Proteomics-Driven Biomarkers in Pancreatic Cancer
Abstract
:1. Introduction
2. Screening and Diagnostic Accuracy: Where Do We Stand?
3. What Can We Do Differently?
- The complexity of biofluid protein contents: biofluids obtained from individuals have more than one protein, sometimes in the range of thousands, interacting with each other, which can simultaneously be expressed in different isoforms [39].
- Interactions: proteins interact with each other to form complex networks that regulate cellular processes. In the event of a disease, these interactions can be disrupted, leading to abnormal cellular behavior [40].
- Diversity: proteins are diverse in their structure and function, which is reflected in their involvement in different diseases [41].
- Post-translational modifications: proteins can undergo a variety of post-translational modifications, such as phosphorylation, acetylation, and ubiquitination, which can dramatically alter their activity and localization. These modifications can be critical in the development and progression of disease [42].
- Dynamics: proteins are dynamic molecules that undergo continual changes in their expression and activity. When a disease is in effect, these changes can be rapid and profound, making it difficult to understand the underlying molecular mechanisms [43]. Current proteomic techniques are also often limited in their ability to accurately measure the levels of individual proteins [44].
4. Which Proteomic Technique and Sample Type Should Be Used?
Technique (Acronym) | Principle | Advantages | Limitations | Ref. |
---|---|---|---|---|
Enzyme-Linked Immunosorbent Assay (ELISA) | Proteins are immobilized on a plate and then probed with an antibody specific to the protein of interest. The amount of antibody bound to the protein is then measured. | Sensitive and quantitative, can be used to identify and quantify proteins. | The sensitivity of ELISA can be affected by the presence of contaminants in the sample and the narrow dynamic range. | [92,93] |
Two-dimensional gel electrophoresis (2DE) | Proteins are separated by their molecular weight in the first dimension and by their isoelectric point in the second dimension. | High resolution and sensitivity, can be used to identify protein post-translational modifications (PTMs). | Can be difficult to identify proteins that are very similar in size or charge and low throughput. | [94,95,96] |
Western Blot | Proteins are separated by 2DE or SDS-PAGE and then transferred to a membrane. The membrane is then probed with an antibody specific to the protein of interest. | Sensitive and specific, can be used to identify and quantify proteins. | The sensitivity of Western blot can be affected by the presence of contaminants in the sample and antibody specificity. | [97,98] |
Capillary electrophoresis (CE) | Proteins are separated by their size and charge in a capillary. | Sensitive and high-throughput, can be used to study protein–protein interactions. | The resolution of CE can be lower than that of 2DE. | [99,100] |
Mass spectrometry (MS) | Proteins are ionized and fragmented, and the resulting fragments are analyzed by their mass-to-charge ratio. | High sensitivity and accuracy, can be used to identify and quantify proteins and to study PTMs. | Can be difficult to identify proteins that are very similar in mass. | [101,102,103] |
Liquid chromatography–mass spectrometry (LC-MS) | Proteins are separated via liquid chromatography and then analyzed via MS. This allows for the identification and quantification of a wide range of proteins. | Sensitive and quantitative, can be used to study protein–protein interactions and PTMs. | The complexity of LC–MS can make it difficult to interpret the results. | [104,105,106] |
Isotope-coded affinity tag (ICAT) | Proteins are labeled with different isotopes before being separated via MS. This allows for relative quantitation of proteins. | Sensitive and quantitative, can be used to study protein turnover. | The isotopes used in ICAT can be expensive. | [107,108] |
2D Differential gel electrophoresis (DIGE) | Modification of 2DE. Proteins are labeled with different fluorescent dyes before being separated via 2DE. This allows for the visualization of changes in protein expression between two samples. | Sensitive and quantitative, can be used to study protein expression and overcomes limitations in traditional 2DE. | The dyes used in DIGE can be expensive. | [109,110] |
Peptide mass fingerprinting (PMF) | Proteins are digested into peptides, and the masses of the peptides are determined using MS (e.g., MALDI-TOF or ESI-TOF). This allows for the identification of proteins. | Sensitive and relatively inexpensive, can be used to identify proteins in complex mixtures. | The accuracy of PMF can be affected by the presence of contaminants in the sample. | [111,112,113] |
Protein microarrays | Proteins are immobilized on a chip before being probed with antibodies or other molecules. This allows for the identification and quantification of proteins that interact with the probes. | High-throughput and multiplexing can be used to study protein–protein interactions. | The complexity of protein microarrays can make it difficult to interpret the results. | [114,115] |
Surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS) | Variation of MALDI-TOF. Proteins are immobilized on a surface before being analyzed via MS. This allows for the identification of proteins that interact with the surface. | Sensitive and specific, can be used to study protein–protein interactions. | The specificity of SELDI-TOF MS can be affected by the presence of contaminants in the sample. Problematic in detecting larger MW proteins and PTM. | [116,117,118] |
Stable isotope labeling with amino acids in cell culture (SILAC) | Proteins are labeled with different isotopes during cell culture. This allows for relative quantitation of proteins. | Sensitive and quantitative, can be used to study protein turnover and protein–protein interactions. | The isotopes used in SILAC can be expensive. | [119,120] |
Isobaric tags for relative and absolute quantitation (iTRAQ) | Proteins are labeled with different isobaric tags before being separated via MS. This allows for both relative and absolute quantitation of proteins. | Sensitive, quantitative, and versatile, can be used to study protein turnover and protein–protein interactions. | The isobaric tags used in iTRAQ can be expensive. | [121,122] |
Label-free quantitative proteomics | Proteins are separated via MS without the use of labels. This allows for absolute quantitation of proteins. | Sensitive and quantitative, does not require the use of specialized equipment. Achieves high-proteome coverage and simpler workflows. Variability of chemical labeling/tagging is eliminated. | The accuracy of label-free methods can be affected by the presence of contaminants in the sample. | [123,124,125] |
Multidimensional protein identification technology (MudPIT) | Proteins are separated by two or more dimensions of liquid chromatography before being analyzed via MS. This allows for the identification of a wider range of proteins. | Sensitive and comprehensive, can be used to study protein–protein interactions and PTMs. | The complexity of MudPIT can make it difficult to interpret the results. | [126,127] |
5. Proteomics as a Biomarker Source for Pancreatic Cancer
6. Proteomics Signatures Associated with Treatment Response
7. Final Remarks
- Facilitating extensive data collection: multicenter studies, given their wider reach, can accumulate data from a vast number of patients. This offers invaluable insights into the intricacies of pancreatic cancer and how it reacts to various treatments.
- Broadening patient diversity: by including multiple centers, these studies can capture data from patients across varied geographies, demographics, and healthcare systems. This diversity ensures that the research conclusions have broader relevance.
- Bolstering statistical reliability: the larger the study size in multicenter research, the greater the statistical weight and confidence in the findings.
- Fostering collaboration and shared knowledge: bringing together various centers for these studies fosters a culture of cooperation and shared learning among researchers, potentially quickening the pace of innovations.
