Au, T.Y.K.; Leung, K.K.H.; Huang, Y.-H.; Wynn, S.L.; Mak, A.C.Y.; Chan, Y.-S. SOX9 and SOX10 control fluid homeostasis in the inner ear for hearing through independent and cooperative mechanisms. Proc. Natl. Acad. Sci. USA 2022, 119, e2122121119. [Google Scholar] [CrossRef] [PubMed]
- Kashizadeh, A.; Pastras, C.; Rabiee, N.; Mohseni-Dargah, M.; Mukherjee, P.; Asadnia, M. Potential nanotechnology-based diagnostic and therapeutic approaches for Meniere’s disease. Nanomed. Nanotechnol. Biol. Med. 2022, 46, 102599. [Google Scholar] [CrossRef] [PubMed]
- Al-Amrani, S.; Al-Jabri, Z.; Al-Zaabi, A.; Alshekaili, J.; Al-Khabori, M. Proteomics: Concepts and applications in human medicine. World J. Biol. Chem. 2021, 12, 57. [Google Scholar] [CrossRef] [PubMed]
- van Dieken, A.; Staecker, H.; Schmitt, H.; Harre, J.; Pich, A.; Roßberg, W.; Lenarz, T.; Durisin, M.; Warnecke, A. Bioinformatic analysis of the perilymph proteome to generate a human protein atlas. Front. Cell Dev. Biol. 2022, 10, 871. [Google Scholar] [CrossRef]
- Lay, J.O., Jr.; Liyanage, R.; Borgmann, S.; Wilkins, C.L. Problems with the “omics”. TrAC Trends Anal. Chem. 2006, 25, 1046–1056. [Google Scholar]
- Sun, Y.; Wang, L.; Zhu, T.; Wu, B.; Wang, G.; Luo, Z.; Li, C.; Wei, W.; Liu, Z. Single-cell transcriptomic landscapes of the otic neuronal lineage at multiple early embryonic ages. Cell Rep. 2022, 38, 110542. [Google Scholar] [CrossRef]
- Caspermeyer, J. All Ears: Genetic Bases of Mammalian Inner Ear Evolution. Mol. Biol. Evol. 2019, 36, 2925–2926. [Google Scholar] [CrossRef] [PubMed]
- Low, T.Y.; Syafruddin, S.E.; Mohtar, M.A.; Vellaichamy, A.; A Rahman, N.S.; Pung, Y.-F.; Tan, C.S.H. Recent progress in mass spectrometry-based strategies for elucidating protein–protein interactions. Cell. Mol. Life Sci. 2021, 78, 5325–5339. [Google Scholar] [CrossRef] [PubMed]
- Wojtkiewicz, M.; Berg Luecke, L.; Kelly, M.I.; Gundry, R.L. Facile preparation of peptides for mass spectrometry analysis in bottom-up proteomics workflows. Curr. Protoc. 2021, 1, e85. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Available online: https://www.who.int/ (accessed on 2 February 2024).
- Jiam, N.T.; Rauch, S.D. Inner ear therapeutics and the war on hearing loss: Systemic barriers to success. Front. Neurosci. 2023, 17, 1169122. [Google Scholar] [CrossRef]
- Elliott, K.L.; Fritzsch, B.; Yamoah, E.N.; Zine, A. Age-related hearing loss: Sensory and neural etiology and their interdependence. Front. Aging Neurosci. 2022, 14, 814528. [Google Scholar] [CrossRef]
- Lassaletta, L.; Calvino, M.; Morales-Puebla, J.M.; Lapunzina, P.; Rodriguez-De La Rosa, L.; Varela-Nieto, I.; Martinez-Glez, V. Biomarkers in vestibular schwannoma–associated hearing loss. Front. Neurol. 2019, 10, 978. [Google Scholar] [CrossRef] [PubMed]
- Kersigo, J.; D’Angelo, A.; Gray, B.D.; Soukup, G.A.; Fritzsch, B. The role of sensory organs and the forebrain for the development of the craniofacial shape as revealed by Foxg1-cre-mediated microRNA loss. Genesis 2011, 49, 326–341. [Google Scholar] [CrossRef] [PubMed]
- Shew, M.; Wichova, H.; St Peter, M.; Warnecke, A.; Staecker, H. Distinct microRNA profiles in the perilymph and serum of patients with Menière’s disease. Front. Neurol. 2021, 12, 646928. [Google Scholar] [CrossRef] [PubMed]
- Shew, M.; Warnecke, A.; Lenarz, T.; Schmitt, H.; Gunewardena, S.; Staecker, H. Feasibility of microRNA profiling in human inner ear perilymph. Neuroreport 2018, 29, 894–901. [Google Scholar] [CrossRef]
