Meta-Analysis for Math Teachers’ Professional Development and Students’ Achievement
Abstract
1. Introduction
1.1. Rationale
1.2. Objectives
- Duration (short-term indicates one-time or less than one year; one academic year, or multiple years), representing the length of time the professional development intervention was implemented.
- PD Teaching Approach refers to the three categories of content knowledge only (CK), pedagogy only (PK), or a combination of pedagogy and content knowledge (PCK). These terms come from Shulman’s (1986) framework and describe the types of PD intervention in studies included in this meta-analysis to enhance educators’ knowledge, instructional skills, and classroom practices.
- Modality (workshop only, workshop plus coaching, or workshop plus other support strategies), indicating the format or delivery method through which professional learning experiences were provided to educators.
- Grade Level (K–2nd, 3rd–5th, 6th–8th, or 9th–12th), denoting the student grade levels taught by the teachers who received the PD intervention.
- Type of Math Content (geometry, algebra, or other math domains), referring to the specific mathematical knowledge, concepts, and procedures addressed in the PD program.
- PD Category refers to professional learning communities (PLCs), formative assessment, curriculum, online/video-based, reform-initiated math, PD approach, cooperative learning, or technology describing the thematic area or framework around which the PD was organized. PD approach refers to studies with PD programs that did not fit into predefined categories and did not specify the type of PD delivered but were activities aimed at improving instruction or enhancing teacher skills and knowledge (Desimone, 2009).
- Study Design (randomized or quasi-experimental). A randomized study design involves randomly assigning participants to either a treatment (intervention) group or a control (comparison) group, which helps control for selection bias and enhances internal validity. In contrast, a quasi-experimental design lacks random assignment but still includes an intervention and comparison group, allowing for evaluation of the PD’s effects under more naturalistic or constrained conditions.
1.3. Literature Review
1.3.1. Importance of Professional Development for Math Teachers
1.3.2. Topics Covered in Professional Development
1.3.3. Outcome of Professional Development
2. Method
2.1. Protocol, Information Sources, Search, and Selection of Sources of Evidence
- What is the impact of recent evaluated professional development programs on students’ mathematics achievement?
- Do the effects vary across different PD components, such as duration, PD teaching approach, modality, grade level, type of math content, PD category, and study design, that have been theoretically and practically linked to improved student outcomes?
2.2. Eligibility Criteria
2.3. Data Charting Process and Data Items
2.4. Critical Appraisal of Individual Sources of Evidence
3. Results
3.1. Results from Overall Model
3.2. Critical Appraisal Within Sources of Evidence
3.3. Results from Models with Moderators
3.4. Duration
3.5. Professional Development Teaching Approaches
3.6. Modality
3.7. Grade
3.8. Math Type
3.9. Professional Development Category
3.10. Study Design
4. Discussion and Summary of Evidence
- (1)
- What is the impact of evaluated recent professional development programs on students’ math achievement?
- (2)
- Do effects vary among the evaluated PD components (duration, teaching approaches, modality, grade level, math content, type of PD program, and study design) that have been asserted through theory and practice to be beneficial to improving students’ achievement?
4.1. Overall Effect of Professional Development
4.2. Duration
4.3. Professional Development Teaching Approach
4.4. Modality
4.5. Grade Level
4.6. Math Type
4.7. PD Category
4.8. Study Design
4.9. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Agodini, R., & Harris, B. (2016). How teacher and classroom characteristics moderate the effects of four elementary math curricula. The Elementary School Journal, 117(2), 216–236. [Google Scholar] [CrossRef]
- Allen, T. Y. (2013). The Impact of professional learning communities on third-grade math scores [ProQuest dissertations and theses, Union University]. [Google Scholar]
- Ball, L. D., Thames, H. M., & Phelps, G. (2008). Content knowledge for teaching: What makes it special? Journal of Teacher Education, 59(5), 389–407. [Google Scholar] [CrossRef]
- Bicer, A., & Capraro, R. M. (2016). Longitudinal effects of technology integration and teacher professional development on students’ mathematics achievement. Eurasia Journal of Mathematics, Science and Technology Education, 13(3), 815–833. [Google Scholar] [CrossRef]
- Bicer, A., Navruz, B., Capraro, R. M., & Capraro, M. M. (2014). STEM schools vs. non-STEM schools: Comparing students’ mathematics state-based test performance. International Journal of Global Education, 3(3), 8–18. [Google Scholar]
- Bicer, A., Navruz, B., Capraro, R. M., Capraro, M. M., Oner, T. A., & Boedeker, P. (2015). STEM schools vs. non-STEM schools: Comparing students’ mathematics growth rate on high-stakes test performance. International Journal of New Trends in Education and Their Implications, 6(1), 138–150. [Google Scholar]
- Blank, R. K. (2013). What research tells us: Common characteristics of professional learning that leads to student achievement. Journal of Staff Development, 34(1), 50–53. [Google Scholar]
- Blank, R. K., & de las Alas, N. (2009). Effects of teacher professional development on gains in student achievement: How meta-analysis provides scientific evidence useful to education leaders. Council of Chief State School Officers. [Google Scholar]
- Borenstein, M. (2019). Common mistakes in meta-analysis and how to avoid them. Biostat, Inc. [Google Scholar]
- Borenstein, M., Hedges, L. E., Higgins, J. P. T., & Rothstein, H. R. (2022). Comprehensive meta-analysis (Version 4). Biostat, Inc. Available online: www.Meta-Analysis.com (accessed on 2 February 2024).
- Borenstein, M., Hedges, L. V., Higgins, J. P., & Rothstein, H. R. (2021). Introduction to meta-analysis. John Wiley & Sons. [Google Scholar]
- Borko, H. (2004). Professional development and teacher learning: Mapping the terrain. Educational Researcher, 33(8), 3–15. [Google Scholar] [CrossRef]
- Borko, H., Jacobs, J., & Koellner, K. (2010). Contemporary approaches to teacher professional development. International Encyclopedia of Education, 7(2), 548–556. [Google Scholar]
- Boyd, D., Grossman, P., Lankford, H., Loeb, S., & Wyckoff, J. (2006). How changes in entry requirements alter the teacher workforce and affect student achievement. Education Finance and Policy, 1(2), 176–216. [Google Scholar] [CrossRef]
- Buckhalter, B. (2019). An examination of the relationship among the intentions, features, affordances, and outcomes of Saturday academy for math professional development for mathematics teachers [Electronic theses and dissertations, University of Mississippi]; 1558p. Available online: https://egrove.olemiss.edu/etd/1558 (accessed on 5 December 2014).