- Promoting protocol standardization: with multiple centers involved, there is an inherent push towards harmonizing protocols for sample collection, data interpretation, and other pivotal research processes. This is essential for ensuring consistency, reliability, and reproducibility in findings.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khalaf, N.; El-Serag, H.B.; Abrams, H.R.; Thrift, A.P. Burden of Pancreatic Cancer: From Epidemiology to Practice. Clin. Gastroenterol. Hepatol. 2021, 19, 876–884. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Ilic, M.; Ilic, I. Epidemiology of Pancreatic Cancer. World J. Gastroenterol. 2016, 22, 9694. [Google Scholar] [CrossRef]
- Parkin, D.M.; Bray, F.; Ferlay, J.; Pisani, P. Estimating the World Cancer Burden: Globocan 2000. Int. J. Cancer 2001, 94, 153–156. [Google Scholar] [CrossRef]
- Parkin, D.; Pisani, P.; Ferlay, J. Estimates of the Worldwide Incidence of Eighteen Major Cancers in 1985. Int. J. Cancer 1993, 54, 594–606. [Google Scholar] [CrossRef]
- Ushio, J.; Kanno, A.; Ikeda, E.; Ando, K.; Nagai, H.; Miwata, T.; Kawasaki, Y.; Tada, Y.; Yokoyama, K.; Numao, N.; et al. Pancreatic Ductal Adenocarcinoma: Epidemiology and Risk Factors. Diagnostics 2021, 11, 562. [Google Scholar] [CrossRef]
- Gupta, N.; Yelamanchi, R. Pancreatic Adenocarcinoma: A Review of Recent Paradigms and Advances in Epidemiology, Clinical Diagnosis and Management. World J. Gastroenterol. 2021, 27, 3158. [Google Scholar] [CrossRef]
- Ying, H.; Dey, P.; Yao, W.; Kimmelman, A.C.; Draetta, G.F.; Maitra, A.; DePinho, R.A. Genetics and Biology of Pancreatic Ductal Adenocarcinoma. Genes Dev. 2016, 30, 355–385. [Google Scholar] [CrossRef] [Green Version]
- Collisson, E.A.; Bailey, P.; Chang, D.K.; Biankin, A.V. Molecular Subtypes of Pancreatic Cancer. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 207–220. [Google Scholar] [CrossRef]
- Turanli, B.; Yildirim, E.; Gulfidan, G.; Arga, K.Y.; Sinha, R. Current State of “Omics” Biomarkers in Pancreatic Cancer. J. Pers. Med. 2021, 11, 127. [Google Scholar] [CrossRef]
- Nevala-Plagemann, C.; Hidalgo, M.; Garrido-Laguna, I. From State-of-the-Art Treatments to Novel Therapies for Advanced-Stage Pancreatic Cancer. Nat. Rev. Clin. Oncol. 2020, 17, 108–123. [Google Scholar] [CrossRef]
- Ferrone, C.R.; Pieretti-Vanmarcke, R.; Bloom, J.P.; Zheng, H.; Szymonifka, J.; Wargo, J.A.; Thayer, S.P.; Lauwers, G.Y.; Deshpande, V.; Mino-Kenudson, M.; et al. Pancreatic Ductal Adenocarcinoma: Long-Term Survival Does Not Equal Cure. Surgery 2012, 152, S43–S49. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Velázquez, P.; Muller, X.; Malleo, G.; Park, J.-S.; Hwang, H.-K.; Napoli, N.; Javed, A.A.; Inoue, Y.; Beghdadi, N.; Kalisvaart, M.; et al. Benchmarks in Pancreatic Surgery. Ann. Surg. 2019, 270, 211–218. [Google Scholar] [CrossRef]
- Das, T.; Andrieux, G.; Ahmed, M.; Chakraborty, S. Integration of Online Omics-Data Resources for Cancer Research. Front. Genet. 2020, 11, 578345. [Google Scholar] [CrossRef]
- Al-Hawary, M.M.; Francis, I.R.; Chari, S.T.; Fishman, E.K.; Hough, D.M.; Lu, D.S.; Macari, M.; Megibow, A.J.; Miller, F.H.; Mortele, K.J.; et al. Pancreatic Ductal Adenocarcinoma Radiology Reporting Template: Consensus Statement of the Society of Abdominal Radiology and the American Pancreatic Association. Radiology 2014, 270, 248–260. [Google Scholar] [CrossRef] [Green Version]
- Gonoi, W.; Hayashi, T.Y.; Okuma, H.; Akahane, M.; Nakai, Y.; Mizuno, S.; Tateishi, R.; Isayama, H.; Koike, K.; Ohtomo, K. Development of Pancreatic Cancer Is Predictable Well in Advance Using Contrast-Enhanced CT: A Case–Cohort Study. Eur. Radiol. 2017, 27, 4941–4950. [Google Scholar] [CrossRef]
- Pawlik, T.M.; Laheru, D.; Hruban, R.H.; Coleman, J.; Wolfgang, C.L.; Campbell, K.; Ali, S.; Fishman, E.K.; Schulick, R.D.; Herman, J.M. Evaluating the Impact of a Single-Day Multidisciplinary Clinic on the Management of Pancreatic Cancer. Ann. Surg. Oncol. 2008, 15, 2081–2088. [Google Scholar] [CrossRef] [Green Version]
- Amit, O.; Mannino, F.; Stone, A.M.; Bushnell, W.; Denne, J.; Helterbrand, J.; Burger, H.U. Blinded Independent Central Review of Progression in Cancer Clinical Trials: Results from a Meta-Analysis. Eur. J. Cancer 2011, 47, 1772–1778. [Google Scholar] [CrossRef]
- Huang, B.; Huang, H.; Zhang, S.; Zhang, D.; Shi, Q.; Liu, J.; Guo, J. Artificial Intelligence in Pancreatic Cancer. Theranostics 2022, 12, 6931–6954. [Google Scholar] [CrossRef]
- Mukherjee, S.; Patra, A.; Khasawneh, H.; Korfiatis, P.; Rajamohan, N.; Suman, G.; Majumder, S.; Panda, A.; Johnson, M.P.; Larson, N.B.; et al. Radiomics-Based Machine-Learning Models Can Detect Pancreatic Cancer on Prediagnostic Computed Tomography Scans at a Substantial Lead Time Before Clinical Diagnosis. Gastroenterology 2022, 163, 1435–1446.e3. [Google Scholar] [CrossRef]
- Pereira, S.P.; Oldfield, L.; Ney, A.; Hart, P.A.; Keane, M.G.; Pandol, S.J.; Li, D.; Greenhalf, W.; Jeon, C.Y.; Koay, E.J.; et al. Early Detection of Pancreatic Cancer. Lancet Gastroenterol. Hepatol. 2020, 5, 698–710. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, S. Potential Prognostic Biomarkers in Pancreatic Juice of Resectable Pancreatic Ductal Adenocarcinoma. World J. Clin. Oncol. 2017, 8, 255–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ćwik, G. Cancer Antigens 19-9 and 125 in the Differential Diagnosis of Pancreatic Mass Lesions. Arch. Surg. 2006, 141, 968–973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.C.; Kim, H.J.; Park, J.H.; Park, D.I.; Cho, Y.K.; Sohn, C.I.; Jeon, W.K.; Kim, B.I.; Shin, J.H. Can Preoperative CA19-9 and CEA Levels Predict the Resectability of Patients with Pancreatic Adenocarcinoma? J. Gastroenterol. Hepatol. 2009, 24, 1869–1875. [Google Scholar] [CrossRef]
- Luo, G.; Xiao, Z.; Long, J.; Liu, Z.; Liu, L.; Liu, C.; Xu, J.; Ni, Q.; Yu, X. CA125 Is Superior to CA19-9 in Predicting the Resectability of Pancreatic Cancer. J. Gastrointest. Surg. 2013, 17, 2092–2098. [Google Scholar] [CrossRef]
- Hall, C.; Clarke, L.; Pal, A.; Buchwald, P.; Eglinton, T.; Wakeman, C.; Frizelle, F. A Review of the Role of Carcinoembryonic Antigen in Clinical Practice. Ann. Coloproctol. 2019, 35, 294–305. [Google Scholar] [CrossRef]
- Lee, K.J.; Yi, S.W.; Chung, M.J.; Park, S.W.; Song, S.Y.; Chung, J.B.; Park, J.Y. Serum CA 19-9 and CEA Levels as a Prognostic Factor in Pancreatic Adenocarcinoma. Yonsei Med. J. 2013, 54, 643–649. [Google Scholar] [CrossRef] [Green Version]
- Tas, F.; Karabulut, S.; Ciftci, R.; Sen, F.; Sakar, B.; Disci, R.; Duranyildiz, D. Serum Levels of LDH, CEA, and CA19-9 Have Prognostic Roles on Survival in Patients with Metastatic Pancreatic Cancer Receiving Gemcitabine-Based Chemotherapy. Cancer Chemother. Pharmacol. 2014, 73, 1163–1171. [Google Scholar] [CrossRef]