- De Luca, P.; Cassandro, C.; Ralli, M.; Gioacchini, F.M.; Turchetta, R.; Orlando, M.P.; Iaccarino, I.; Cavaliere, M.; Cassandro, E.; Scarpa, A. Dietary restriction for the treatment of Meniere’s disease. Transl. Med. UniSa 2020, 22, 5. [Google Scholar]
- Kutlubaev, M.A.; Pyykko, I.; Hardy, T.A.; Gürkov, R.J.P.N. Menière’s disease. Pract. Neurol. 2021, 21, 137–142. [Google Scholar] [CrossRef]
- Swain, S.K. Current treatment of Meniere’s disease. Matrix Sci. Medica 2023, 7, 1–6. [Google Scholar] [CrossRef]
- Frejo, L.; Lopez-Escamez, J.A. Recent advances in understanding molecular bases of Ménière’s disease. Fac. Rev. 2023, 12, 11. [Google Scholar] [CrossRef]
- Yang, C.-H.; Yang, M.-Y.; Hwang, C.-F.; Lien, K.-H. Functional and Molecular Markers for Hearing Loss and Vertigo Attacks in Meniere’s Disease. Int. J. Mol. Sci. 2023, 24, 2504. [Google Scholar] [CrossRef]
- Alawieh, A.; Mondello, S.; Kobeissy, F.; Shibbani, K.; Bassim, M. Proteomics studies in inner ear disorders: Pathophysiology and biomarkers. Expert Rev. Proteom. 2015, 12, 185–196. [Google Scholar] [CrossRef]
- Chiarella, G.; Saccomanno, M.; Scumaci, D.; Gaspari, M.; Faniello, M.C.; Quaresima, B.; Di Domenico, M.; Ricciardi, C.; Petrolo, C.; Cassandro, C. Proteomics in Ménière disease. J. Cell. Physiol. 2012, 227, 308–312. [Google Scholar] [CrossRef]
- Flook, M.; Lopez Escamez, J.A. Meniere’s disease: Genetics and the immune system. Curr. Otorhinolaryngol. Rep. 2018, 6, 24–31. [Google Scholar] [CrossRef]
- Kim, S.H.; Kim, J.Y.; Lee, H.J.; Gi, M.; Kim, B.G.; Choi, J.Y. Autoimmunity as a candidate for the etiopathogenesis of Meniere’s disease: Detection of autoimmune reactions and diagnostic biomarker candidate. PLoS ONE 2014, 9, e111039. [Google Scholar] [CrossRef]
- Lin, H.-C.; Ren, Y.; Lysaght, A.C.; Kao, S.-Y.; Stankovic, K.M. Proteome of normal human perilymph and perilymph from people with disabling vertigo. PLoS ONE 2019, 14, e0218292. [Google Scholar] [CrossRef]
- Schmitt, H.A.; Pich, A.; Prenzler, N.K.; Lenarz, T.; Harre, J.; Staecker, H.; Durisin, M.; Warnecke, A. Personalized proteomics for precision diagnostics in hearing loss: Disease-specific analysis of human perilymph by mass spectrometry. ACS Omega 2021, 6, 21241–21254. [Google Scholar] [CrossRef]
- Lin, Z.; He, B.; Chen, C.; Wu, Q.; Wang, X.; Hou, M.; Duan, M.; Yang, J.; Sun, L. Potential biomarkers in peripheral blood mononuclear cells of patients with sporadic Ménière’s disease based on proteomics. Acta Oto-Laryngol. 2023, 143, 636–646. [Google Scholar] [CrossRef]
- Mavel, S.; Lefèvre, A.; Bakhos, D.; Dufour-Rainfray, D.; Blasco, H.; Emond, P. Validation of metabolomics analysis of human perilymph fluid using liquid chromatography-mass spectroscopy. Hear. Res. 2018, 367, 129–136. [Google Scholar] [CrossRef]
- Huang, L.; Wang, Q.; Huang, C.; Zhou, Z.; Peng, A.; Zhang, Z. Untargeted Metabolomic Analysis in Endolymphatic Sac Luminal Fluid from Patients with Meniere’s Disease. J. Assoc. Res. Otolaryngol. 2023, 24, 239–251. [Google Scholar] [CrossRef]
- Ganesan, P.; Schmiedge, J.; Manchaiah, V.; Swapna, S.; Dhandayutham, S.; Kothandaraman, P.P. Ototoxicity: A challenge in diagnosis and treatment. J. Audiol. Otol. 2018, 22, 59. [Google Scholar] [CrossRef]
- Rybak, L.P.; Ramkumar, V. Ototoxicity. Kidney Int. 2007, 72, 931–935. [Google Scholar] [CrossRef]
- Ezaki, T.; Nishiumi, S.; Azuma, T.; Yoshida, M. Metabolomics for the early detection of cisplatin-induced nephrotoxicity. Toxicol. Res. 2017, 6, 843–853. [Google Scholar] [CrossRef]