- Capraro, R. M., Capraro, M. M., Scheurich, J. J., Jones, M., Morgan, J., Huggins, K. S., Corlu, M. S., Younes, R., & Han, S. (2016). Impact of sustained professional development in STEM on outcome measures in a diverse urban district. The Journal of Educational Research, 109(2), 181–196. [Google Scholar] [CrossRef]
- Card, N. A. (2015). Applied meta-analysis for social science research. Guilford Publications. [Google Scholar]
- Cavalluzzo, L., Geraghty, T. M., Steele, J. L., Holian, L., Jenkins, F., Alexander, J. M., & Yamasaki, K. Y. (2014). “Using Data” to inform decisions: How teachers use data to inform practice and improve student performance in mathematics. Results from a randomized experiment of program efficacy. CNA Corporation. [Google Scholar]
- Cheung, A., & Slavin, R. (2016). How methodological features affect effect sizes in education. Educational Researcher, 45(5), 283–292. [Google Scholar] [CrossRef]
- Clements, D. H., Sarama, J., Layzer, C., Unlu, F., Wolfe, C. B., Spitler, M. E., & Weiss, D. (2016). Effects of TRIAD on mathematics achievement: Long-term impacts. Society for Research on Educational Effectiveness. Available online: https://eric.ed.gov/?id=ED567218 (accessed on 21 August 2025).
- Clotfelter, C. T., Ladd, H. F., & Vigdor, J. L. (2007). Teacher credentials and student achievement: Longitudinal analysis with student fixed effects. Economics of Education Review, 26(6), 673–682. [Google Scholar] [CrossRef]
- Cohen, D. K. (1990). A revolution in one classroom: The case of Mrs. Oublier. Educational Evaluation and Policy Analysis, 12(3), 311–329. [Google Scholar] [CrossRef]
- Cohen, D. K., & Hill, H. C. (2001). Learning policy: When state education reform works. Yale University Press. [Google Scholar]
- Cook, B. G., Cook, L., & Therrien, W. J. (2018). Group–difference effect sizes: Gauging the practical importance of findings from group–experimental research. Learning Disabilities Research & Practice, 33(2), 56–63. [Google Scholar]
- Cooper, H. (2015). Research synthesis and meta-analysis: A step-by-step approach (Vol. 2). Sage publications. [Google Scholar]
- Darling-Hammond, L., Hyler, M. E., & Gardner, M. (2017). Effective teacher professional development. Learning Policy Institute. Available online: https://learningpolicyinstitute.org/product/effective-teacher-professional-development-report (accessed on 19 September 2019).
- Darling-Hammond, L., Wei, R. C., Andree, A., Richardson, N., & Orphanos, S. (2009). Professional learning in the learning profession (Vol. 12). National Staff Development Council. [Google Scholar]
- Dash, S., de Kramer, R. M., Masters, J., & Russell, M. (2012). Impact of online professional development on teacher quality and student achievement in fifth grade mathematics. Journal of Research on Technology in Education, 45(1), 1–26. [Google Scholar] [CrossRef]
- Desimone, L. (2011). Outcomes: Content-focused learning improves teacher practice and student results. Journal of Staff Development, 32(4), 65–68. [Google Scholar]
- Desimone, L. M. (2009). Improving impact studies of teachers’ professional development: Toward better conceptualizations and measures. Educational Researcher, 38(3), 181–199. [Google Scholar] [CrossRef]
- Desimone, L. M., Porter, A. C., Garet, M., Suk Yoon, K., & Birman, B. (2002). Does professional development change teachers’ instruction? Results from a three-year study. Educational Evaluation and Policy Analysis, 24, 81–112. [Google Scholar] [CrossRef]
- Desimone, L. M., Smith, T. M., & Phillips, K. J. R. (2007). Does policy influence mathematics and science teachers’ participation in professional development? Teachers College Record, 109(5), 1086–1122. [Google Scholar] [CrossRef]
- Desimone, L. M., Smith, T. M., & Ueno, K. (2006). Are teachers who need sustained, content-focused professional development getting it? An administrator’s dilemma. Educational Administration Quarterly, 42(2), 179–215. [Google Scholar] [CrossRef]
- Early, D. M., Berg, J. K., Alicea, S., Si, Y., Aber, J. L., Ryan, R. M., & Deci, E. L. (2016). The impact of every classroom, every day on high school student achievement: Results from a school-randomized trial. Journal of Research on Educational Effectiveness, 9(1), 3–29. [Google Scholar] [CrossRef]
- Even, E. (1993). Subject-matter knowledge and pedagogical content knowledge prospective secondary teachers and the function concept. Journal for Research in Mathematics Education, 24(2), 94–116. [Google Scholar] [CrossRef]
- Foster, J. M., Toma, E. F., & Troske, S. P. (2013). Does teacher professional development improve math and science outcomes and is it cost effective? Journal of Education Finance, 38(3), 255–275. [Google Scholar] [CrossRef]
- Franke, M. L., Carpenter, T. P., Levi, L., & Fennema, E. (2001). Capturing teachers’ generative change: A follow-up study of professional development in mathematics. American Educational Research Journal, 38(3), 653–689. [Google Scholar] [CrossRef]
- Garet, M. S., Heppen, J. B., Walters, K., Parkinson, J., Smith, T. M., Song, M., Garrett, R., Yang, R., & Borman, G. D. (2016). Focusing on mathematical knowledge: The impact of content-intensive teacher professional development. NCEE 2016–4010. National Center for Education Evaluation and Regional Assistance. [Google Scholar]
- Garet, M. S., Porter, A. C., Desimore, L., Birman, B. F., & Yoon, K. S. (2001). What makes professional development effective? Results from a national sample of teachers. American Educational Research Journal, 38(4), 915–945. [Google Scholar] [CrossRef]
- Goldberg, C., Riconscente, M. M., & Nye, B. D. (2023). A promising approach to scaling up professional development: Intelligent, interactive, virtual professional development with just-in-time feedback. Journal of Mathematics Teacher Education. Advance online publication. [Google Scholar] [CrossRef]
- Grossman, P. L. (1990). The making of a teacher: Teacher knowledge and teacher education. Teachers College Press. [Google Scholar]
- Guskey, T., & Sparks, D. (2004). Linking professional development to improvements in student learning. In E. M. Guyton, & J. R. Dangel (Eds.), Researching linking teacher preparation and student performance: Teacher education yearbook Xll (pp. 233–247). Roman & Littlefield Publishing Company. [Google Scholar]
- Guskey, T. R., & Yoon, K. S. (2009). What works in professional development? Phi Delta Kappan, 90(7), 495–500. [Google Scholar] [CrossRef]
- Healy, L., & Hoyles, C. (2000). A study of proof conceptions in algebra. Journal for Research in Mathematics Education, 31(4), 396–428. [Google Scholar] [CrossRef]
- Hedges, L. V., Tipton, E., & Johnson, M. C. (2010). Robust variance estimation in meta-regression with dependent effect size estimates. Research Synthesis Methods, 1(1), 39–65. [Google Scholar] [CrossRef]
- Heller, J. I., Curtis, D. A., Rabe-Hesketh, S., & Verboncoeur, C. J. (2007). The effects of math pathways and pitfalls on students’ mathematics achievement (pp. 1–43). National Science Foundation Report. [Google Scholar]
- Hill, H. C. (2007). Learning in the teaching workforce. The Future of Children, 17(1), 111–127. [Google Scholar] [CrossRef]
- Hill, H. C. (2011). The nature and effects of middle school mathematics teacher learning experiences. Teachers College Record, 113(1), 205–234. [Google Scholar] [CrossRef]
- Hill, H. C., Rowan, B., & Ball, D. L. (2005). Effects of teachers’ mathematical knowledge for teaching on student achievement. American Educational Research Journal, 42(2), 371–406. [Google Scholar] [CrossRef]
- Hill, K., & Luft, J. (2015). Exploring beginning teachers’ content knowledge. In Newly hired teachers of science: A better beginning (pp. 57–74). Sense Publishers. [Google Scholar] [CrossRef]
- Ingvarson, L., Meiers, M., & Beavis, A. (2005). Factors affecting the impact of professional development programs on teachers’ knowledge, practice, student outcomes & efficacy. Education Policy Analysis Archives, 13(10), 1–28. [Google Scholar] [CrossRef]
- Institute for Educational Science (IES). (2022). What works clearinghouse-procedures and standards handbook (Version 5.0). Institute for Educational Science. Available online: https://ies.ed.gov/ncee/wwc/Docs/referenceresources/Final_WWC-HandbookVer5_0-0-508.pdf (accessed on 2 February 2024).
