Emotional Intelligence Profiles and Cyber-Victimization in Secondary School Students: A Multilevel Analysis
Abstract
:1. Introduction
- The variability of average cyber-victimization across EI-strata is significant and non-zero. Different emotional intelligence profiles imply different levels of cyber-victimization risk.
- This difference can be explained by the individual characteristics of the subjects. According to previous evidence, the following was expected:
- 2.1
- Inadequate levels of emotional intelligence increase the probability of cyber-victimization [25].
- 2.2
- Gender is related to the degree of cyber-victimization [36].
- 2.3
- Cyber-victimization increases when gender orientation is non-heterosexual [37].
- 2.4
- Between the ages of 11 and 18, older youth are more likely to be cyber-victims.
- 2.5
- Low self-esteem increases the risk of cyber-victimization
- 2.6
- High social anxiety increases risk of being cyber-victimized
- 2.7
- The risk of cyber victimization increases with risky Internet behavior.
- 2.8
- Low parental control increases likelihood of cyber-victimization
2. Materials and Methods
2.1. Participants and Procedures
2.2. Instruments
2.2.1. Emotional Intelligence
- (a)
- Emotional awareness (perception) (8 items: 1 to 8). This refers to the ability to experience and communicate emotions appropriately. That is, it involves a deep understanding of one’s own emotions, identifying feelings and understanding their meaning (α = 0.86).
- (b)
- Emotional clarity (understanding) (8 items: 9 to 16). This means understanding the emotional state. It involves recognizing and understanding emotions, distinguishing between them, understanding how they change over time, and integrating them coherently into thinking (α = 0.84).
- (c)
- Emotional regulation (8 items: 17 to 24). This is the ability to effectively manage emotional states. It means the ability to regulate and maintain control over positive and negative emotions (α = 0.83).
2.2.2. Cyber-Victimization
- (a)
- Verbal or written cyber-victimization (12 items: 2, 8, 10, 11, 13, 15, 17, 19, 21, 23, 24, 26). This refers to verbal attacks.
- (b)
- Online exclusion (4 items: 3, 6, 18, 22). Exclusion or isolation by peers using online media for the purpose of harming the victim.
- (c)
- Impersonation (5 items: 1, 5, 12, 16, 25). Assuming another person’s identity with the intent to deceive and cause harm.
2.2.3. Risk Factors Questionnaire for Cyber-Victimization [41]
2.2.4. Peer Bullying Questionnaire–Bullying Behavior Scale [42]
2.3. Variables
2.4. Statistical Analysis
2.4.1. Statistical Description of the Variables and Justification for Cross-Stratification
2.4.2. Analysis Procedure
Unconditional Means Model or Null Model
Importance of Predictive Variables in Cyber-Victimization
Random Intersection Models or Main Effects Averages as Outcomes
Model of Random Coefficients (Slope) as Outcomes
Model of Random Interceps (Meanss) and Coefficients (Slopes) as Outcomes
2.4.3. Measurement of Changes in Reporting Criteria
2.4.4. Characterization of the EI-Strata
3. Results
3.1. Justification for Cross-Stratification (TMMS-G3)
3.2. Unconditional Means Model
3.3. Importance of Independent Variables in Cyber-Victimization
3.4. Random Intersection Models or Main Effects Averages as Outcomes
3.5. Model of Random Coefficients (Slopes) as Outcomes (Model 3)
3.6. Model of Random Intersections (Averages) and Coefficients (Slopes) as Outcomes