- Jamesdaniel, S.; Ding, D.; Kermany, M.H.; Davidson, B.A.; Knight Iii, P.R.; Salvi, R.; Coling, D.E. Proteomic analysis of the balance between survival and cell death responses in cisplatin-mediated ototoxicity. J. Proteome Res. 2008, 7, 3516–3524. [Google Scholar] [CrossRef]
- Waissbluth, S.; Garnier, D.; Akinpelu, O.V.; Salehi, P.; Daniel, S.J. The impact of erdosteine on cisplatin-induced ototoxicity: A proteomics approach. Eur. Arch. Oto-Rhino-Laryngol. 2017, 274, 1365–1374. [Google Scholar] [CrossRef]
- Videhult Pierre, P.; Haglöf, J.; Linder, B.; Engskog, M.K.R.; Arvidsson, T.; Pettersson, C.; Fransson, A.; Laurell, G. Cisplatin-induced metabolome changes in serum: An experimental approach to identify markers for ototoxicity. Acta Oto-Laryngol. 2017, 137, 1024–1030. [Google Scholar] [CrossRef]
- Cui, C.; Zhu, L.; Wang, Q.; Liu, R.; Xie, D.; Guo, Y.; Yu, D.; Wang, C.; Chen, D.; Jiang, P. A GC–MS-based untargeted metabolomics approach for comprehensive metabolic profiling of vancomycin-induced toxicity in mice. Heliyon 2022, 8, e09869. [Google Scholar] [CrossRef]
- Rabinowitz, P.M. Noise-induced hearing loss. Am. Fam. Physician 2000, 61, 2749–2756. [Google Scholar]
- Ding, T.; Yan, A.; Liu, K. What is noise-induced hearing loss? Br. J. Hosp. Med. 2019, 80, 525–529. [Google Scholar] [CrossRef]
- Jamesdaniel, S.; Hu, B.; Kermany, M.H.; Jiang, H.; Ding, D.; Coling, D.; Salvi, R. Noise induced changes in the expression of p38/MAPK signaling proteins in the sensory epithelium of the inner ear. J. Proteom. 2011, 75, 410–424. [Google Scholar] [CrossRef]
- Yeo, N.K.; Ahn, Y.S.; Kim, J.W.; Choi, S.H.; Lim, G.C.; Chung, J.W. Proteomic Analysis of the Protein Expression in the Cochlea of Noise-Exposed Mice. Korean J. Audiol. 2011, 15, 107–113. [Google Scholar]
- Miao, L.; Zhang, J.; Yin, L.; Pu, Y. TMT-based quantitative proteomics reveals cochlear protein profile alterations in mice with noise-induced hearing loss. Int. J. Environ. Res. Public Health 2022, 19, 382. [Google Scholar] [CrossRef]
- Tumane, R.G.; Thakkar, L.; Pingle, S.K.; Jain, R.K.; Jawade, A.A.; Raje, D.V. Expression of serum proteins in noise induced hearing loss workers of mining based industry. J. Proteom. 2021, 240, 104185. [Google Scholar] [CrossRef]
- Fujita, T.; Yamashita, D.; Irino, Y.; Kitamoto, J.; Fukuda, Y.; Inokuchi, G.; Hasegawa, S.; Otsuki, N.; Yoshida, M.; Nibu, K.-I. Metabolomic profiling in inner ear fluid by gas chromatography/mass spectrometry in guinea pig cochlea. Neurosci. Lett. 2015, 606, 188–193. [Google Scholar] [CrossRef]
- Pirttilä, K.; Videhult Pierre, P.; Haglöf, J.; Engskog, M.; Hedeland, M.; Laurell, G.; Arvidsson, T.; Pettersson, C. An LCMS-based untargeted metabolomics protocol for cochlear perilymph: Highlighting metabolic effects of hydrogen gas on the inner ear of noise exposed Guinea pigs. Metabolomics 2019, 15, 138. [Google Scholar] [CrossRef]
- Ji, L.; Lee, H.-J.; Wan, G.; Wang, G.-P.; Zhang, L.; Sajjakulnukit, P.; Schacht, J.; Lyssiotis, C.A.; Corfas, G. Auditory metabolomics, an approach to identify acute molecular effects of noise trauma. Sci. Rep. 2019, 9, 9273. [Google Scholar] [CrossRef]
- Miao, L.; Zhang, J.; Yin, L.; Pu, Y. Metabolomics analysis reveals alterations in cochlear metabolic profiling in mice with noise-induced hearing loss. BioMed Res. Int. 2022, 2022, 9548316. [Google Scholar] [CrossRef]
- Boullaud, L.; Blasco, H.; Caillaud, E.; Emond, P.; Bakhos, D. Immediate-Early Modifications to the Metabolomic Profile of the Perilymph Following an Acoustic Trauma in a Sheep Model. J. Clin. Med. 2022, 11, 4668. [Google Scholar] [CrossRef]