- IntHout, J., Ioannidis, J. P., Rovers, M. M., & Goeman, J. J. (2016). Plea for routinely presenting prediction intervals in meta-analysis. BMJ Open, 6(7), e010247. [Google Scholar] [CrossRef]
- Jacob, R., Hill, H., & Corey, D. (2017). The impact of a professional development program on teachers’ mathematical knowledge for teaching, instruction, and student achievement. Journal of Research on Educational Effectiveness, 10(2), 379–407. [Google Scholar] [CrossRef]
- Jacobs, J. K., Koellner, K., Seago, N., Garnier, H., & Wang, C. (2020). Professional development to support the learning and teaching of geometry. In The language of mathematics: How the teacher’s knowledge of mathematics affects instruction (pp. 143–173). Rowman & Little Publishers. [Google Scholar]
- Jayanthi, M., Gersten, R., Taylor, M. J., Smolkowski, K., & Dimino, J. (2017). Impact of the developing mathematical ideas professional development program on grade 4 students’ and teachers’ understanding of fractions (REL 2017-256). Regional Educational Laboratory Southeast. [Google Scholar]
- Jiang, Z., White, A., & Rosenwasser, A. (2011). Randomized control trials on the dynamic geometry approach. Journal of Mathematics Education at Teachers College, 2(2), 8–17. [Google Scholar]
- Jones, K. (2003). Issues in the teaching and learning of geometry. In Aspects of teaching secondary mathematics (pp. 137–155). Routledge. [Google Scholar]
- Jozsa, A. (2017). Cooperative learning in the advanced algebra and trigonometry mathematics high school classroom [Doctoral dissertation, University of St. Francis]. [Google Scholar]
- Kang, H. S., Cha, J., & Ha, B. W. (2013). What should we consider in teachers’ professional development impact studies? Based on the conceptual framework of Desimone. Creative Education, 4(4A), 11–18. [Google Scholar] [CrossRef]
- Killion, J. (2002). What works in the high school results-based staff development (pp. 1–120). National Staff Development Council. National Education Association. [Google Scholar]
- Kisa, Z. (2014). A quasi-experimental study of the effect of mathematics professional development on student achievement [Doctoral dissertation, University of Pittsburg]. Available online: https://d-scholarship.pitt.edu/22789/ (accessed on 21 August 2025).
- Kleickmann, T., Richter, D., Kunter, M., Elsner, J., Besser, M., Krauss, S., & Baumert, J. (2013). Teachers’ content knowledge and pedagogical content knowledge: The role of structural differences in teacher education. Journal of Teacher Education, 64(1), 90–106. [Google Scholar] [CrossRef]
- Krawec, J., & Montague, M. (2014). The role of teacher training in cognitive strategy instruction to improve math problem solving. Learning Disabilities Research & Practice, 29(3), 126–134. [Google Scholar] [CrossRef]
- Krupa, E. E. (2011). Evaluating the impact of professional development and curricular implementation on student mathematics achievement: A mixed methods study [ProQuest dissertations and theses, North Carolina State University]. [Google Scholar]
- Kuchey, D., Morrison, J. Q., & Geer, C. H. (2009). A professional development model for math and science educators in catholic elementary schools: Challenges and successes. Catholic Education: A Journal of Inquiry and Practice, 12(4), 475–497. [Google Scholar]
- Larison, R., Richards, J., & Sherin, M. G. (2022). Tools for supporting teacher noticing about classroom video in online professional development. Journal of Mathematics Teacher Education, 27(2), 139–161. [Google Scholar] [CrossRef]
- Lasserson, T. J., Thomas, J., & Higgins, J. P. (2019). Starting a review. In Cochrane handbook for systematic reviews of interventions (pp. 1–12). Wiley-Blackwell. [Google Scholar] [CrossRef]
- Leinhardt, G., & Smith, D. A. (1985). Expertise in mathematics instruction: Subject matter knowledge. Journal of Educational Psychology, 77, 247–271. [Google Scholar] [CrossRef]
- Lin, L., & Chu, H. (2018). Quantifying publication bias in meta-analysis. Biometrics, 74(3), 785–794. [Google Scholar] [CrossRef] [PubMed]
- Loucks-Horsley, S., & Matsumoto, C. (1999). Research on professional development for teachers of mathematics and science: The state of the scene. School Science and Mathematics, 99(5), 258–271. [Google Scholar] [CrossRef]
- Mashingaidze, S. (2012). The teaching of geometric (isometric) Transformations at secondary school level: What approach to use and why? Asian Social Science, 8(15), 197. [Google Scholar] [CrossRef]
- McGatha, M. B., Bush, W. S., & Rakes, C. (2009). The effects of professional development in formative assessment on mathematics teaching performance and student achievement. Journal of MultiDisciplinary Evaluation, 6(12), 32–43. [Google Scholar] [CrossRef]
- McLaughlin, M. W., & Talbert, J. E. (2001). Professional communities and the work of high school teachers. University of Chicago Press. [Google Scholar]
- O’Dwyer, L. M., Masters, J., Dash, S., De Kramer, R. M., Humez, A., & Russelle, M. (2010). E-learning for educators effects of on-line professional development on teachers and their students: Executive summary of four randomized trials. InTASC Report. Available online: https://search.issuelab.org/resource/e-learning-for-educators-effects-of-on-line-professional-development-on-teachers-and-their-students-findings-from-four-randomized-trials (accessed on 5 December 2014).