- Hasin, Y.; Seldin, M.; Lusis, A. Multi-Omics Approaches to Disease. Genome Biol. 2017, 18, 83. [Google Scholar] [CrossRef]
- Manzoni, C.; Kia, D.A.; Vandrovcova, J.; Hardy, J.; Wood, N.W.; Lewis, P.A.; Ferrari, R. Genome, Transcriptome and Proteome: The Rise of Omics Data and Their Integration in Biomedical Sciences. Brief. Bioinform. 2018, 19, 286–302. [Google Scholar] [CrossRef] [Green Version]
- Hasanzad, M.; Sarhangi, N.; Ehsani Chimeh, S.; Ayati, N.; Afzali, M.; Khatami, F.; Nikfar, S.; Aghaei Meybodi, H.R. Precision Medicine Journey through Omics Approach. J. Diabetes Metab. Disord. 2021, 21, 881–888. [Google Scholar] [CrossRef]
- Cho, W.C.S. Proteomics Technologies and Challenges. Genom. Proteom. Bioinform. 2007, 5, 77–85. [Google Scholar] [CrossRef] [Green Version]
- Graves, P.R.; Haystead, T.A.J. Molecular Biologist’s Guide to Proteomics. Microbiol. Mol. Biol. Rev. 2002, 66, 39–63. [Google Scholar] [CrossRef] [Green Version]
- Li, S. Proteomics Defines Protein Interaction Network of Signaling Pathways. In Bioinformatics of Human Proteomics; Springer: Dordrecht, The Netherlands, 2013; pp. 17–38. [Google Scholar]
- Alharbi, R.A. Proteomics Approach and Techniques in Identification of Reliable Biomarkers for Diseases. Saudi J. Biol. Sci. 2020, 27, 968–974. [Google Scholar] [CrossRef]
- Savino, R.; Paduano, S.; Preianò, M.; Terracciano, R. The Proteomics Big Challenge for Biomarkers and New Drug-Targets Discovery. Int. J. Mol. Sci. 2012, 13, 13926–13948. [Google Scholar] [CrossRef] [Green Version]
- KhalKhal, E.; Rezaei-Tavirani, M.; Rostamii-Nejad, M. Pharmaceutical Advances and Proteomics Researches. Iran. J. Pharm. Res. IJPR 2019, 18, 51–67. [Google Scholar] [CrossRef]
- Correa Rojo, A.; Heylen, D.; Aerts, J.; Thas, O.; Hooyberghs, J.; Ertaylan, G.; Valkenborg, D. Towards Building a Quantitative Proteomics Toolbox in Precision Medicine: A Mini-Review. Front. Physiol. 2021, 12, 723510. [Google Scholar] [CrossRef]
- Huang, L.; Shao, D.; Wang, Y.; Cui, X.; Li, Y.; Chen, Q.; Cui, J. Human Body-Fluid Proteome: Quantitative Profiling and Computational Prediction. Brief. Bioinform. 2021, 22, 315–333. [Google Scholar] [CrossRef] [Green Version]
- Shi, L.; Lei, X.; Zhang, A. Protein Complex Detection with Semi-Supervised Learning in Protein Interaction Networks. Proteome Sci. 2011, 9, S5. [Google Scholar] [CrossRef] [Green Version]
- Lefkovits, I. Functional and Structural Proteomics: A Critical Appraisal. J. Chromatogr. B 2003, 787, 1–10. [Google Scholar] [CrossRef]
- Bagwan, N.; El Ali, H.H.; Lundby, A. Proteome-Wide Profiling and Mapping of Post Translational Modifications in Human Hearts. Sci. Rep. 2021, 11, 2184. [Google Scholar] [CrossRef]
- Harper, J.W.; Bennett, E.J. Proteome Complexity and the Forces That Drive Proteome Imbalance. Nature 2016, 537, 328–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belle, A.; Tanay, A.; Bitincka, L.; Shamir, R.; O’Shea, E.K. Quantification of Protein Half-Lives in the Budding Yeast Proteome. Proc. Natl. Acad. Sci. USA 2006, 103, 13004–13009. [Google Scholar] [CrossRef]
- Auffray, C.; Chen, Z.; Hood, L. Systems Medicine: The Future of Medical Genomics and Healthcare. Genome Med. 2009, 1, 2. [Google Scholar] [CrossRef] [PubMed]
- Krier, J.B.; Kalia, S.S.; Green, R.C. Genomic Sequencing in Clinical Practice: Applications, Challenges, and Opportunities. Dialogues Clin. Neurosci. 2016, 18, 299–312. [Google Scholar] [CrossRef]
- Lin, V.T.G.; Yang, E.S. The Pros and Cons of Incorporating Transcriptomics in the Age of Precision Oncology. JNCI J. Natl. Cancer Inst. 2019, 111, 1016–1022. [Google Scholar] [CrossRef]
- Wang, Z.; Gerstein, M.; Snyder, M. RNA-Seq: A Revolutionary Tool for Transcriptomics. Nat. Rev. Genet. 2009, 10, 57–63. [Google Scholar] [CrossRef]
- Araújo, R.; Ramalhete, L.; Ribeiro, E.; Calado, C. Plasma versus Serum Analysis by FTIR Spectroscopy to Capture the Human Physiological State. BioTech 2022, 11, 56. [Google Scholar] [CrossRef]
- Araújo, R.; Bento, L.F.N.; Fonseca, T.A.H.; Von Rekowski, C.P.; da Cunha, B.R.; Calado, C.R.C. Infection Biomarkers Based on Metabolomics. Metabolites 2022, 12, 92. [Google Scholar] [CrossRef]
- Monteiro, M.S.; Carvalho, M.; Bastos, M.L.; Guedes de Pinho, P. Metabolomics Analysis for Biomarker Discovery: Advances and Challenges. Curr. Med. Chem. 2013, 20, 257–271. [Google Scholar] [CrossRef]
- Rozek, L.S.; Dolinoy, D.C.; Sartor, M.A.; Omenn, G.S. Epigenetics: Relevance and Implications for Public Health. Annu. Rev. Public Health 2014, 35, 105–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moosavi, A.; Motevalizadeh Ardekani, A. Role of Epigenetics in Biology and Human Diseases. Iran. Biomed. J. 2016, 20, 246–258. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Zhou, L.; Huang, C.; Xie, K.; Nice, E.C. Interactomics: Toward Protein Function and Regulation. Expert Rev. Proteom. 2015, 12, 37–60. [Google Scholar] [CrossRef] [PubMed]
- Vidal, M.; Cusick, M.E.; Barabási, A.-L. Interactome Networks and Human Disease. Cell 2011, 144, 986–998. [Google Scholar] [CrossRef] [Green Version]
- Fíla, J.; Honys, D. Enrichment Techniques Employed in Phosphoproteomics. Amino Acids 2012, 43, 1025–1047. [Google Scholar] [CrossRef] [Green Version]
- Gerritsen, J.S.; White, F.M. Phosphoproteomics: A Valuable Tool for Uncovering Molecular Signaling in Cancer Cells. Expert Rev. Proteom. 2021, 18, 661–674. [Google Scholar] [CrossRef]
- De Haan, N.; Pučić-Baković, M.; Novokmet, M.; Falck, D.; Lageveen-Kammeijer, G.; Razdorov, G.; Vučković, F.; Trbojević-Akmačić, I.; Gornik, O.; Hanić, M.; et al. Developments and Perspectives in High-Throughput Protein Glycomics: Enabling the Analysis of Thousands of Samples. Glycobiology 2022, 32, 651–663. [Google Scholar] [CrossRef]
- Shubhakar, A.; Reiding, K.R.; Gardner, R.A.; Spencer, D.I.R.; Fernandes, D.L.; Wuhrer, M. High-Throughput Analysis and Automation for Glycomics Studies. Chromatographia 2015, 78, 321–333. [Google Scholar] [CrossRef] [Green Version]
- Wenk, M.R. The Emerging Field of Lipidomics. Nat. Rev. Drug Discov. 2005, 4, 594–610. [Google Scholar] [CrossRef]
- Yang, K.; Han, X. Lipidomics: Techniques, Applications, and Outcomes Related to Biomedical Sciences. Trends Biochem. Sci. 2016, 41, 954–969. [Google Scholar] [CrossRef] [Green Version]
- Vasku, G.; Peltier, C.; He, Z.; Thuret, G.; Gain, P.; Gabrielle, P.-H.; Acar, N.; Berdeaux, O. Comprehensive Mass Spectrometry Lipidomics of Human Biofluids and Ocular Tissues. J. Lipid Res. 2023, 64, 100343. [Google Scholar] [CrossRef]