- Zhang, X.; Li, N.; Cui, Y.; Wu, H.; Jiao, J.; Yu, Y.; Gu, G.; Chen, G.; Zhang, H.; Yu, S. Plasma metabolomics analyses highlight the multifaceted effects of noise exposure and the diagnostic power of dysregulated metabolites for noise-induced hearing loss in steel workers. Front. Mol. Biosci. 2022, 9, 907832. [Google Scholar] [CrossRef]
- Miao, L.; Wang, B.; Zhang, J.; Yin, L.; Pu, Y. Plasma metabolomic profiling in workers with noise-induced hearing loss: A pilot study. Environ. Sci. Pollut. Res. 2021, 28, 68539–68550. [Google Scholar] [CrossRef]
- Li, N.; Zhang, X.; Cui, Y.; Wu, H.; Yu, Y.; Yu, S. Dysregulations of metabolites and gut microbes and their associations in rats with noise induced hearing loss. Front. Microbiol. 2023, 14, 1229407. [Google Scholar] [CrossRef]
- Carlson, M.L.; Link, M.J. Vestibular schwannomas. New Engl. J. Med. 2021, 384, 1335–1348. [Google Scholar] [CrossRef]
- Paldor, I.; Chen, A.S.; Kaye, A.H. Growth rate of vestibular schwannoma. J. Clin. Neurosci. 2016, 32, 1–8. [Google Scholar] [CrossRef]
- Kersigo, J.; Gu, L.; Xu, L.; Pan, N.; Vijayakuma, S.; Jones, T.; Shibata, S.B.; Fritzsch, B.; Hansen, M.R. Effects of Neurod1 expression on mouse and human schwannoma cells. Laryngoscope 2021, 131, E259–E270. [Google Scholar] [CrossRef]
- Pandrangi, V.C.; Han, A.Y.; Alonso, J.E.; Peng, K.A.; John, M.A.S. An update on epidemiology and management trends of vestibular schwannomas. Otol. Neurotol. 2020, 41, 411–417. [Google Scholar] [CrossRef]
- Lysaght, A.C.; Kao, S.-Y.; Paulo, J.A.; Merchant, S.N.; Steen, H.; Stankovic, K.M. Proteome of human perilymph. J. Proteome Res. 2011, 10, 3845–3851. [Google Scholar] [CrossRef]
- Kazemizadeh Gol, M.A.; Lund, T.C.; Levine, S.C.; Adams, M.E. Quantitative proteomics of vestibular schwannoma cerebrospinal fluid: A pilot study. Otolaryngol. Head Neck Surg. 2016, 154, 902–906. [Google Scholar] [CrossRef]
- Huang, X.; Xu, J.; Shen, Y.; Zhang, L.; Xu, M.; Chen, M.; Ren, J.; Zhou, L.; Gong, H.; Zhong, P. Protein profiling of cerebrospinal fluid from patients undergoing vestibular schwannoma surgery and clinical significance. Biomed. Pharmacother. 2019, 116, 108985. [Google Scholar] [CrossRef]
- Edvardsson Rasmussen, J.; Laurell, G.; Rask-Andersen, H.; Bergquist, J.; Eriksson, P.O. The proteome of perilymph in patients with vestibular schwannoma. A possibility to identify biomarkers for tumor associated hearing loss? PLoS ONE 2018, 13, e0198442. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, Y.; Shi, Y.; Yin, D.; Dai, P.; Zhao, W.; Zhang, T. Identification of predictive proteins and biological pathways for the tumorigenicity of vestibular schwannoma by proteomic profiling. Proteom. Clin. Appl. 2019, 13, 1800175. [Google Scholar] [CrossRef]
- Seo, J.-H.; Park, K.-H.; Jeon, E.-J.; Chang, K.-H.; Lee, H.; Lee, W.; Park, Y.-S. Proteomic analysis of vestibular schwannoma: Conflicting role of apoptosis on the pathophysiology of sporadic vestibular schwannoma. Otol. Neurotol. 2015, 36, 714–719. [Google Scholar] [CrossRef]
- Yan, S.; Wang, Q.; Huo, Z.; Yang, T.; Yin, X.; Wang, Z.; Zhang, Z.; Wu, H. Gene expression profiles between cystic and solid vestibular schwannoma indicate susceptible molecules and pathways in the cystic formation of vestibular schwannoma. Funct. Integr. Genom. 2019, 19, 673–684. [Google Scholar] [CrossRef]