- Patel, N., Franco, S., Miura, Y., & Boyd, B. (2012). Including curriculum focus in mathematics professional development for middle-school mathematics teachers. School Science and Mathematics, 112(5), 300–309. [Google Scholar] [CrossRef]
- Pellegrini, M., Lake, C., Neitzel, A., & Slavin, R. E. (2021). Effective programs in elementary mathematics: A meta-analysis. AERA Open, 7, 2332858420986211. [Google Scholar] [CrossRef]
- Penuel, W. R., Fishman, B. J., Yamaguchi, R., & Gallagher, L. P. (2007). What makes professional development effective? Strategies that foster curriculum implementation. American Educational Research Journal, 44(4), 921–958. [Google Scholar] [CrossRef]
- Phelan, J., Choi, K., Vendlinski, T., Baker, E., & Herman, J. (2011). Differential improvement in student understanding of mathematical principles following formative assessment intervention. The Journal of Educational Research, 104, 330–339. [Google Scholar] [CrossRef]
- Phelan, J. C., Choi, K., Niemi, D., Vendlinski, T. P., Baker, E. L., & Herman, J. (2012). The effects of POWERSOURCE© assessments on middle-school students’ math performance. Assessment in Education: Principles, Policy & Practice, 19(2), 211–230. [Google Scholar]
- PISA. (2022). Highlights of U.S. PISA 2022 results web report (NCES 2023-115). U.S. Department of Education. Institute of Education Sciences, National Center for Education Statistics. Available online: https://nces.ed.gov/surveys/pisa/pisa2022/ (accessed on 2 February 2025).
- Polly, D., Wang, C., Martin, C., Lambert, R., Pugalee, D., & Middleton, C. (2018). The influence of mathematics professional development, school-level, and teacher-level variables on primary students’ mathematics achievement. Early Childhood Education Journal, 46, 31–45. [Google Scholar] [CrossRef]
- Polly, D., Wang, C., Martin, C., Lambert, R. G., Pugalee, D. K., & Middleton, C. W. (2017). The influence of an internet-based formative assessment tool on primary grades students’ number sense achievement. School Science and Mathematics, 117(3–4), 127–136. [Google Scholar] [CrossRef]
- Provasnik, S., Malley, L., Stephens, M., Landeros, K., Perkins, R., & Tang, J. H. (2016). Highlights from TIMSS and TIMSS advanced 2015: Mathematics and science achievement of U.S. students in grades 4 and 8 and in advanced courses at the end of high school in an international context. U.S. Department of Education, National Center for Education Statistics. Available online: https://nces.ed.gov/pubsearch/pubsinfo.asp?pubid=2017002 (accessed on 2 February 2025).
- Rivkin, S. G., Hanushek, E. A., & Kain, J. F. (2005). Teachers, schools, and academic achievement. Econometrica, 73(2), 417–458. [Google Scholar] [CrossRef]
- Rosenthal, R. (1979). The file drawer problem and tolerance for null results. Psychological Bulletin, 86(3), 638. [Google Scholar] [CrossRef]
- Ross, J. A., Bruce, C., & Hogaboam-Gray, A. (2006). The impact of a professional development program on student achievement in grade 6 mathematics. Journal of Mathematics Teacher Education, 9, 551–577. [Google Scholar] [CrossRef]
- Rothstein, H. R., Sutton, A. J., & Borenstein, M. (2005). Publication Bias in Meta-Analysis. In H. R. Rothstein, A. J. Sutton, & M. Borenstein (Eds.), Bias in meta-analysis: Prevention, assessment and adjustments (pp. 1–7). John Wiley & Sons, Ltd. [Google Scholar]
- Santagata, R., Kersting, N., Givvin, K. B., & Stigler, J. W. (2010). Problem implementation as a lever for change: An experimental study of the effects of a professional development program on students’ mathematics learning. Journal of Research on Educational Effectiveness, 4(1), 1–24. [Google Scholar] [CrossRef]
- Scher, L., & O’Reilly, F. (2009). professional development for K–12 math and science teachers: What do we really know? Journal of Research on Educational Effectiveness, 2, 209–249. [Google Scholar] [CrossRef]
- Schoen, R. C., LaVenia, M., & Tazaz, A. M. (2018). Effects of the first year of a three-year CGI teacher professional-development program on grades 3–5 student achievement: A multisite cluster-randomized trial (Research Report No. 2018-25). Learning Systems Institute, Florida State University. [Google Scholar]
- Schoen, R. C., LaVenia, M., Tazaz, A. M., Farina, K., Dixon, J. K., & Secada, W. G. (2020). Replicating the CGI experiment in diverse environments: Effects on grade 1 and 2 student mathematics achievement in the first program year (Research Report No. 2020-02). Florida State University. [Google Scholar] [CrossRef]
- Seago, N. M., Jacobs, J. K., Heck, D. J., Nelson, C. L., & Malzahn, K. A. (2014). Impacting teachers’ understanding of geometric similarity: Results from field testing of the learning and teaching geometry professional development materials. Professional Development in Education, 40(4), 627–653. [Google Scholar] [CrossRef]
- Shadish, W., Cook, T. D., & Campbell, D. T. (2002). Experimental and quasi-experimental designs for generalized causal inference (Vol. 1195). Houghton Mifflin. [Google Scholar]
- Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 4–14. [Google Scholar] [CrossRef]
- Skott, J. (2022). Lesson study beyond its initial adaptation: A case without external support. Journal of Mathematics Teacher Education, 27(2), 163–183. [Google Scholar] [CrossRef]
- Sowder, J. T. (2007). The mathematical education and development of teachers. In F. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 157–223). Information Age Publishing. [Google Scholar]
- Steiner, P. M., Wroblewski, A., & Cook, T. D. (2009). Randomized experiments and quasi-experimental designs in educational research. In The sage handbook of educational evaluation (pp. 75–95). Sage Publications, Inc. [Google Scholar]
- Sunzuma, G., & Maharaj, A. (2019). In-service teachers’ geometry content knowledge: Implications for how geometry is taught in teacher training institutions. International Electronic Journal of Mathematics Education, 14(3), 633–646. [Google Scholar] [CrossRef]
- Takacs, Z. K., & Kassai, R. (2019). The efficacy of different interventions to foster children’s executive function skills: A series of meta-analyses. Psychological Bulletin, 145(7), 653. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J. A., Roth, K., Wilson, C. D., Stuhlsatz, M. A., & Tipton, E. (2017). The effect of an analysis-of-practice, videocase-based, teacher professional development program on elementary students’ science achievement. Journal of Research on Educational Effectiveness, 10(2), 241–271. [Google Scholar] [CrossRef]
- TIMSS. (2019). TIMSS 2019 U.S. highlights web report (NCES 2021-021). U.S. Department of Education. Institute of Education Sciences, National Center for Education Statistics. Available online: https://nces.ed.gov/timss/results19/index.asp (accessed on 5 December 2014).