- Knight, R.; Vrbanac, A.; Taylor, B.C.; Aksenov, A.; Callewaert, C.; Debelius, J.; Gonzalez, A.; Kosciolek, T.; McCall, L.-I.; McDonald, D.; et al. Best Practices for Analysing Microbiomes. Nat. Rev. Microbiol. 2018, 16, 410–422. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Fan, L.; Chai, Y.; Xu, J. Advantages and Challenges of Metagenomic Sequencing for the Diagnosis of Pulmonary Infectious Diseases. Clin. Respir. J. 2022, 16, 646–656. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zheng, W.; Wang, W.; Shen, H.; Liu, L.; Lou, W.; Wang, X.; Yang, P. A New Panel of Pancreatic Cancer Biomarkers Discovered Using a Mass Spectrometry-Based Pipeline. Br. J. Cancer 2017, 117, 1846–1854. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, D.P.; Timms, J.F. Employing TMT Quantification in a Shotgun-MS Platform. In Shotgun Proteomics: Methods and Protocols; Springer: Berlin/Heidelberg, Germany, 2014; pp. 187–199. [Google Scholar]
- Huang, Y.-J.; Frazier, M.L.; Zhang, N.; Liu, Q.; Wei, C. Reverse-Phase Protein Array Analysis to Identify Biomarker Proteins in Human Pancreatic Cancer. Dig. Dis. Sci. 2014, 59, 968–975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaspari, M.; Cuda, G. Nano LC–MS/MS: A Robust Setup for Proteomic Analysis. In Nanoproteomics: Methods and Protocols; Springer: Berlin/Heidelberg, Germany, 2011; pp. 115–126. [Google Scholar]
- Végvári, Á.; Rodriguez, J.E.; Zubarev, R.A. Single-Cell Chemical Proteomics (SCCP) Interrogates the Timing and Heterogeneity of Cancer Cell Commitment to Death. Anal. Chem. 2022, 94, 9261–9269. [Google Scholar] [CrossRef]
- Petrosius, V.; Schoof, E.M. Recent Advances in the Field of Single-Cell Proteomics. Transl. Oncol. 2023, 27, 101556. [Google Scholar] [CrossRef]
- Navaglia, F.; Fogar, P.; Basso, D.; Greco, E.; Padoan, A.; Tonidandel, L.; Fadi, E.; Zambon, C.-F.; Bozzato, D.; Moz, S.; et al. Pancreatic Cancer Biomarkers Discovery by Surface-Enhanced Laser Desorption and Ionization Time-of-Flight Mass Spectrometry. Clin. Chem. Lab. Med. 2009, 47, 713–723. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.-Q.; Liu, Y.-J.; Zhou, X.-L. An Integrated Microarray Analysis Reveals Significant Diagnostic and Prognostic Biomarkers in Pancreatic Cancer. Med. Sci. Monit. 2020, 26, e921769. [Google Scholar] [CrossRef]
- Carrillo-Rodriguez, P.; Selheim, F.; Hernandez-Valladares, M. Mass Spectrometry-Based Proteomics Workflows in Cancer Research: The Relevance of Choosing the Right Steps. Cancers 2023, 15, 555. [Google Scholar] [CrossRef]
- Frankfurt, O.S.; Krishan, A. Enzyme-Linked Immunosorbent Assay (ELISA) for the Specific Detection of Apoptotic Cells and Its Application to Rapid Drug Screening. J. Immunol. Methods 2001, 253, 133–144. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.J.; Yoon, W.; Lee, A.; Han, Y.; Byun, Y.; Kang, J.S.; Kim, H.; Kwon, W.; Suh, Y.-A.; Kim, Y.; et al. Diagnostic Model for Pancreatic Cancer Using a Multi-Biomarker Panel. Ann. Surg. Treat. Res. 2021, 100, 144–153. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Bamlet, W.R.; Oberg, A.L.; Chaffee, K.G.; Donahue, G.; Cao, X.-J.; Chari, S.; Garcia, B.A.; Petersen, G.M.; Zaret, K.S. Detection of Early Pancreatic Ductal Adenocarcinoma with Thrombospondin-2 and CA19-9 Blood Markers. Sci. Transl. Med. 2017, 9, eaah5583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, P.-C.; Mahmood, T. Western Blot: Technique, Theory, and Trouble Shooting. N. Am. J. Med. Sci. 2012, 4, 429–434. [Google Scholar] [CrossRef]
- Lin, A.V. Direct ELISA. In ELISA: Methods and Protocols; Humana: New York, NY, USA, 2015; pp. 61–67. [Google Scholar]
- Hayrapetyan, H.; Tran, T.; Tellez-Corrales, E.; Madiraju, C. Enzyme-Linked Immunosorbent Assay: Types and Applications. In ELISA. Methods in Molecular Biology; Matson, R.S., Ed.; Humana: New York, NY, USA, 2023; Volume 2612. [Google Scholar] [CrossRef]
- Hayashi, S.; Imanishi, R.; Adachi, M.; Ikejima, S.; Nakata, J.; Morimoto, S.; Fujiki, F.; Nishida, S.; Tsuboi, A.; Hosen, N.; et al. Reader-Free ELISPOT Assay for Immuno-Monitoring in Peptide-Based Cancer Vaccine Immunotherapy. Biomed. Rep. 2020, 12, 244–250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.; Lee, J.; Sim, W.; Kim, J.-H. Differential Dependency of Human Pancreatic Cancer Cells on Targeting PTEN via PLK 1 Expression. Cancers 2020, 12, 277. [Google Scholar] [CrossRef]
- Begum, H.; Murugesan, P.; Tangutur, A.D. Western Blotting: A Powerful Staple in Scientific and Biomedical Research. Biotechniques 2022, 73, 58–69. [Google Scholar] [CrossRef]
- Rezaei, M.; Nikeghbalian, S.; Mojtahedi, Z.; Ghaderi, A. Identification of Antibody Reactive Proteins in Pancreatic Cancer Using 2D Immunoblotting and Mass Spectrometry. Oncol. Rep. 2018, 39, 2413–2421. [Google Scholar] [CrossRef] [Green Version]
- Silwal-Pandit, L.; Stålberg, S.M.; Johansson, H.J.; Mermelekas, G.; Lothe, I.M.B.; Skrede, M.L.; Dalsgaard, A.M.; Nebdal, D.J.H.; Helland, Å.; Lingjærde, O.C.; et al. Proteome Analysis of Pancreatic Tumors Implicates Extracellular Matrix in Patient Outcome. Cancer Res. Commun. 2022, 2, 434–446. [Google Scholar] [CrossRef]
- Law, H.C.-H.; Lagundžin, D.; Clement, E.J.; Qiao, F.; Wagner, Z.S.; Krieger, K.L.; Costanzo-Garvey, D.; Caffrey, T.C.; Grem, J.L.; DiMaio, D.J.; et al. The Proteomic Landscape of Pancreatic Ductal Adenocarcinoma Liver Metastases Identifies Molecular Subtypes and Associations with Clinical Response. Clin. Cancer Res. 2020, 26, 1065–1076. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Mao, Y.; Xiong, Y.; Zhao, H.H.; Shen, F.; Gao, X.; Yang, P.; Liu, X.; Fu, D. A Comprehensive Proteome Analysis of Peripheral Blood Mononuclear Cells (PBMCs) to Identify Candidate Biomarkers of Pancreatic Cancer. Cancer Genom. Proteom. 2019, 16, 81–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Chen, L.; Qi, L.; Jiang, N.; Zhang, Z.; Guo, H.; Song, T.; Li, J.; Li, H.; Zhang, N.; et al. A Single-Cell Atlas of Tumor-Infiltrating Immune Cells in Pancreatic Ductal Adenocarcinoma. Mol. Cell. Proteom. 2022, 21, 100258. [Google Scholar] [CrossRef]
- Chen, R.; Pan, S.; Aebersold, R.; Brentnall, T.A. Proteomics Studies of Pancreatic Cancer. Proteom. Clin. Appl. 2007, 1, 1582–1591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, A.; Scarlett, C.J.; Chung, L.; Butturini, G.; Scarpa, A.; Gandy, R.; Wilson, S.R.; Baxter, R.C.; Smith, R.C. Discovery of Serum Biomarkers for Pancreatic Adenocarcinoma Using Proteomic Analysis. Br. J. Cancer 2010, 103, 391–400. [Google Scholar] [CrossRef] [Green Version]
- Grønborg, M.; Bunkenborg, J.; Kristiansen, T.Z.; Jensen, O.N.; Yeo, C.J.; Hruban, R.H.; Maitra, A.; Goggins, M.G.; Pandey, A. Comprehensive Proteomic Analysis of Human Pancreatic Juice. J. Proteome Res. 2004, 3, 1042–1055. [Google Scholar] [CrossRef]
- Chen, R.; Pan, S.; Cooke, K.; Moyes, K.W.; Bronner, M.P.; Goodlett, D.R.; Aebersold, R.; Brentnall, T.A. Comparison of Pancreas Juice Proteins from Cancer Versus Pancreatitis Using Quantitative Proteomic Analysis. Pancreas 2007, 34, 70–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hosseini, S.; Vázquez-Villegas, P.; Rito-Palomares, M.; Martinez-Chapa, S.O. (Eds.) Advantages, Disadvantages and Modifications of Conventional ELISA. In Enzyme-Linked Immunosorbent Assay (ELISA): From A to Z; Springer: Singapore, 2018; pp. 67–115. ISBN 978-981-10-6766-2. [Google Scholar]