- Xu, J.; Ma, J.; Shi, Y.; Yin, D.; Zhang, Y.; Dai, P.; Zhao, W.; Zhang, T. Differential Protein Expression between Cystic and Solid Vestibular Schwannoma Using Tandem Mass Tag-Based Quantitative Proteomic Analysis. Proteom. Clin. Appl. 2020, 14, 1900112. [Google Scholar] [CrossRef]
- Sommella, E.; Salviati, E.; Caponigro, V.; Grimaldi, M.; Musella, S.; Bertamino, A.; Cacace, L.; Palladino, R.; Mauro, G.D.; Marini, F. MALDI Mass Spectrometry Imaging highlights specific metabolome and lipidome profiles in salivary gland tumor tissues. Metabolites 2022, 12, 530. [Google Scholar] [CrossRef]
- Low, V.; Li, Z.; Blenis, J. Metabolite activation of tumorigenic signaling pathways in the tumor microenvironment. Sci. Signal. 2022, 15, eabj4220. [Google Scholar] [CrossRef]
- Sato, H.; Shimizu, A.; Okawa, T.; Uzu, M.; Goto, M.; Hisaka, A. Metabolome Shift in Both Metastatic Breast Cancer Cells and Astrocytes Which May Contribute to the Tumor Microenvironment. Int. J. Mol. Sci. 2021, 22, 7430. [Google Scholar] [CrossRef]
- Dastmalchi, F.; Deleyrolle, L.P.; Karachi, A.; Mitchell, D.A.; Rahman, M. Metabolomics monitoring of treatment response to brain tumor immunotherapy. Front. Oncol. 2021, 11, 691246. [Google Scholar] [CrossRef]
- Tipirneni, K.E.; Nicholas, B.D. Otologic Changes and Disorders. In Geriatric Medicine: A Person Centered Evidence Based Approach; Springer: Berlin/Heidelberg, Germany, 2024; pp. 691–708. [Google Scholar]
- Wang, C.; Qiu, J.; Li, G.; Wang, J.; Liu, D.; Chen, L.; Song, X.; Cui, L.; Sun, Y. Application and prospect of quasi-targeted metabolomics in age-related hearing loss. Hear. Res. 2022, 424, 108604. [Google Scholar] [CrossRef]
- Wang, X.; Gao, Y.; Jiang, R. Diagnostic and predictive values of serum metabolic profiles in sudden sensorineural hearing loss patients. Front. Mol. Biosci. 2022, 9, 982561. [Google Scholar] [CrossRef]
- Sinha, A.; Mann, M. A beginner’s guide to mass spectrometry–based proteomics. Biochem. 2020, 42, 64–69. [Google Scholar] [CrossRef]
- Carbonara, K.; Andonovski, M.; Coorssen, J.R. Proteomes are of proteoforms: Embracing the complexity. Proteomes 2021, 9, 38. [Google Scholar] [CrossRef]
- Chen, W.; Ding, Z.; Zang, Y.; Liu, X. Characterization of proteoform post-translational modifications by top-down and bottom-up mass spectrometry in conjunction with UniProt annotations. bioRxiv 2023, 22, 3178–3189. [Google Scholar]
- Cassidy, L.; Kaulich, P.T.; Tholey, A. Proteoforms expand the world of microproteins and short open reading frame-encoded peptides. Iscience 2023, 26, 106069. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, W.; Zhao, Y.; Wang, X.; Guo, G. Technology development trend of electrospray ionization mass spectrometry for single-cell proteomics. TrAC Trends Anal. Chem. 2022, 159, 116913. [Google Scholar] [CrossRef]
- Zhu, Y.; Scheibinger, M.; Ellwanger, D.C.; Krey, J.F.; Choi, D.; Kelly, R.T.; Heller, S.; Barr-Gillespie, P.G. Single-cell proteomics reveals changes in expression during hair-cell development. Elife 2019, 8, e50777. [Google Scholar] [CrossRef]
- Arambula, A.M.; Gu, S.; Warnecke, A.; Schmitt, H.A.; Staecker, H.; Hoa, M. In Silico Localization of Perilymph Proteins Enriched in Meńieŕe Disease Using Mammalian Cochlear Single-cell Transcriptomics. Otol. Neurotol. Open 2023, 3, e027. [Google Scholar] [CrossRef]
- Chan, P.P.Y.; Wasinger, V.C.; Leong, R.W. Current application of proteomics in biomarker discovery for inflammatory bowel disease. World J. Gastrointest. Pathophysiol. 2016, 7, 27. [Google Scholar] [CrossRef]