- Tournaki, E., Lyublinskaya, I., & Carolan, B. (2011). An ongoing professional development program and its impact on teacher effectiveness. The Teacher Educator, 46(4), 299–315. [Google Scholar] [CrossRef]
- Tricco, A. C., Lillie, E., Zarin, W., O’BRien, K. K., Colquhoun, H., Levac, D., Moher, D., Peters, M. D., Horsley, T., Weeks, L., Hempel, S., Akl, E. A., Chang, C., McGowan, J., Stewart, L., Hartling, L., Aldcroft, A., Wilson, M. G., Garritty, C., … Straus, S. E. (2018). PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Annals of Internal Medicine, 169(7), 467–473. [Google Scholar] [CrossRef] [PubMed]
- Tzur, R., Stephens, A. C., Harkness, S. S., Johnson, H. L., Xin, Y. P., & Ely, R. (2022). Collaborative learning in practice-based mathematics methods courses: A developmental study. Mathematics Education Research Journal, 34(2), 259–281. [Google Scholar] [CrossRef]
- Van Haneghan, J. P., Pruet, S. A., & Bamberger, H. J. (2004). Mathematics reform in a minority community: Student outcomes. Journal of Education for Students Placed at Risk, 9(2), 189–211. [Google Scholar] [CrossRef]
- Wilson, S. M., Floden, R. E., & Ferrini-Mundy, J. (2002). Teacher preparation research: An insider’s view from the outside. Journal of Teacher Education, 53, 190–204. [Google Scholar] [CrossRef]
- Wischgoll, A., & Prediger, S. (2024). Studying efficacy of particular design elements in online teacher professional development courses: An experimental study on systematizing videos for enhancing teachers’ PCK. Zeitschrift für Erziehungswissenschaft. Advance online publication. [Google Scholar] [CrossRef]
- Wood, T., Mazzocco, M. M., Calhoon, M. B., Crowe, E. C., & Connor, C. M. (2020). The effect of peer-assisted mathematics learning opportunities in first grade classrooms: What works for whom? Journal of Research on Educational Effectiveness, 13(4), 601–624. [Google Scholar] [CrossRef]
- Yoon, K. S., Duncan, T., Lee, S. W. Y., Scarloss, B., & Shapley, K. (2007). Reviewing the evidence on how teacher professional development affects student achievement (Issues & 142 Answers Report, REL 2007-No.33). U.S. Department of Education Evaluation, Institute of Education Sciences, National Center for Education and Regional Assistance, Regional Educational Laboratory Southwest. Available online: https://files.eric.ed.gov/fulltext/ED498548.pdf (accessed on 10 December 2014).
Article Authors (year) | #Participants (T: Treatment; C: Control) | Duration in Years | Duration in Hours | PD Teach Approach | Modality | Math Type | Grade | Design | PD Category | ES (g) |
---|---|---|---|---|---|---|---|---|---|---|
Buckhalter (2019) | 2 | 16 | CP | WC | All other Math | K–4 | NR | PLC | ||
Buckhalter_1 | 227 (75 T; 152 C) | 0.429 * | ||||||||
Buckhalter_2 | 315 (73 T; 242 C) | 0.132 | ||||||||
Capraro et al. (2016) | 3 | 180 | CP | WO | Algebra | 9–12 | NR | PLC | ||
Capraro et al._1 | 73 (54 T; 19 C) | −0.602 * | ||||||||
Capraro et al._2 | 113 (56 T; 57 C) | 0.854 *** | ||||||||
Capraro et al._3 | 108 (53 T; 55 C) | −0.062 * | ||||||||
Cavalluzzo et al. (2014) | Multiple | 64 | P | WC | All other Math | 4 &5 | R | Curriculum | ||
Cavalluzzo et al._1 | 10,603 (5408 T; 5195 C) | −0.047 * | ||||||||
Cavalluzzo et al._2 | 10,603 (5408 T; 5195 C) | 0.044 * | ||||||||
Cavalluzzo et al._3 | 10,287 (5384 T; 4903 C) | −0.034 | ||||||||
Cavalluzzo et al._4 | 10,287 (5384 T; 4903 C) | −0.038 | ||||||||
Garet et al. (2016) | 1 | 93 | CP | WO | All other Math | 4 | R | PD Approach | ||
Garet et al._1 | 1697 (806 T; 891 C) | −0.051 | ||||||||
Garet et al._2 | 3677 (1760 T;1917 C) | −0.061 | ||||||||
Jayanthi et al. (2017) | 4204 (2091 T; 2113 C) | Multiple | 24 | C | WO | All other Math | 4 | R | PD Approach | 0.053 |
Jiang et al. (2011) | 1 | 70 | CP | WO | Geometry | 9–12 | R | Technology | ||
Jiang et al. _1 | 723 (357 T; 366 C) | 0.538 *** | ||||||||
Jiang et al. _2 | 435 (244 T; 191 C) | 0.270 ** | ||||||||
Jiang et al. _3 | 63 (16 T; 47 C) | 0.196 | ||||||||
Jozsa (2017) | 284 (120 T; 164 C) | 1 | 40 | CP | WO | Algebra | 11 | NR | Cooperative | −0.289 * |
Phelan et al. (2012) | 1 | 18 | P | WO | Algebra | 6 | R | Formative | ||
Phelan et al._1 | 349 (210 T; 139 C) | 1.103 *** | ||||||||
Phelan et al._2 | 289 (169 T; 120 C) | 0.751 *** | ||||||||
Phelan et al._3 | 352 (212 T; 142 C) | 0.910 *** | ||||||||
Phelan et al._4 | 340 (208 T; 132 C) | 0.821 *** | ||||||||
Polly et al. (2018) | 1 | 72 | P | WO | All other Math | K | NR | Formative | ||
Polly et al._1 | 353 (247 T; 106 C) | K | 0.040 | |||||||
Polly et al._2 | 480 (450 T; 30 C) | K | 0.213 | |||||||