- Smith, S.C.; McIntosh, N.; James, K. Pitfalls in the Use of ELISA to Screen for Monoclonal Antibodies Raised against Small Peptides. J. Immunol. Methods 1993, 158, 151–160. [Google Scholar] [CrossRef]
- Magdeldin, S.; Enany, S.; Yoshida, Y.; Xu, B.; Zhang, Y.; Zureena, Z.; Lokamani, I.; Yaoita, E.; Yamamoto, T. Basics and Recent Advances of Two Dimensional- Polyacrylamide Gel Electrophoresis. Clin. Proteom. 2014, 11, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Issaq, H.J.; Veenstra, T.D. Two-Dimensional Polyacrylamide Gel Electrophoresis (2D-PAGE): Advances and Perspectives. Biotechniques 2008, 44, 697–700. [Google Scholar] [CrossRef] [Green Version]
- Molina-Mora, J.A.; Chinchilla-Montero, D.; Castro-Peña, C.; García, F. Two-Dimensional Gel Electrophoresis (2D-GE) Image Analysis Based on CellProfiler. Medicine 2020, 99, e23373. [Google Scholar] [CrossRef]
- Bass, J.J.; Wilkinson, D.J.; Rankin, D.; Phillips, B.E.; Szewczyk, N.J.; Smith, K.; Atherton, P.J. An Overview of Technical Considerations for Western Blotting Applications to Physiological Research. Scand. J. Med. Sci. Sports 2017, 27, 4–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacPhee, D.J. Methodological Considerations for Improving Western Blot Analysis. J. Pharmacol. Toxicol. Methods 2010, 61, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Voeten, R.L.C.; Ventouri, I.K.; Haselberg, R.; Somsen, G.W. Capillary Electrophoresis: Trends and Recent Advances. Anal. Chem. 2018, 90, 1464–1481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masár, M.; Hradski, J.; Schmid, M.G.; Szucs, R. Advantages and Pitfalls of Capillary Electrophoresis of Pharmaceutical Compounds and Their Enantiomers in Complex Samples: Comparison of Hydrodynamically Opened and Closed Systems. Int. J. Mol. Sci. 2020, 21, 6852. [Google Scholar] [CrossRef] [PubMed]
- Aebersold, R.; Mann, M. Mass Spectrometry-Based Proteomics. Nature 2003, 422, 198–207. [Google Scholar] [CrossRef]
- Rozanova, S.; Barkovits, K.; Nikolov, M.; Schmidt, C.; Urlaub, H.; Marcus, K. Quantitative Mass Spectrometry-Based Proteomics: An Overview. In Quantitative Methods in Proteomics; Springer: Berlin/Heidelberg, Germany, 2021; pp. 85–116. [Google Scholar]
- Aretz, I.; Meierhofer, D. Advantages and Pitfalls of Mass Spectrometry Based Metabolome Profiling in Systems Biology. Int. J. Mol. Sci. 2016, 17, 632. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; Xiang, R.; Horváth, C.; Wilkins, J.A. The Role of Liquid Chromatography in Proteomics. J. Chromatogr. A 2004, 1053, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Fang, A.; Riley, C.P.; Wang, M.; Regnier, F.E.; Buck, C. Multi-Dimensional Liquid Chromatography in Proteomics—A Review. Anal. Chim. Acta 2010, 664, 101–113. [Google Scholar] [CrossRef] [Green Version]
- Qian, W.-J.; Jacobs, J.M.; Liu, T.; Camp, D.G.; Smith, R.D. Advances and Challenges in Liquid Chromatography-Mass Spectrometry-Based Proteomics Profiling for Clinical Applications. Mol. Cell. Proteom. 2006, 5, 1727–1744. [Google Scholar] [CrossRef] [Green Version]
- Shiio, Y.; Aebersold, R. Quantitative Proteome Analysis Using Isotope-Coded Affinity Tags and Mass Spectrometry. Nat. Protoc. 2006, 1, 139–145. [Google Scholar] [CrossRef]
- Beretov, J.; Wasinger, V.C.; Graham, P.H.; Millar, E.K.; Kearsley, J.H.; Li, Y. Proteomics for Breast Cancer Urine Biomarkers. In Advances in Clinical Chemistry; Elsevier: Amsterdam, The Netherlands, 2014; pp. 123–167. [Google Scholar]
- Alban, A.; David, S.O.; Bjorkesten, L.; Andersson, C.; Sloge, E.; Lewis, S.; Currie, I. A Novel Experimental Design for Comparative Two-Dimensional Gel Analysis: Two-Dimensional Difference Gel Electrophoresis Incorporating a Pooled Internal Standard. Proteomics 2003, 3, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Viswanathan, S.; Ünlü, M.; Minden, J.S. Two-Dimensional Difference Gel Electrophoresis. Nat. Protoc. 2006, 1, 1351–1358. [Google Scholar] [CrossRef] [PubMed]
- Tholey, A.; Heinzle, E. Ionic (Liquid) Matrices for Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry—Applications and Perspectives. Anal. Bioanal. Chem. 2006, 386, 24–37. [Google Scholar] [CrossRef] [PubMed]
- Tsuchida, S.; Umemura, H.; Nakayama, T. Current Status of Matrix-Assisted Laser Desorption/Ionization–Time-of-Flight Mass Spectrometry (MALDI-TOF MS) in Clinical Diagnostic Microbiology. Molecules 2020, 25, 4775. [Google Scholar] [CrossRef]
- Kim, J. Sample Preparation for Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry. Mass Spectrom. Lett. 2015, 6, 27–30. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Zhu, H. Protein Array-Based Approaches for Biomarker Discovery in Cancer. Genom. Proteom. Bioinform. 2017, 15, 73–81. [Google Scholar] [CrossRef]
- Chen, G.; Yang, L.; Liu, G.; Zhu, Y.; Yang, F.; Dong, X.; Xu, F.; Zhu, F.; Cao, C.; Zhong, D.; et al. Research Progress in Protein Microarrays: Focussing on Cancer Research. Proteom. Clin. Appl. 2023, 17, 2200036. [Google Scholar] [CrossRef]
- Muthu, M.; Vimala, A.; Mendoza, O.H.; Gopal, J. Tracing the Voyage of SELDI-TOF MS in Cancer Biomarker Discovery and Its Current Depreciation Trend—Need for Resurrection? TrAC Trends Anal. Chem. 2016, 76, 95–101. [Google Scholar] [CrossRef]
- Xue, A.; Gandy, R.C.; Chung, L.; Baxter, R.C.; Smith, R.C. Discovery of Diagnostic Biomarkers for Pancreatic Cancer in Immunodepleted Serum by SELDI-TOF MS. Pancreatology 2012, 12, 124–129. [Google Scholar] [CrossRef]
- Poon, T.C. Opportunities and Limitations of SELDI-TOF-MS in Biomedical Research: Practical Advices. Expert Rev. Proteom. 2007, 4, 51–65. [Google Scholar] [CrossRef]
- Ong, S.-E.; Blagoev, B.; Kratchmarova, I.; Kristensen, D.B.; Steen, H.; Pandey, A.; Mann, M. Stable Isotope Labeling by Amino Acids in Cell Culture, SILAC, as a Simple and Accurate Approach to Expression Proteomics. Mol. Cell. Proteom. 2002, 1, 376–386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoedt, E.; Zhang, G.; Neubert, T.A. Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) for Quantitative Proteomics. In Advancements of Mass Spectrometry in Biomedical Research; Springer: Berlin/Heidelberg, Germany, 2019; pp. 531–539. [Google Scholar]
- Vélez-Bermúdez, I.C.; Wen, T.-N.; Lan, P.; Schmidt, W. Isobaric Tag for Relative and Absolute Quantitation (ITRAQ)-Based Protein Profiling in Plants. In Plant Proteostasis: Methods and Protocols; Springer: Berlin/Heidelberg, Germany, 2016; pp. 213–221. [Google Scholar]
- Sivanich, M.K.; Gu, T.; Tabang, D.N.; Li, L. Recent Advances in Isobaric Labeling and Applications in Quantitative Proteomics. Proteomics 2022, 22, 2100256. [Google Scholar] [CrossRef] [PubMed]