3.7. Characterization of the Emotional Intelligence-Strata (EI)
4. Discussion
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Rueda, P.; Pérez-Romero, N.; Cerezo, M.V.; Fernández-Berrocal, P. The role of Emotional Intelligence in Adolescent Bullying: A Systematic Review. Psicol. Educ. 2022, 28, 53–59. [Google Scholar] [CrossRef]
- Martínez-Monteagudo, M.C.; Delgado, B.; García-Fernández, J.M.; Rubio, E. Cyberbullying, Aggressiveness, and Emotional Intelligence in Adolescence. Int. J. Environ. Res. Public Health 2019, 16, 5079. [Google Scholar] [CrossRef] [PubMed]
- Calmaestra, J.; Rodríguez-Hidalgo, A.J.; Mero-Delgado, O.; Solera, E. Cyberbullying in Adolescents from Ecuador and Spain: Prevalence and Differences in Gender, School Year and Ethnic-Cultural Background. Sustainability 2020, 12, 4597. [Google Scholar] [CrossRef]
- Alvarez-García, D.; Dobarro, A.; Núñez, J.C. Validez y fiabilidad del Cuestionario de cibervictimización en estudiantes de Secundaria. Aula Abierta 2015, 43, 32–38. [Google Scholar] [CrossRef]
- Nixon, C.L. Current perspectives: The impact of cyberbullying on adolescent health. Adolesc. Health Med. Ther. 2022, 5, 143–158. [Google Scholar] [CrossRef]
- Pérez-Gómez, M.A.; Echazarreta-Soler, C.; Audebert, M.; Sánchez-Miret, C. El ciberacoso como elemento articulador de las nuevas violencias digitales: Métodos y contextos. Commun. Pap. 2020, 9, 43–58. [Google Scholar] [CrossRef]
- Wiertsema, M.; Vrijen, C.; Van-der-Ploeg, R.; Sentse, M.; Kretschmer, T. Bullying perpetration and social status in the peer group: A meta-analysis. J. Adolesc. 2023, 95, 34–55. [Google Scholar] [CrossRef]
- Perren, S.; Corcoran, L.; Cowie, H.; Dehue, F.; García, D.J.; Mc Guckin, C.; Sevcikova, A.; Tsatsou, P.; Völlink, T. Tackling Cyberbullying: Review of Empirical Evidence Regarding Successful Responses by Students, Parents, and Schools. Int. J. Confl. Violence 2012, 6, 283–293. [Google Scholar] [CrossRef]
- Cañas, E.; Estévez, E.; Martínez-Monteagudo, M.C.; Delgado, B. Emotional adjustment in victims and perpetrators of cyberbullying and traditional bullying. Soc. Psychol. Educ. 2020, 23, 917–942. [Google Scholar] [CrossRef]
- Angoff, H.D.; Barnhart, W.R. Bullying and Cyberbullying among LGBQ and Heterosexual Youth from an Intersectional Perspective: Findings from the 2017 National Youth Risk Behavior Survey. J. Sch. Violence 2021, 20, 274–286. [Google Scholar] [CrossRef]
- Garaigordobil, M.; Larrain, E. Bullying and cyberbullying in LGBT adolescents: Prevalence and effects on mental health. Comun. 2020, 62, 79–90. [Google Scholar] [CrossRef]
- Patchin, J.W.; Hinduja, S. Cyberbullying Among Tweens in the United States: Prevalence, Impact, and Helping Behaviors. J. Early Adolesc. 2021, 42, 027243162110367. [Google Scholar] [CrossRef]
- Lei, H.; Mao, W.; Cheong, C.M.; Wen, Y.; Gui, Y.; Cai, Z. The relationship between self-esteem and cyberbullying: A meta-analysis of children and youth students. Curr. Psychol. 2020, 39, 830–842. [Google Scholar] [CrossRef]
- Núñez, A.; Álvarez-García, D.; Pérez-Fuentes, M.C. Anxiety and self-esteem in cyber-victimization profiles of adolescents. Comunicar 2021, 67, 43–54. [Google Scholar] [CrossRef]
- Zhu, C.; Huang, S.; Evans, R.; Zhang, W. Cyberbullying Among Adolescents and Children: A Comprehensive Review of the Global Situation, Risk Factors, and Preventive Measures. Front. Public Health 2021, 9, 634909. [Google Scholar] [CrossRef]