Polly et al._3 | 35 (25 T; 10 C) | 1 | 0.271 | |||||||
Polly et al._4 | 120 (82 T; 38 C) | K | 0.336 | |||||||
Polly et al._5 | 370 (348 T; 22 C) | 1 | −0.327 | |||||||
Polly et al._6 | 213 (200 T; 13 C) | K | 0.505 | |||||||
Polly et al._7 | 433 (197 T; 236 C) | 1 | −0.264 ** | |||||||
Polly et al._8 | 858 (386 T; 472 C) | K | 0.112 | |||||||
Polly et al._9 | 241 (142 T; 99 C) | 1 | 0.175 | |||||||
Polly et al._10 | 394 (244 T; 150 C) | K | −0.367 *** | |||||||
Polly et al._11 | 35 (25 T; 10 C) | 1 | 0.021 | |||||||
Polly et al._12 | 120 (82 T; 38 C) | K | 0.481 * | |||||||
Polly et al._13 | 370 (348 T; 22 C) | 1 | 0.228 | |||||||
Polly et al._14 | 213 (200 T; 13 C) | K | 0.469 | |||||||
Polly et al._15 | 433 (197 T; 236 C) | 1 | −0.145 | |||||||
Polly et al._16 | 858 (386 T; 472 C) | K | 0.092 | |||||||
Polly et al._17 | 241 (142 T; 99 C) | 1 | 0.108 | |||||||
Polly et al._18 | 394 (244 T; 150 C) | K | 0.091 | |||||||
Polly et al._19 | 353 (247 T; 106 C) | K | 0.113 | |||||||
Polly et al._20 | 480 (450 T; 30 C) | K | −0.241 | |||||||
Polly et al._21 | 35 (25 T; 10 C) | 1 | −0.229 | |||||||
Polly et al._22 | 120 (82 T; 38 C) | K | 0.378 | |||||||
Polly et al._23 | 370 (348 T; 22 C) | 1 | 0.076 | |||||||
Polly et al._24 | 213 (200 T; 13 C) | K | 0.796 ** | |||||||
Polly et al._25 | 433 (197 T; 236 C) | 1 | −0.072 | |||||||
Polly et al._26 | 858 (386 T; 472 C) | K | 0.036 | |||||||
Polly et al._27 | 241 (142 T; 99 C) | 1 | 0.041 | |||||||
Polly et al._28 | 394 (244 T; 150 C) | K | −0.156 | |||||||
Polly et al._29 | 353 (247 T; 106 C) | K | 0.043 | |||||||
Polly et al._30 | 480 (450 T; 30 C) | K | −0.275 | |||||||
Polly et al._31 | 35 (25 T; 10 C) | 1 | 0.709 | |||||||
Polly et al._32 | 120 (82 T; 38 C) | K | 0.355 | |||||||
Polly et al._33 | 370 (348 T; 22 C) | 1 | −0.195 | |||||||
Polly et al._34 | 213 (200 T; 13 C) | K | 0.238 | |||||||
Polly et al._35 | 433 (197 T; 236 C) | 1 | −0.253 ** | |||||||
Polly et al._36 | 858 (386 T; 472 C) | K | 0.147 * | |||||||
Polly et al._37 | 241 (142 T; 99 C) | 1 | 0.082 | |||||||
Polly et al._38 | 394 (244 T; 150 C) | K | −0.336 *** | |||||||
Polly et al._39 | 353 (247 T; 106 C) | K | −0.027 | |||||||
Polly et al._40 | 480 (450 T; 30 C) | K | 0.703 *** | |||||||
Polly et al. (2017) | 1 | 80 | CP | WO | All other Math | K | NR | Formative | ||
Polly_1 | 12,140 (2357 T; 9783 C) | 0.145 *** | ||||||||
Polly_2 | 12,140 (2357 T; 9783 C) | 0.164 *** | ||||||||
Seago et al. (2014) | 266 (162 T; 104 C) | 1 | 30 | CP | WO | Geometry | 5–10 | NR | PD Approach | 0.016 |
Wood et al. (2020) | Multiple | 36 | CP | WO | All other Math | K | R | PD Approach | ||
Wood_1 | 481 (219 T; 262 C) | 0.062 | ||||||||
Wood_2 | 454 (205 T; 249 C) | 0.155 | ||||||||
O’Dwyer et al. (2010) | Less than 1 | 100 | CP | WO | All other Math | 5 | R | On-Line | ||
O’Dwyer et al._1 | 1438 (648 T; 790 C) | 5 | 0.083 | |||||||
O’Dwyer et al._2 | 1438 (648 T; 790 C) | 5 | 0.039 | |||||||
O’Dwyer et al._3 | 1438 (648 T; 790 C) | 5 | 0.047 | |||||||
O’Dwyer et al._4 | 1861(799 T; 1062 C) | 8 | 0.900 *** | |||||||
O’Dwyer et al._5 | 1861 (799 T; 1062 C) | 8 | 2.299 *** | |||||||
O’Dwyer et al._6 | 1861 (799 T; 1062 C) | 8 | 3.199 *** | |||||||
McGatha et al. (2009) | 1 | 60 | P | WO | All other Math | 6–8 | NR | Formative | ||
McGatha et al._1 | 185 (98 T; 87 C) | 6 | −0.496 *** | |||||||
McGatha et al._2 | 223 (127 T; 96 C) | 7 | 0.443 *** | |||||||
McGatha et al._3 | 147 (109 T; 38 C) | 8 | −0.495 *** | |||||||
Ross et al. (2006) | Less than 1 | 12 | CP | WO | Algebra | 6 | R | PLC | ||
Ross & Hogaboam-Gray_1 | 717 (408 T; 309 C) | 0.000 | ||||||||
Ross & Hogaboam-Gray_2 | 717 (408 T; 309 C) | 0.003 | ||||||||
Ross & Hogaboam-Gray_3 | 717 (408 T; 309 C) | 0.121 | ||||||||
Ross & Hogaboam-Gray_4 | 717 (408 T; 309 C) | −0.001 | ||||||||
Heller et al. (2007) | Less than 1 | 10 | CP | WO | All other Math | 2,4, &6 | R | Curriculum | ||
Heller et al._1 | 555 (271 T; 284 C) | 2 | 0.410 *** | |||||||
Heller et al._2 | 256 (119 T; 137 C) | 2 | −0.242 | |||||||
Heller et al._3 | 755 (306 T; 449 C) | 4 | 0.762 *** | |||||||
Heller et al._4 | 317 (131 T; 186 C) | 4 | 0.387 *** | |||||||
Heller et al._5 | 555 (276 T; 279 C) | 6 | 0.352 *** | |||||||
Heller et al._6 | 282 (124 T; 158 C) | 6 | −0.293 * | |||||||
Dash et al. (2012) | 1438 | 1 | 70 | CP | WO | Algebra | 5 | NR | On-Line | 0.049 |
Allen (2013) | 120 | 1 | 24 | P | WO | All other Math | 3 | R | PLC | |
Allen_1 | 120 | 3 | 0.388 * | |||||||
Allen_2 | 120 | 3 | 0.714 *** | |||||||
Allen_3 | 120 | 3 | 0.533 ** | |||||||