- Arike, L.; Peil, L. Spectral Counting Label-Free Proteomics. In Shotgun Proteomics: Methods and Protocols; Springer: Berlin/Heidelberg, Germany, 2014; pp. 213–222. [Google Scholar]
- Song, Y.; Wang, Q.; Wang, D.; Li, J.; Yang, J.; Li, H.; Wang, X.; Jin, X.; Jing, R.; Yang, J.-H.; et al. Label-Free Quantitative Proteomics Unravels Carboxypeptidases as the Novel Biomarker in Pancreatic Ductal Adenocarcinoma. Transl. Oncol. 2018, 11, 691–699. [Google Scholar] [CrossRef] [PubMed]
- Anand, S.; Samuel, M.; Ang, C.-S.; Keerthikumar, S.; Mathivanan, S. Label-Based and Label-Free Strategies for Protein Quantitation. In Proteome Bioinformatics; Springer: Berlin/Heidelberg, Germany, 2017; pp. 31–43. [Google Scholar]
- Lohrig, K.; Wolters, D. Multidimensional Protein Identification Technology. In Proteomics: Methods and Protocols; Springer: Berlin/Heidelberg, Germany, 2009; pp. 143–153. [Google Scholar]
- Yamada, M.; Fujii, K.; Koyama, K.; Hirohashi, S.; Kondo, T. The Proteomic Profile of Pancreatic Cancer Cell Lines Corresponding to Carcinogenesis and Metastasis. J. Proteom. Bioinform. 2009, 2, 001–018. [Google Scholar] [CrossRef] [Green Version]
- Tamburrino, D. Selection Criteria in Resectable Pancreatic Cancer: A Biological and Morphological Approach. World J. Gastroenterol. 2014, 20, 11210. [Google Scholar] [CrossRef]
- Hruban, R.H.; Gaida, M.M.; Thompson, E.; Hong, S.; Noë, M.; Brosens, L.A.; Jongepier, M.; Offerhaus, G.J.A.; Wood, L.D. Why Is Pancreatic Cancer so Deadly? The Pathologist’s View. J. Pathol. 2019, 248, 131–141. [Google Scholar] [CrossRef] [Green Version]
- Jia, K.; Zhao, X.; Dang, X. Mass Spectrometry-based ITRAQ Analysis of Serum Markers in Patients with Pancreatic Cancer. Oncol. Lett. 2020, 19, 4106–4114. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Zhang, Z.; Chen, X.; Xu, Y.; Yin, N.; Yang, J.; Zhu, D.; Li, D.; Zhou, J. A Panel of Three Biomarkers Identified by ITRAQ for the Early Diagnosis of Pancreatic Cancer. Proteom. Clin. Appl. 2019, 13, 1800195. [Google Scholar] [CrossRef]
- Servage, K.A.; Stefanius, K.; Gray, H.F.; Orth, K. Proteomic Profiling of Small Extracellular Vesicles Secreted by Human Pancreatic Cancer Cells Implicated in Cellular Transformation. Sci. Rep. 2020, 10, 7713. [Google Scholar] [CrossRef]
- Stefanius, K.; Servage, K.; de Souza Santos, M.; Gray, H.F.; Toombs, J.E.; Chimalapati, S.; Kim, M.S.; Malladi, V.S.; Brekken, R.; Orth, K. Human Pancreatic Cancer Cell Exosomes, but Not Human Normal Cell Exosomes, Act as an Initiator in Cell Transformation. eLife 2019, 8, e40226. [Google Scholar] [CrossRef]
- Buenafe, A.C.; Dorrell, C.; Reddy, A.P.; Klimek, J.; Marks, D.L. Proteomic Analysis Distinguishes Extracellular Vesicles Produced by Cancerous versus Healthy Pancreatic Organoids. Sci. Rep. 2022, 12, 3556. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zhang, Y.; Gao, X.; Yuan, Y.; Zhao, J.; Zhou, S.; Wang, H.; Wang, L.; Xu, G.; Li, X.; et al. Plasma-Derived Exosomal ALIX as a Novel Biomarker for Diagnosis and Classification of Pancreatic Cancer. Front. Oncol. 2021, 11, 628346. [Google Scholar] [CrossRef] [PubMed]
- Monypenny, J.; Milewicz, H.; Flores-Borja, F.; Weitsman, G.; Cheung, A.; Chowdhury, R.; Burgoyne, T.; Arulappu, A.; Lawler, K.; Barber, P.R.; et al. ALIX Regulates Tumor-Mediated Immunosuppression by Controlling EGFR Activity and PD-L1 Presentation. Cell Rep. 2018, 24, 630–641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valcz, G.; Galamb, O.; Krenács, T.; Spisák, S.; Kalmár, A.; Patai, Á.V.; Wichmann, B.; Dede, K.; Tulassay, Z.; Molnár, B. Exosomes in Colorectal Carcinoma Formation: ALIX under the Magnifying Glass. Mod. Pathol. 2016, 29, 928–938. [Google Scholar] [CrossRef] [PubMed]
- Nakamichi, E.; Sakakura, H.; Mii, S.; Yamamoto, N.; Hibi, H.; Asai, M.; Takahashi, M. Detection of Serum/Salivary Exosomal Alix in Patients with Oral Squamous Cell Carcinoma. Oral Dis. 2021, 27, 439–447. [Google Scholar] [CrossRef]
- Yoshioka, Y.; Shimomura, M.; Saito, K.; Ishii, H.; Doki, Y.; Eguchi, H.; Nakatsura, T.; Itoi, T.; Kuroda, M.; Mori, M.; et al. Circulating Cancer-Associated Extracellular Vesicles as Early Detection and Recurrence Biomarkers for Pancreatic Cancer. Cancer Sci. 2022, 113, 3498–3509. [Google Scholar] [CrossRef]
- Chen, X.; Liao, X.; Zheng, B.; Wang, F.; Chen, F.; Deng, Z.; Jiang, H.; Qin, S. Differential Plasma Proteins Identified via ITRAQ-Based Analysis Serve as Diagnostic Markers of Pancreatic Ductal Adenocarcinoma. Dis. Markers 2023, 2023, 5145152. [Google Scholar] [CrossRef]
- Son, M.; Kim, H.; Han, D.; Kim, Y.; Huh, I.; Han, Y.; Hong, S.-M.; Kwon, W.; Kim, H.; Jang, J.-Y.; et al. A Clinically Applicable 24-Protein Model for Classifying Risk Subgroups in Pancreatic Ductal Adenocarcinomas Using Multiple Reaction Monitoring-Mass Spectrometry. Clin. Cancer Res. 2021, 27, 3370–3382. [Google Scholar] [CrossRef]
- Kafita, D.; Nkhoma, P.; Zulu, M.; Sinkala, M. Proteogenomic Analysis of Pancreatic Cancer Subtypes. PLoS ONE 2021, 16, e0257084. [Google Scholar] [CrossRef]
- Hu, D.; Ansari, D.; Zhou, Q.; Sasor, A.; Said Hilmersson, K.; Andersson, R. Galectin 4 Is a Biomarker for Early Recurrence and Death after Surgical Resection for Pancreatic Ductal Adenocarcinoma. Scand. J. Gastroenterol. 2019, 54, 95–100. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.; Kong, L.; Jin, H.; Wu, Y.; Tan, X.; Song, B. Differential Secretome of Pancreatic Cancer Cells in Serum-Containing Conditioned Medium Reveals CCT8 as a New Biomarker of Pancreatic Cancer Invasion and Metastasis. Cancer Cell Int. 2019, 19, 262. [Google Scholar] [CrossRef] [PubMed]
- Deutsch, O.; Haviv, Y.; Krief, G.; Keshet, N.; Westreich, R.; Stemmer, S.M.; Zaks, B.; Navat, S.P.; Yanko, R.; Lahav, O.; et al. Possible Proteomic Biomarkers for the Detection of Pancreatic Cancer in Oral Fluids. Sci. Rep. 2020, 10, 21995. [Google Scholar] [CrossRef] [PubMed]
- Sahni, S.; Krisp, C.; Molloy, M.P.; Nahm, C.; Maloney, S.; Gillson, J.; Gill, A.J.; Samra, J.; Mittal, A. PSMD11, PTPRM and PTPRB as Novel Biomarkers of Pancreatic Cancer Progression. Biochim. Biophys. Acta Gen. Subj. 2020, 1864, 129682. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Bauden, M.; Andersson, R.; Hu, D.; Marko-Varga, G.; Xu, J.; Sasor, A.; Dai, H.; Pawłowski, K.; Said Hilmersson, K.; et al. YAP1 Is an Independent Prognostic Marker in Pancreatic Cancer and Associated with Extracellular Matrix Remodeling. J. Transl. Med. 2020, 18, 77. [Google Scholar] [CrossRef] [PubMed]
- Tung, C.-L.; Lin, M.-W.; Hu, R.-Y.; Chien, Y.-C.; Liao, E.-C.; Lin, L.-H.; Chung, T.-W.; Wei, Y.-S.; Tsai, Y.-T.; Chen, H.-Y.; et al. Proteomic Analysis of Metastasis-Specific Biomarkers in Pancreatic Cancer: Galectin-1 Plays an Important Metastatic Role in Pancreatic Cancer. J. Pharm. Biomed. Anal. 2020, 186, 113300. [Google Scholar] [CrossRef]