- Lill, J.R.; Mathews, W.R.; Rose, C.M.; Schirle, M. Proteomics in the pharmaceutical and biotechnology industry: A look to the next decade. Expert Rev. Proteom. 2021, 18, 503–526. [Google Scholar] [CrossRef]
- Sinha, A.; Singh, C.; Parmar, D.; Singh, M.P. Proteomics in clinical interventions: Achievements and limitations in biomarker development. Life Sci. 2007, 80, 1345–1354. [Google Scholar] [CrossRef]
- Gramolini, A.O.; Peterman, S.M.; Kislinger, T. Mass spectrometry–based proteomics: A useful tool for biomarker discovery? Clin. Pharmacol. Ther. 2008, 83, 758–760. [Google Scholar] [CrossRef]
- Peter, M.S.; Warnecke, A.; Staecker, H. A window of opportunity: Perilymph sampling from the round window membrane can advance inner ear diagnostics and therapeutics. J. Clin. Med. 2022, 11, 316. [Google Scholar] [CrossRef]
- Shi, X. Physiopathology of the cochlear microcirculation. Hear. Res. 2011, 282, 10–24. [Google Scholar] [CrossRef]
- Hirose, K.; Hartsock, J.J.; Johnson, S.; Santi, P.; Salt, A.N. Systemic lipopolysaccharide compromises the blood-labyrinth barrier and increases entry of serum fluorescein into the perilymph. J. Assoc. Res. Otolaryngol. 2014, 15, 707–719. [Google Scholar] [CrossRef]
- Shi, X.; Wang, Z.; Ren, W.; Chen, L.; Xu, C.; Li, M.; Fan, S.; Xu, Y.; Chen, M.; Zheng, F. LDL receptor-related protein 1 (LRP1), a novel target for opening the blood-labyrinth barrier (BLB). Signal Transduct. Target. Ther. 2022, 7, 175. [Google Scholar] [CrossRef]
- Mulry, E.; Parham, K. Inner ear proteins as potential biomarkers. Otol. Neurotol. 2020, 41, 145–152. [Google Scholar] [CrossRef]
- Thalmann, I. Inner ear proteomics: A fad or hear to stay. Brain Res. 2006, 1091, 103–112. [Google Scholar] [CrossRef]
Disease | Participants | Sample | Method | Expression Protein Changes/Key Proteins | Ref |
---|---|---|---|---|---|
Meniere’s disease (MD) | Human | Plasma | 2-DE and LC-MS/MS | Upregulation of complement factors H and B, fibrinogen alpha and gamma chains, beta-actin, and pigment epithelium-derived factors Downregulation of beta-2 glycoprotein-1, vitamin D binding protein, and apolipoprotein-1 | [37] |
Endolymphatic fluid | 1-DE and LC-MS/MS | Upregulation of immunoglobulin (Including IgM, Ig kappa light chain variable region, Ig heavy chain variable region; VH3 family, Ig heavy chain VHDJ region, AF1 non-allergic IgE heavy chain IGHV3-74) and interferon regulatory factor 7 | [39] | ||
Perilymphatic fluid | SDS-PAGE and HPLC-MS/MS | Upregulation of AACT, HGFAC, EFEMP1, and TGFBI | [40] | ||
LC-MS | Upregulation of short-chain dehydrogenase/reductase family 9C member 7 (SDR9C7) | [41] | |||
Ototoxicity | Rat | Cochlear tissue | Antibody microarray | Upregulation of ATF2, JAB1, Mdm2, Rsk1, SUMO-1, myosin VI, p21WAF1Cip1, PRMT4, reelin, Tal, granzyme B, SLIPR/MAGI3 and RIP Downregulation of active caspase 3, EGF-epidermal growth factor, p35, and ubiquitin C-terminal hydrolase L1 | [48] |
SDS-PAGE and LC-MS/MS | Upregulation of Ba1-647, fibrinogen alpha chain isoform 2 precursor, tropomyosin-1, perlecan (heparan sulfate proteoglycan 2), Ab2-131, acid ceramidase precursor and Alpha-parvin. Downregulation of Rab2A, Rab6A, Cd81, ribosomal protein S5, isoform CRA_b, myelin basic protein, glycerol-3-phosphate dehydrogenase [NAD+], Ras-related protein Rap-1b precursor, H2A histone family (member X and member Y2), tenascin-R precursor, and eosinophil peroxidase precursor, | [49] | |||