- Martín-Criado, J.M.; Casas, J.A.; Ortega-Ruíz, R.; Del-Rey, R. Parental supervision and victims of cyberbullying: Influence of the use of social networks and online extimacy. Rev. Psicodidáctica 2021, 26, 161–168. [Google Scholar] [CrossRef]
- Martínez-Martínez, A.M.; Roith, C.; Aguilar-Parra, J.M.; Manzano-León, A.; Rodríguez-Ferrer, J.M.; López-Liria, R. Relationship between Emotional Intelligence, Victimization, and Academic Achievement in High School Students. Soc. Sci. 2022, 11, 247. [Google Scholar] [CrossRef]
- Wright MF& Wachs, S. The buffering effect of parent social support in the longitudinal associations between cyber polyvictimization and academic outcomes. Soc. Psychol. Educ. 2021, 24, 1145–1161. [Google Scholar] [CrossRef]
- Carmona-Rojas, M.; Ortega-Ruíz, R.; Romera-Félix, E.M. Bullying and cyberbullying, what do they have in common and what not? A latent class analysis. Analls Psychol. 2023, 39, 435–445. [Google Scholar] [CrossRef]
- Ortega, R.; Elipe, P.; Mora-Merchán, J.A.; Genta, M.L.; Brighi, A.; Guarini, A.; Smith, P.K.; Thopson, F.; Tippett, N. The Emotional Impact of Bullying and Ciberbullying on Victims: A European Cross-National Study. Aggress. Behav. 2012, 38, 342–356. [Google Scholar] [CrossRef]
- Quintana-Orts, C.; Rey, L.; Chamizo-Nieto, M.T.; Worthington, E.L. A Serial Mediation Model of the Relationship between Cybervictimization and Cyberaggression: The Role of Stress and Unforgiveness Motivations. Int. J. Environ. Res. Public Health 2020, 17, 7966. [Google Scholar] [CrossRef] [PubMed]
- Graham, R.; Wood, F.R. Associations between cyberbullying victimization and deviant health risk behaviors. Soc. Sci. J. 2019, 56, 183–188. [Google Scholar] [CrossRef]
- Micklewright, D.; Parry, D.; Robinson, T.; Deacon, G.; Renfree, A.; St Clair Gibson, A.; Matthews, W.J. Risk perception influences athletic pacing strategy. Med. Sci. Sports Exerc. 2015, 47, 1026–1037. [Google Scholar] [CrossRef] [PubMed]
- Quintana-Orts, C.; Rey, L.; Mérida-López, S.; Extremera, N. What bridges the gap between emotional intelligence and suicide risk in victims of bullying? A moderated mediation study. J. Affect. Disord. 2019, 245, 798–805. [Google Scholar] [CrossRef]
- García, L.; Quintana-Orts, C.; Rey, L. Cibervictimización y satisfacción vital en adolescentes: La inteligencia emocional como variable mediadora. Rev. Psicol. Clín. Niños Adolesc. 2020, 7, 38–45. [Google Scholar] [CrossRef]
- Martínez-Martínez, A.M.; López-Liria, R.; Aguilar-Parra, J.M.; Trigueros, R.; Morales-Gazquez, M.J.; Rocamora-Pérez, P. Relationship between Emotional Intelligence, Cybervictimization, and Academic Performance in Secondary School Students. Int. J. Environ. Res. Public Health 2020, 17, 7717. [Google Scholar] [CrossRef]
- Menabò, L.; Skrzypiec, G.; Slee, P.; Guarini, A. Victimization and cybervictimization: The role of school factors. J. Adolesc. 2024, 96, 598–611. [Google Scholar] [CrossRef]
- Extremera, N.; Fernández-Berrocal, P. Emotional Intelligence as predictor of mental, social, and physical health in university students. Span. J. Psychol. 2006, 9, 45–51. [Google Scholar] [CrossRef]
- Fernández-Berrocal, P.; Extremera, N.; Ramos, N. Validity and reliability of the Spanish modified version of the Trait Meta-Mood Scale. Psychol. Rep. 2004, 94, 751–755. [Google Scholar] [CrossRef]
- González, R.; Custodio, J.B.; Abal, F.J.P. Psychometric properties of the Trait Meta-Mood Scale-24 in Argentinian university students. Psicogente 2020, 23, 1–26. [Google Scholar] [CrossRef]