Van Haneghan et al. (2004) | Multiple | 180 | CP | WC | All other Math | 2 & 5 | R | Initiated Math | ||
Van Haneghan et al._1 | 194 (153 T; 41 C) | 2 | 0.116 | |||||||
Van Haneghan et al._2 | 194 (153 T; 41 C) | 2 | 0.229 | |||||||
Van Haneghan et al._3 | 194 (153 T; 41 C) | 2 | 0.274 | |||||||
Van Haneghan et al._4 | 194 (153 T; 41 C) | 2 | 0.206 | |||||||
Van Haneghan et al._5 | 194 (153 T; 41 C) | 2 | 0.007 | |||||||
Van Haneghan et al._6 | 117 (91 T; 26 C) | 5 | 0.367 | |||||||
Van Haneghan et al._7 | 117 (91 T; 26 C) | 5 | 0.477 * | |||||||
Van Haneghan et al._8 | 117 (91 T; 26 C) | 5 | 0.480 * | |||||||
Van Haneghan et al._9 | 117 (91 T; 26 C) | 5 | 0.726 *** | |||||||
Van Haneghan et al._10 | 380 (289 T; 91 C) | 5 | 0.736 *** | |||||||
Van Haneghan et al._11 | 356 (277 T; 85 C) | 5 | 0.682 *** | |||||||
Van Haneghan et al._12 | 363 (278 T; 85 C) | 5 | 0.589 *** | |||||||
Van Haneghan et al._13 | 365 (280 T; 85 C) | 5 | 0.694 *** | |||||||
Krupa (2011) | 780 | Multiple | 82 | CP | WC | Algebra | 9–12 | NR | Curriculum | |
Krupa_1 | 780 | 0.707 *** | ||||||||
Krupa_2 | 780 | −0.283 *** | ||||||||
Kuchey et al. (2009) | Multiple | 100 | CP | WO | Geometry | 1, 2,& 3 | NR | Initiated Math | ||
Kuchey et al._1 | 118 (22 T; 96 C) | 1 | 0.465 * | |||||||
Kuchey et al._2 | 118 (22 T; 96 C) | 1 | 0.454 | |||||||
Kuchey et al._3 | 99 (44 T; 55 C) | 2 | −0.352 | |||||||
Kuchey et al._4 | 99 (44 T; 55 C) | 2 | −0.211 | |||||||
Kuchey et al._5 | 265 (164 T; 101 C) | 3 | 1.530 *** | |||||||
Kuchey et al._6 | 265 (164 T; 101 C) | 3 | 0.538 | |||||||
Phelan et al. (2011) | 2616 (1496 T; 1120 C) | 1 | 18 | C | WO | Algebra | 6 | R | Formative | 0.306 *** |
Agodini and Harris (2016) | Less than 1 | No Report | CP | W | Algebra | 1& 2 | R | Curriculum | ||
Agodini & Harris_1 | 8060 (4030 T; 4030 C) | −0.090 *** | ||||||||
Agodini & Harris_2 | 8060 (4030 T; 4030 C) | −0.080 *** | ||||||||
Agodini & Harris_3 | 8060 (4030 T; 4030 C) | 0.030 | ||||||||
Agodini & Harris_4 | 8060 (4030 T; 4030 C) | 0.020 | ||||||||
Agodini & Harris_5 | 8060 (4030 T; 4030 C) | 0.120 *** | ||||||||
Agodini & Harris_6 | 8060 (4030 T; 4030 C) | 0.110 *** | ||||||||
Bicer and Capraro (2016) | Less than 1 | 48 | CP | WO | All other Math | 8 | NR | Technology | 0.260 *** | |
Clements et al. (2016) | Less than 1 | 24 | C | W | All other Math | PreK, K, 1, 3, 4, & 5 | R | On-Line | ||
Clements et al._1 | 834 (456 T; 378 C) | Prek & K | 0.749 *** | |||||||
Clements et al._2 | 779 (418 T; 361 C) | K | 0.350 *** | |||||||
Clements et al._3 | 721 (385 T; 336 C) | 1 | 0.110 | |||||||
Clements et al._4 | 476 (266 T; 210 C) | 3 | 0.130 | |||||||
Clements et al._5 | 194 (153 T; 41 C) | 4 | 0.050 | |||||||
Clements et al._6 | 521 (279 T; 242 C) | 5 | 0.210 * | |||||||
Clements et al._7 | 849 (471 T; 378 C) | PreK | 0.859 *** | |||||||
Clements et al._8 | 488 (253 T; 235 C) | K | 0.449 *** | |||||||
Clements et al._9 | 741 (405 T; 336 C) | 1 | 0.280 *** | |||||||
Clements et al._10 | 470 (260 T; 210 C) | 3 | 0.080 | |||||||
Clements et al._11 | 531 (288 T; 243 C) | 4 | −0.020 | |||||||
Clements et al._12 | 502 (260 T; 242 C) | 5 | 0.260 ** | |||||||
Clements et al._13 | 488 (253 T; 235 C) | PreK | 0.909 *** | |||||||
Clements et al._14 | 493 (258 T; 235 C) | K | 0.499 | |||||||
Clements et al._15 | 488 (253 T; 235 C) | 1 | 0.140 | |||||||
Clements et al._16 | 295 (153 T; 142 C) | 3 | 0.209 | |||||||
Clements et al._17 | 326 (166 T; 160 C) | 4 | 0.130 | |||||||
Clements et al._18 | 311 (153 T; 158 C) | 5 | 0.219 | |||||||
Clements et al._19 | 497 (262 T; 235 C) | PreK | 0.998 | |||||||
Clements et al._20 | 497 (262 T; 235 C) | K | 0.539 | |||||||
Clements et al._21 | 497 (262 T; 235 C) | 1 | 0.419 | |||||||
Clements et al._22 | 307 (165 T; 142 C) | 3 | 0.160 | |||||||
Clements et al._23 | 344 (184 T; 160 C) | 4 | 0.040 | |||||||
Clements et al._24 | 330 (172 T; 158 C) | 5 | 0.240 | |||||||
Early et al. (2016) | Multiple | No Report | P | WO | Algebra | 9 & 10 | R | PD Approach | ||
Early et al._1 | 7184 (3376 T; 3808 C) | 0.180 | ||||||||
Early et al._2 | 8250 (3935 T; 4315 C) | 0.160 | ||||||||
Jacob et al. (2017) | Multiple | 120 | C | WO | All other Math | 4 & 5 | R | PD Approach | ||
Jacob et al._1 | 761 (390 T; 371 C) | 4 | 0.000 | |||||||
Jacob et al._2 | 762 (390 T; 372 C) | 5 | 0.080 | |||||||
Jacob et al._3 | 761 (390 T; 371 C) | 4 | −0.030 | |||||||
Jacob et al._4 | 762 (390 T; 372 C) | 5 | −0.020 | |||||||
Jacob et al._5 | 727 (373 T; 354 C) | 4 | 0.100 | |||||||
Jacob et al._6 | 726 (372 T; 354 C) | 5 | 0.000 | |||||||