Noise-induced hearing loss (NIHL) | Chinchillas | Cochlear tissue | Antibody microarray | Upregulation of FAK p–Tyr577, E2F3, hMps1, serine-threonine protein phosphatase 1b, activated p38/MAPK, WSTF and Fas, aurora B, BID, HDAC10, and ADAM17 Downregulation of E2F3, tropomyosin, CD146, hnRNPA1, cytokeratin 8 12, PRMT1, serine-threonine protein phosphatase 2 A/B, NG2, brain nitric oxide synthase, DEDAF and plakoglobin | [54] |
Mouse | Cochlear tissue | 2-DE and MALDI-TOF MS | Upregulation of angiopoietin-like 1, heat shock 70 kDa protein, tyrosine-protein kinase MEG2, NaDC-1, myeloid Elf-1-like factor, ALCAM, metalloproteinase domain 7, and disintegrin. | [55] | |
Cochlear tissue | TMT-labelling and LC-MS/MS | Upregulation of TNF -α, IL-6, ITGA1, KNG1, CFI, Downregulation of FGF1, AKT2, and ATG5 | [56] | ||
Human | Serum | 2-DE and LC-MS/MS | Plexin domain-containing protein 1, DNA oxidative demethylase, trifunctional purine biosynthetic protein adenosine 3, protein UNC 45, lysine specific demethylase 3A, coiled-coil domain-containing protein 62, and Myo 15 (Myosin) | [57] | |
2-DE and MALDI-TOF MS | Upregulation of transthyretin, E3 ubiquitin protein ligase, albumin, transferrin, kininogen 1, enkurin, and serpin peptidase inhibitor clade A (alpha 1 antiproteinase antitrypsin) member 3 isoform CRA_b | [57] | |||
Vestibular Schwannoma (VS) | Human | CSF | iTRAQ and MS/MS | Upregulation of fibronectin 1, chitinase 3–like protein 1 precursor, clusterin preproprotein, gelsolin isoform a precursor, Ig lambda-like polypeptide 5 isoform 1, haemoglobin subunit alpha, and haptoglobin isoform 1 preproprotein Downregulation of alpha-1-acid glycoprotein 1 precursor, Lysozyme C precursor, Secretogranin-1 precursor, and Keratin | [71] |
iQTRAQ and LC-MS/MS | Upregulation of apolipoprotein A–I (APOA1), ABCA3, CA2D1 and KLF11 Downregulation of BASP1 and PRDX2 | [72] | |||
Perilymphatic fluid | LC-MS | Expression of alpha-2-HS-glycoprotein | [73] | ||
Vestibular tissue | iTRAQ and LC-MS/MS | Upregulation of LGALS1, ANXA1, ANXA2, GRB2, STAT1, and SPARC Downregulation of CAV1 | [74] | ||
Vestibular tissue | 2-DE and MALDI-TOF MS | Upregulation of Annexin V, Annexin A4, Annexin A2 isoform 2, YWHAZ protein, ARHGDIA, and HSP27 Downregulation of Peroxiredoxin 6 | [75] | ||
Tissue | TMT-labelling and LC-MS/MS | Downregulation of COL1A1 and COL1A2 in CVS patients | [77] |
Disease | Participants | Sample | Method | Key Findings | Ref |
---|---|---|---|---|---|
Meniere’s disease (MD) | Human | Perilymphatic fluid | LC-MS | Upregulation of asparagine, lactic acid, valine carnitine, trigonelline, creatinine, glutamine, alanine, hypoxanthine, phenylalanine, sorbic acid, suberic acid, alpha-D-glucose, proline, 5-hydroxylysine, histidine, O-acetyl-l-carnitine, adipic acid, 3-methyglutaric acid, pimelic acid, N-acetyl-l-leucine, and arginine | [43] |
Endolymphatic sac luminal Fluid | LC-MS/MS | Upregulation of hyaluronic acid, 4-hydroxynonenal, 2,3-diaminopropanoate, (5-L-glutamyl)-L-amino acid, D-ribulose 1,5-bisphosphate, 3-hydroxy-5-phosphonooxypentane-2,4-dione, and L-capreomycidine Downregulation of citrate, EDTA, inosine 5′-tetraphosphate, D-octopine N-acetyl-D-glucosamine (GlcNAc), D-glucuronic acid (GlcUA), L-arginine, and 1-hydroxy-2-methyl-2-butenyl 4-diphosphate | [44] | ||
Ototoxicity | Guinea pig | Serum | LC-MS | Upregulation of N acetylneuraminic acid, L-acetyl carnitine, ceramides, and cysteinyl serine | [50] |
Rat | Plasma | LC/MS | Upregulation of 3 acylcarnitine and a phosphatidylethanolamine with C18:2–C18:2 | [47] | |