- Salovey, P.; Mayer, J.D. Emotional Intelligence. Imagin. Cogn. Personal. 1990, 9, 185–211. [Google Scholar] [CrossRef]
- Mestre, J.M.; Guil, R.; Lopes, P.N.; Salovey, P.; Gil-Olarte, P. Emotional Intelligence and social and academic adaptation to school. Psicothema 2006, 18, 112–117. [Google Scholar] [PubMed]
- Taramuel-Villacreces, J.A.; Zapata-Achi, V.H. Aplicación del test TMMS-24 para el análisis y descripción de la Inteligencia Emocional considerando la influencia del sexo. Rev. Publicando 2017, 4, 162–181. [Google Scholar]
- Guerra-Bustamante, J.; Yuste-Tosina, R.; López-Ramos, V.M.; Mendo-Lázaro, S. The Modelling Effect of Emotional Competence on Cyberbullying Profiles. Ann. Psychol. 2021, 37, 202–209. [Google Scholar] [CrossRef]
- Grommisch, G.; Hinton, J.D.X.; Hollenstein, T.; Koval, P.; Gleeson, J.; Kuppens, P.; Lischetzke, T. Modeling Individual Differences in Emotion Regulation Repertoire in Daily Life With Multilevel Latent Profile Analysis. Emotion 2020, 20, 1462–1474. [Google Scholar] [CrossRef] [PubMed]
- Lozano-Blasco, R.; Quilez-Robres, A.; Latorre-Cosculluela, C. Sex, age and cyber-victimization: A meta-analysis. Comput. Hum. Behav. 2023, 139, 107491. [Google Scholar] [CrossRef]
- Ojeda, M.; Espino, E.; Elipe, P.; Del-Rey, R. Even if they don’t say it to you, is hurts too: Internalized homonegativity in LGTBQ+ cyberbullying among adolescents. Comunicar 2023, 75, 21–34. [Google Scholar] [CrossRef]
- Evans, C.R.; Willians, D.R.; Onnela, J.P.; Subramanian, S.V. A multilevel approach to modeling health inequalities at the intersection of multiple social identities. Soc. Sci. Med. 2018, 203, 64–73. [Google Scholar] [CrossRef]
- Giuffrè, M.; Shung, D.L. Harnessing the power of synthetic data in healthcare: Innovation, application, and privacy. npj Digit. Med. 2023, 6, 186. [Google Scholar] [CrossRef]
- Botella-Ausina, J.; Sánchez-Meca, J. Meta-Análisis en Ciencias Sociales y de la Salud; Síntesis: Madrid, Spain, 2015. [Google Scholar]
- Alvarez-Garcia, D.; Nuñez-Perez, J.C.; Dobarro-Gonzalez, A.; Rodriguez-Perez, C. Factores de riesgo asociados a la cibervictimización en la adolescencia. Int. J. Clin. Health Psychol. 2015, 15, 226–235. [Google Scholar]
- Magaz, A.M.; Chorot, P.; Santed, M.A.; Valiente, R.M.; Sandín, B. Evaluación del bullying como victimización: Estructura, fiabilidad y validez del Cuestionario de Acoso entre Iguales (CAI). Rev. Psicopatol. Psicol. Clín. 2016, 21, 77–95. [Google Scholar] [CrossRef]
- Enders, C.K.; Tofighi, D. Centering Predictor Variables in Cross-Sectional Multileve Models: A New Look at and Old Issue. Psychol. Methods 2007, 12, 121–138. [Google Scholar] [CrossRef]
- Peugh, J.L.; Enders, C.K. Using the SPSS Mixed Procedure to Fit Cross-Sectional and Longitudinal Multilevel Models. Educ. Psychol. Meas. 2005, 65, 717–741. [Google Scholar] [CrossRef]
- Austin, P.C.; Merlo, J. Intermediate and advanced topics in multilevel logistic regression analysis. Stat. Med. 2017, 36, 3257–3277. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Garrido, C.; Murillo, F.J. Programas para la realización de Modelos Multinivel. Un análisis comparativo entre MLwiN, HLM, SPSS y Stata. REUNIDO 2014, 14, 1–24. [Google Scholar] [CrossRef]
- Arango-Botero, D.; Hernández-Barajas, F.; Valencia-Arias, A. Misspecification in Generalized Linear Mixed Models and Its Impact on the Statistical Wald Test. Appl. Sci. 2023, 13, 977. [Google Scholar] [CrossRef]