- O’Rourke, M.B.; Sahni, S.; Samra, J.; Mittal, A.; Molloy, M.P. Data Independent Acquisition of Plasma Biomarkers of Response to Neoadjuvant Chemotherapy in Pancreatic Ductal Adenocarcinoma. J. Proteom. 2021, 231, 103998. [Google Scholar] [CrossRef]
- Wu, C.-C.; Lu, Y.-T.; Yeh, T.-S.; Chan, Y.-H.; Dash, S.; Yu, J.-S. Identification of Fucosylated SERPINA1 as a Novel Plasma Marker for Pancreatic Cancer Using Lectin Affinity Capture Coupled with ITRAQ-Based Quantitative Glycoproteomics. Int. J. Mol. Sci. 2021, 22, 6079. [Google Scholar] [CrossRef]
- Rittmann, M.-C.; Hussung, S.; Braun, L.M.; Klar, R.F.U.; Biesel, E.A.; Fichtner-Feigl, S.; Fritsch, R.; Wittel, U.A.; Ruess, D.A. Plasma Biomarkers for Prediction of Early Tumor Recurrence after Resection of Pancreatic Ductal Adenocarcinoma. Sci. Rep. 2021, 11, 7499. [Google Scholar] [CrossRef]
- Yu, J.; Ploner, A.; Kordes, M.; Löhr, M.; Nilsson, M.; Maturana, M.E.L.; Estudillo, L.; Renz, H.; Carrato, A.; Molero, X.; et al. Plasma Protein Biomarkers for Early Detection of Pancreatic Ductal Adenocarcinoma. Int. J. Cancer 2021, 148, 2048–2058. [Google Scholar] [CrossRef]
- Trilla-Fuertes, L.; Gámez-Pozo, A.; Lumbreras-Herrera, M.I.; López-Vacas, R.; Heredia-Soto, V.; Ghanem, I.; López-Camacho, E.; Zapater-Moros, A.; Miguel, M.; Peña-Burgos, E.M.; et al. Identification of Carcinogenesis and Tumor Progression Processes in Pancreatic Ductal Adenocarcinoma Using High-Throughput Proteomics. Cancers 2022, 14, 2414. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhao, W.; Li, Y.; Li, Y.; Cheng, H.; Zheng, L.; Sun, X.; Liu, H.; Shao, R. YOD1 Serves as a Potential Prognostic Biomarker for Pancreatic Cancer. Cancer Cell Int. 2022, 22, 203. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, L.; Huang, C.; Ning, Z.; Yang, L.; Zou, W.; Wang, P.; Cheng, C.; Meng, Z. Circulating Tumor-associated Autoantibodies as Novel Diagnostic Biomarkers in Pancreatic Adenocarcinoma. Int. J. Cancer 2023, 152, 1013–1024. [Google Scholar] [CrossRef]
- Gonçalves, J.P.L.; Bollwein, C.; Schlitter, A.M.; Kriegsmann, M.; Jacob, A.; Weichert, W.; Schwamborn, K. MALDI-MSI: A Powerful Approach to Understand Primary Pancreatic Ductal Adenocarcinoma and Metastases. Molecules 2022, 27, 4811. [Google Scholar] [CrossRef] [PubMed]
- Kartsonaki, C.; Pang, Y.; Millwood, I.; Yang, L.; Guo, Y.; Walters, R.; Lv, J.; Hill, M.; Yu, C.; Chen, Y.; et al. Circulating Proteins and Risk of Pancreatic Cancer: A Case-Subcohort Study among Chinese Adults. Int. J. Epidemiol. 2022, 51, 817–829. [Google Scholar] [CrossRef]
- Ha, C.S.R.; Müller-Nurasyid, M.; Petrera, A.; Hauck, S.M.; Marini, F.; Bartsch, D.K.; Slater, E.P.; Strauch, K. Proteomics Biomarker Discovery for Individualized Prevention of Familial Pancreatic Cancer Using Statistical Learning. PLoS ONE 2023, 18, e0280399. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer Statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef] [PubMed]
- Ruhl, J.L.; Callaghan, C.; Schussler, N. Summary Stage 2018 General Coding Instructions; National Cancer Institute: Bethesda, MD, USA, 2018; pp. 1–30.
- Siegel, R.; Naishadham, D.; Jemal, A. Cancer Statistics, 2012. CA Cancer J. Clin. 2012, 62, 10–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, Y.; Kim, M.J.; Choi, Y.; Kim, N.H.; Kim, L.; Hong, S.P.D.; Cho, H.-G.; Yu, E.; Chae, Y.K. Role of Mass Spectrometry-Based Serum Proteomics Signatures in Predicting Clinical Outcomes and Toxicity in Patients with Cancer Treated with Immunotherapy. J. Immunother. Cancer 2022, 10, e003566. [Google Scholar] [CrossRef]
- Zhou, Y.; Lih, T.M.; Pan, J.; Höti, N.; Dong, M.; Cao, L.; Hu, Y.; Cho, K.-C.; Chen, S.-Y.; Eguez, R.V.; et al. Proteomic Signatures of 16 Major Types of Human Cancer Reveal Universal and Cancer-Type-Specific Proteins for the Identification of Potential Therapeutic Targets. J. Hematol. Oncol. 2020, 13, 170. [Google Scholar] [CrossRef]
- Chae, Y.K.; Kim, W.B.; Davis, A.A.; Park, L.C.; Anker, J.F.; Simon, N.I.; Rhee, K.; Song, J.; Cho, A.; Chang, S.; et al. Mass Spectrometry-Based Serum Proteomic Signature as a Potential Biomarker for Survival in Patients with Non-Small Cell Lung Cancer Receiving Immunotherapy. Transl. Lung Cancer Res. 2020, 9, 1015–1028. [Google Scholar] [CrossRef]
- Peng, H.; Chen, R.; Brentnall, T.A.; Eng, J.K.; Picozzi, V.J.; Pan, S. Predictive Proteomic Signatures for Response of Pancreatic Cancer Patients Receiving Chemotherapy. Clin. Proteom. 2019, 16, 31. [Google Scholar] [CrossRef] [Green Version]
- Sahni, S.; Nahm, C.; Krisp, C.; Molloy, M.P.; Mehta, S.; Maloney, S.; Itchins, M.; Pavlakis, N.; Clarke, S.; Chan, D.; et al. Identification of Novel Biomarkers in Pancreatic Tumor Tissue to Predict Response to Neoadjuvant Chemotherapy. Front. Oncol. 2020, 10, 237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Large, T.Y.S.; El Hassouni, B.; Funel, N.; Kok, B.; Piersma, S.R.; Pham, T.V.; Olive, K.P.; Kazemier, G.; van Laarhoven, H.W.M.; Jimenez, C.R.; et al. Proteomic Analysis of Gemcitabine-Resistant Pancreatic Cancer Cells Reveals That Microtubule-Associated Protein 2 Upregulation Associates with Taxane Treatment. Ther. Adv. Med. Oncol. 2019, 11, 175883591984123. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.E.; Kim, E.-K.; Song, M.-J.; Kim, T.-Y.; Jang, H.H.; Kang, D. SILAC-Based Quantitative Proteomic Analysis of Oxaliplatin-Resistant Pancreatic Cancer Cells. Cancers 2021, 13, 724. [Google Scholar] [CrossRef]
- Chiu, C.-L.; Zhao, H.; Chen, C.-H.; Wu, R.; Brooks, J.D. The Role of MARCKS in Metastasis and Treatment Resistance of Solid Tumors. Cancers 2022, 14, 4925. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, L.; Joo, D.; Sun, S.-C. NF-ΚB Signaling in Inflammation. Signal Transduct. Target. Ther. 2017, 2, 17023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Q.; Shen, S.; Qian, Z.; Rasam, S.S.; Serratore, A.; Jusko, W.J.; Kandel, E.S.; Qu, J.; Straubinger, R.M. Comparative Proteomic Analysis Identifies Key Metabolic Regulators of Gemcitabine Resistance in Pancreatic Cancer. Mol. Cell. Proteom. 2022, 21, 100409. [Google Scholar] [CrossRef]
- Kim, Y.; Han, D.; Min, H.; Jin, J.; Yi, E.C.; Kim, Y. Comparative Proteomic Profiling of Pancreatic Ductal Adenocarcinoma Cell Lines. Mol. Cells 2014, 37, 888–898. [Google Scholar] [CrossRef] [Green Version]
- Amrutkar, M.; Berg, K.; Balto, A.; Skilbrei, M.G.; Finstadsveen, A.V.; Aasrum, M.; Gladhaug, I.P.; Verbeke, C.S. Pancreatic Stellate Cell-Induced Gemcitabine Resistance in Pancreatic Cancer Is Associated with LDHA- and MCT4-Mediated Enhanced Glycolysis. Cancer Cell Int. 2023, 23, 9. [Google Scholar] [CrossRef]
- Coleman, O.; Henry, M.; O’Neill, F.; Roche, S.; Swan, N.; Geoghegan, J.; Conlon, K.; McVey, G.; Moriarty, M.; Meleady, P.; et al. Proteomic Analysis of Cell Lines and Primary Tumors in Pancreatic Cancer Identifies Proteins Expressed Only In Vitro and Only In Vivo. Pancreas 2020, 49, 1109–1116. [Google Scholar] [CrossRef]