Jacob et al._7 | 726 (372 T; 354 C | 4 | 0.040 | |||||||
Jacob et al._8 | 726 (372 T; 354 C) | 5 | 0.080 | |||||||
Jacob et al._9 | 482 (278 T; 204 C) | 4 | 0.030 | |||||||
Jacob et al._10 | 481 (277 T; 204 C) | 5 | 0.020 | |||||||
Jacob et al._11 | 482 (278 T; 204 C) | 4 | 0.050 | |||||||
Jacob et al._12 | 481 (277 T; 204 C) | 5 | 0.060 | |||||||
Krawec and Montague (2014) | Multiple | 60 | CP | WO | All other Math | 7& 8 | NR | PD Approach | ||
Krawec & Montague _1 | 312 (185 T; 127 C) | 0.439 *** | ||||||||
Krawec & Montague _2 | 779 (319 T; 460 C) | 0.909 *** | ||||||||
Schoen et al. (2018) | 1807 (844 T; 963 C) | 1 | 59 | CP | WO | All other Math | 3–5 | R | Formative | 0.172 *** |
Schoen et al. (2020) | 1 | 48 | CP | WO | All other Math | 1 & 2 | R | PD Approach | ||
Schoen et al._1 | 2172 (1123 T; 1049 C) | 1 | 0.110 ** | |||||||
Schoen et al._2 | 2172 (1123 T; 1049 C) | 2 | −0.140 ** | |||||||
Schoen et al._3 | 2172 (1123 T; 1049 C) | 1 | −0.001 | |||||||
Schoen et al._4 | 2172 (1123 T; 1049 C) | 2 | −0.180 *** | |||||||
Schoen et al._5 | 622 (305 T; 317 C) | 1 | 0.230 ** | |||||||
Schoen et al._6 | 622 (305 T; 317 C) | 2 | −0.270 *** |
Mean Effect Size | Heterogeneity | |||||
---|---|---|---|---|---|---|
N | G | 95% CI | Q | df | I2 | |
164 | 0.228 *** | 0.173 | 0.285 | 5661.753 *** | 163 | 97.121 |
Moderator | Categories | Effect Size (g) | SE | 95% CI | Z-Value | Q Statistics | |
---|---|---|---|---|---|---|---|
Duration | Less than 1 year | 0.217 | 0.068 | 0.084 | 0.349 | 3.210 | Q = 10.300, df = 2, p = 0.005 |
1 Academic year | 0.134 | 0.044 | 0.048 | 0.221 | 3.040 | ||
Multiple years | 0.097 | 0.070 | −0.040 | 0.233 | 1.380 | Q = 10.300, df = 2, p = 0.005 | |
PD Teaching Approach | Content Only | 0.085 | 0.075 | −0.063 | 0.233 | 1.130 | Q = 4.800, df =2, p = 0.091 |
Pedagogy Only | 0.144 | 0.050 | 0.047 | 0.242 | 2.890 | ||
Content and Pedagogy | 0.144 | 0.066 | 0.015 | 0.273 | 2.190 | Q = 4.800, df =2, p = 0.091 | |
Modality | Workshop Only | 0.267 | 0.064 | 0.142 | 0.393 | 4.180 | |
Workshop plus Coaching | 0.029 | 0.103 | −0.173 | 0.230 | 0.280 | Q = 1.570, df = 2, p = 0.456 | |
Workshop plus Other Support | −0.063 | 0.073 | −0.206 | 0.080 | −0.870 | Q = 1.570, df = 2, p = 0.456 | |
Grade | K—2nd Grade | 0.147 | 0.037 | 0.074 | 0.220 | 3.940 | |
3rd–5th Grade | 0.063 | 0.058 | −0.050 | 0.176 | 1.090 | Q = 31.130, df = 3, p = 0.000 | |
6th–8th Grade | 0.436 | 0.079 | 0.281 | 0.591 | 5.520 | Q = 31.130, df = 3, p = 0.000 | |
9th–12th Grade | 0.026 | 0.109 | −0.189 | 0.240 | 0.240 | Q = 31.130, df = 3, p = 0.000 | |
Math Type | Geometry | 0.315 | 0.149 | 0.022 | 0.607 | 2.110 | Q = 12.150, df = 2, p = 0.002 |
Algebra | 0.311 | 0.063 | 0.187 | 0.436 | 4.910 | ||
All of Math Types | −0.124 | 0.071 | −0.262 | 0.014 | −1.760 | Q = 12.150, df = 2, p = 0.000 | |
PD Category | Professional Learning Community PD | 0.499 | 0.341 | −0.170 | 1.167 | 1.460 | Q= 42.450, df = 7, p = 0.000 |
Formative Assessment PD | 0.430 | 0.330 | −0.217 | 1.077 | 1.300 | Q = 42.450, df = 7, p = 0.000 | |
Curriculum PD | 0.392 | 0.335 | −0.264 | 1.048 | 1.170 | Q = 42.450, df = 7, p = 0.000 | |
On-Line PD | 0.766 | 0.331 | 0.117 | 1.416 | 2.310 | Q = 42.450, df = 7, p = 0.000 | |
Initiated Math PD | 0.730 | 0.336 | 0.070 | 1.390 | 2.170 | Q = 42.450, df = 7, p = 0.000 | |
Combined Types of PD | 0.361 | 0.332 | −0.290 | 1.011 | 1.090 | Q = 42.450, df = 7, p = 0.000 | |
Cooperative Learning PD | −0.290 | 0.327 | −0.930 | 0.350 | −0.890 | ||
Technology PD | 0.622 | 0.366 | −0.096 | 1.340 | 0.622 | Q = 42.450, df = 7, p = 0.000 | |
Study Design | Non-Randomized | 0.128 | 0.050 | 0.035 | 0.220 | 2.710 | |
Randomized | 0.157 | 0.059 | 0.042 | 0.272 | 2.670 | Q = 7.150, df = 1, p = 0.008 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Franklin, A.V.; Chang, M. Meta-Analysis for Math Teachers’ Professional Development and Students’ Achievement. Educ. Sci. 2025, 15, 1156. https://doi.org/10.3390/educsci15091156
Franklin AV, Chang M. Meta-Analysis for Math Teachers’ Professional Development and Students’ Achievement. Education Sciences. 2025; 15(9):1156. https://doi.org/10.3390/educsci15091156
Chicago/Turabian StyleFranklin, Anita V., and Mido Chang. 2025. "Meta-Analysis for Math Teachers’ Professional Development and Students’ Achievement" Education Sciences 15, no. 9: 1156. https://doi.org/10.3390/educsci15091156
APA StyleFranklin, A. V., & Chang, M. (2025). Meta-Analysis for Math Teachers’ Professional Development and Students’ Achievement. Education Sciences, 15(9), 1156. https://doi.org/10.3390/educsci15091156