GC/MS | Upregulation of cysteine–cystine and 3-hydroxy-butyrate | [47] | |||
Noise-induced hearing loss (NIHL) | Guinea pig | Inner ear fluid | GC/MS | Upregulation of 3-hydroxy-butyrate, glycerol, fumaric acid, galactosamine, pyruvat + oxalacetic acid, phosphate, meso-erythritol, citric acid, isocitric acid, mannose, and inositol | [58] |
Perilymphatic fluid | HILIC-UHPLC-Q-TOF–MS | Upregulation of pantothenic acid, creatine, butyryl carnitine, acetylcarnitine, two unidentified acylcarnitine, U137, and U569 | [59] | ||
Mouse | Cochlea and vestibular organ tissue | LC-MS/MS | Upregulation of pyridoxal 5-phosphate, inosine 5-monophosphate, inosine-5 phosphate, uridine-monophosphate, cytidine monophosphate, sucrose, L-aspartate, xanthosine 5-monophosphate, guanosine 5-monophosphate, adenosine 5-monophosphate, O-acetyl-l-carnitine, D-fructose 6-phosphate, oxidised glutathione, N-methyl-l-glutamate, NAD, aminoadipate, adenosine 3,5-diphosphate, adenosine 5-diphosphate, cytidine 5-diphosphocholine, flavin adenine dinucleotide, L-glutamic acid, succinate, N-acetyl-l-aspartic acid, cytosine, and adenosine Downregulation of uracil, L-leucine, L-phenylalanine, L-ornithine, D-ornithine, D-glucuronic acid, citrulline, L-tryptophan, L-arginine, xanthurenic acid, L-methionine, DL-isocitric acid, citrate, and adenosine-diphosphoglucose | [60] | |
Cochlear tissue | GC/MS | Upregulation of spermidine, 3- hydroxybutyric acid, and orotic acid | [61] | ||
Sheep | Perilymphatic fluid | LC/MS | Upregulation of urocanate, Oleate, 5-oxo-L-proline, N-acetyl-glucose, N-acetylneuraminate, L-tyrosine, trigonelline, leukotriene-B4, 5,6-dihydrouracil, and 3-ureidopropionate Downregulation of deoxycarnitine, L-carnitine, N-acetyl-L-leucine, S-(5′-Adenosyl)-L-homocysteine, and epinephrine. | [62] | |
Human | Plasma | HPLC-MS/MS | Upregulation of 7 alpha-hydroxy dehydroepiandrosterone Downregulation of pro-Trp, adenine, dimethylglycine, calciferol, cis-5-dodecenoic acid, and 3 beta, 7 alpha-dihydroxy-5-cholestenoic acid | [63] | |
UPLC/Q-TOF-MS | Upregulation of homodeoxycholic acid, quinolacetic acid, and 3,4-dihydroxy mandelic acid Downregulation of phosphatidylethanolamine, phosphatidylcholine, and phosphatidylinositol | [64] | |||
Rat | Serum | UPLC/Q-TOF-MS | Upregulation of 1-oleoyl-2-palmitoyl-sn-glycero-3-phosphocholine, 3-hydroxybutyric acid, Pi 38:4 and Pe 38:4 Downregulation of indolelactic acid, hippuric acid, 2,6-dihydroxybenzoic acid, 7-keto-3-alpha, 12-alpha-dihydroxycholanic acid, acetaminophen sulfate, isatin, and quillaic acid | [65] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khorrami, M.; Pastras, C.; Haynes, P.A.; Mirzaei, M.; Asadnia, M. The Current State of Proteomics and Metabolomics for Inner Ear Health and Disease. Proteomes 2024, 12, 17. https://doi.org/10.3390/proteomes12020017
Khorrami M, Pastras C, Haynes PA, Mirzaei M, Asadnia M. The Current State of Proteomics and Metabolomics for Inner Ear Health and Disease. Proteomes. 2024; 12(2):17. https://doi.org/10.3390/proteomes12020017
Chicago/Turabian StyleKhorrami, Motahare, Christopher Pastras, Paul A. Haynes, Mehdi Mirzaei, and Mohsen Asadnia. 2024. "The Current State of Proteomics and Metabolomics for Inner Ear Health and Disease" Proteomes 12, no. 2: 17. https://doi.org/10.3390/proteomes12020017
APA StyleKhorrami, M., Pastras, C., Haynes, P. A., Mirzaei, M., & Asadnia, M. (2024). The Current State of Proteomics and Metabolomics for Inner Ear Health and Disease. Proteomes, 12(2), 17. https://doi.org/10.3390/proteomes12020017