Omics | Advantage | Disadvantage | Possible Benefit of Using Proteomics over This Omic | Ref. |
---|---|---|---|---|
Genomics | Can identify genetic variations and mutations. | Does not reflect real-time cellular events. | Proteomics can reflect changes in protein levels and post-translational modifications, which provide a real-time snapshot of cellular events. | [45,46] |
Transcriptomics | Can measure gene expression levels. | Does not reflect protein levels or activity. | Proteomics measures protein abundance and activity, which is the ultimate determinant of cell behavior and phenotype, as protein levels do not always correlate with mRNA levels. | [47,48] |
Metabolomics | Provides insights into end products of cell metabolism. | Only captures final steps of cellular processes. | Proteomics offers a comprehensive look at the many steps involved in cellular function and disease processes, including the regulation and interaction of proteins. | [49,50,51] |
Epigenomics | Studies heritable changes not coded in DNA sequence. | Limited in predicting functional outcomes. | Proteomics can indicate functional outcomes due to post-translational modifications and protein–protein interactions, which often depend on epigenetic changes. | [52,53] |
Interactomics | Studies interactions and associations between proteins. | Limited in scale and often lacks context. | Proteomics can provide context by identifying abundance of proteins and can also explore protein modifications, adding depth to interaction data. | [54,55] |
Phosphoproteomics | Identifies and characterizes phosphorylated proteins. | Limited to one type of post-translational modification. | Proteomics can identify many different types of post-translational modifications, offering a broader view of protein activity. | [56,57] |
Glycomics | Studies the entire complement of sugars in an organism. | Technically complex and hard to interpret. | Proteomics can identify glycosylated proteins and help link these modifications to functional changes, providing insights into the role of sugars in biology. | [58,59] |
Lipidomics | Targets and studies unique roles of lipids in organisms. | Does not directly link to protein function. | Proteomics can identify proteins that interact with lipids or are modified by them, providing functional context to lipidomics data. | [60,61,62] |
Microbiomics or Metagenomics | Studies genetic material in a microbiome. | Does not reflect the impact of the host’s proteins. | Proteomics can study how host proteins interact with and are affected by the microbiome, offering insights into host–microbe interactions. | [63,64] |
Biofluid Type Proteomic (Technique) | Population Dimension (It Is Indicated If an Independent Validation Set Was Used) | Prediction Models (Peptide Fragments/Proteins Used in the Model) | Ref. |
---|---|---|---|
Tissue (Tissue microarray) | 140 PDAC | (Galectin 4) for early recurrence | [143] |
Cell Line (LC-MS-MS + WB) | PC-1.0 and PC-1 cell line | (T-complex protein 1 subunit theta) for cancer invasion and metastasis | [144] |
Oral Fluid (2DE + MS) | 15 PCP and 16 HC (10 PCP and 10 HC) | AUC = 0.91 with sensitivity and specificity of 90.0% (Cytokeratin-14, Lactoperoxidase, Cytokeratin-16, Cytokeratin-17, and Peptidyl-prolyl cis–trans isomerase B) | [145] |
Plasma + plasma-derived microparticle (LC-MS-MS) | 12 PCP | q < 0.1 (Receptor-type tyrosine-protein phosphatase um; Receptor-type tyrosine-protein phosphatase beta; 26S proteasome non-ATPase regulatory subunit 11) | [146] |
Tissue (LC-MS-MS) | 10 PDAC + 10 normal pancreatic biopsies | log2 fold change 6.4; p = 5 × 10−6 (Yes-associated protein 1) | [147] |
Cell line (2D + MALDI-TOF MS) | PANC1 and PANC1-I5 cell line | Galectin-1 | [148] |
Secreted Extracellular vesicles (LC-MS-MS) | apan-2, MIA PaCa-2,Panc-1, and HPDE cell line | Peptide FDR < 0.01, protein FDR < 0.01 (348 proteins uniquely identified in cancer cell lines) | [132] |
Plasma (LC-MS-MS) | 22 PCP 15 good and 7 poor responders to post-neoadjuvant chemotherapy | R2 = 0.7 (Apolipoprotein A-IV, Ceruloplasmin, Complement C3 and Complement factor B, Complement C1q subcomponent subunit B, Complement C2, Complement C4-B, Transthyretin and Zinc-alpha-2-glycoprotein s) | [149] |
Plasma (iTRAQ) | 10 metastasis-free PCP + 10 PCP with distant metastasis + 10 gallstones (51 PC + 40 with gallstones) | AUC = 0.956 (SERPINA1 protein + CA19-9) | [150] |
Plasma + Tissue (Proteome array) | 14 PDAC | (23 proteins two-fold change) | [151] |
Plasma (array-based technology) | 135 PDAC + 72 HC + 13 benign lesions/chronic pancreatitis (75 PDAC + 36 HC + 19 chronic pancreatitis) | AUC = 0.89 (tyrosine-protein kinase Lyn, ITGB5, CEACAM1, secreted protein acidic and cysteine rich, alpha-taxilin, cyclin-dependent kinase inhibitor 1, annexin 1 and CA19-9) | [152] |
Tissue (LC-MS-MS) | 173 samples from 52 PDAC | (Mucin 5, GATA6) | [153] |
Tissue (WB) | 6 PDAC + 6 normal pancreatic biopsies | (Ubiquitin thioesterase OTU1) | [154] |
Serum (HuProt microarray + ELISA) | 338 PDAC + 294 HC + 122 chronic pancreatitis + 100 non-PDAC malignancies | AUC = 0.93 (CLDN17, KCNN3, SLAMF7, SLC22A11 and OR51F2) | [155] |
Tissue (MALDI-MSI) | 13 PDAC (primary + metastatic) | accuracy = 90% (COL1A1, COL1A2, and COL3A1) | [156] |
Serum extracellular vesicles (MS/MS + immunoblotting) | 15 PDAC + 25 HC + 14 pancreatitis Patients (27 PDAC + 7 HC + 8 pancreatitis Patients) | AUC = 0.89 (G Protein-Coupled Receptor Class C Group 5 Member C; Epidermal growth factor receptor kinase substrate 8) | [139] |
Tissue + PBMC (MS) | 12 PDAC + 2 chronic pancreatitis patients | (cell death protein 1) | [87] |
Plasma (array-based technology) | 610 PCP + 623 non-PCP | C statistic 0.779 (Monocyte chemotactic protein 3; Angiopoietin-2; Interleukin-18; Interleukin-6; Lysosome-associated membrane glycoprotein 3; C-C motif chemokine 3; CD4 T cell surface glycoprotein; T cell surface glycoprotein CD8 alpha chain; Heme oxygenase 1; Hepatocyte growth factor; Interleukin-2; Interleukin-4; Granzyme A; Cytotoxic and regulatory T cell molecule; Adhesion G-protein coupled receptor G1) | [157] |
Serum (high-throughput proteomics dataset) | 83 individuals at risk of PDAC | AUC = 0.9 (PCSK9, FGF-BP1, PLA2G7, LYPD3, and MSLN) | [158] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramalhete, L.; Vigia, E.; Araújo, R.; Marques, H.P. Proteomics-Driven Biomarkers in Pancreatic Cancer. Proteomes 2023, 11, 24. https://doi.org/10.3390/proteomes11030024
Ramalhete L, Vigia E, Araújo R, Marques HP. Proteomics-Driven Biomarkers in Pancreatic Cancer. Proteomes. 2023; 11(3):24. https://doi.org/10.3390/proteomes11030024
Chicago/Turabian StyleRamalhete, Luís, Emanuel Vigia, Rúben Araújo, and Hugo Pinto Marques. 2023. "Proteomics-Driven Biomarkers in Pancreatic Cancer" Proteomes 11, no. 3: 24. https://doi.org/10.3390/proteomes11030024