- Huang, S.; Valdivia, D.S. Wald χ2 Test for Differential Item Functioning Detection with Polytomous Items in Multilevel Data. Educ. Psychol. Meas. 2023, 84, 530–548. [Google Scholar] [CrossRef]
- Murthen, B.O.; Satorra, A. Complex Sample Data in Structural Equation Modeling. Sociol. Methodol. 1995, 25, 267–316. [Google Scholar] [CrossRef]
- Peugh, J.L. A practical guide to multilevel modelling. J. Sch. Psychol. 2010, 48, 85–112. [Google Scholar] [CrossRef]
- Kish, L. Survey Sampling; John Wiley & Sons: New York, NY, USA, 1965. [Google Scholar] [CrossRef]
- Lai, M.H.C.; Kwok, O. Examining the Rule of Thumb of Not Using Multilevel Modeling: The “Design Effect Smaller Than Two” Rule. J. Exp. Educ. 2015, 83, 423–438. [Google Scholar] [CrossRef]
- Shieh, Y.-Y.; Fouladi, R.T. The Effect of Multicollinearity on Multilevel Modeling Parameter Estimates and Standard Errors. Educ. Psychol. Meas. 2003, 63, 951–985. [Google Scholar] [CrossRef]
- Aggarwal, C.C. Neural Networks and Deep Learning; Springer: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Pardo, A.; Ruiz, M.A.; San-Martín, R. Cómo ajustar e interpretar modelos multinivel con SPSS. Psicothema 2007, 19, 308–321. [Google Scholar] [PubMed]
- Pardo-Merino, A.; Ruiz-Diaz, M.A. Análisis de Datos en Ciencias Sociales y de la Salud III; Síntesis: Madrid, Spain, 2012. [Google Scholar]
- Alvarez-Cáceres, R. Estadística Multivariante y No Paramétrica con SPSS: Aplicación a las Ciencias de la Salud; Diaz de Santos: Madrid, Spain, 1995. [Google Scholar]
- Constante-Amores, A.; Florenciano-Martínez, E.; Navarro-Asensio, E.; Fernández-Mellizo, M. Factores asociados al abandono universitario. Educ. XX1 2021, 24, 17–44. [Google Scholar] [CrossRef]
- Field, A. Discovering Statistics Using SPSS for Window: Advanced Techniques for the Beginner; Sage: New York, NY, USA, 2000. [Google Scholar]
- Pardo, A.; San-Martín, R. Análisis de Datos en Ciencias Sociales y de la Salud II; Síntesis: Madrid, Spain, 2010. [Google Scholar]
- Álvarez-García, D.; Núñez, A.; Pérez-Fuentes, M.C.; Vallejo, G. Efecto del grupo-clase sobre la cibervictimización en estudiantes de Secundaria: Un análisis multinivel. Rev. Educ. 2022, 397, 153–178. [Google Scholar] [CrossRef]
- Elipe, P.; Muñoz, M.O.; Del Rey, R. Homophobic Bullying and Cyberbullying: Study of a Silenced Problem. J. Homosex. 2018, 65, 672–686. [Google Scholar] [CrossRef]
- Romera, E.M.; Luque, R.; Ortega-Ruiz, R.; Gómez-Ortiz, O.; Camacho, A. Positive Peer Perception, Social Anxiety and Classroom Social Adjustment as Risk Factors in Peer Victimization: A Multilevel Study. Psicothema 2022, 34, 110–116. [Google Scholar] [CrossRef]
- Arrivillaga, C.; Rey, L.; Extremera, N. Perfil emocional de adolescentes en riesgo de un uso problemático de internet. Rev. Psicol. Clín. Niños Adolesc. 2021, 8, 47–53. [Google Scholar] [CrossRef]
- Gámez-Guadix, M.; Incera, D. Homophobia is online: Sexual victimization and risk on the internet and mental health among bisexual, homosexual, pansexual, asexual, and queer adolescents. Comput. Hum. Behav. 2021, 119, 106728. [Google Scholar] [CrossRef]
- Liu, M.; Ren, S. Moderating Effect of Emotional Intelligence on the Relationship between Rumination and Anxiety. Curr. Psychol. 2018, 37, 272–279. [Google Scholar] [CrossRef]
Primary Sample. N: 1908 | Simulate Active Dataset. N: 50,000 | |||||||
---|---|---|---|---|---|---|---|---|
Descriptive Statistics | ||||||||
Variables | Mean | SD | Min. | Max. | Mean | SD | Min. | Max. |
Age | 13.65 | 1.35 | 11 | 18 | 13.65 | 1.35 | 11 | 18 |
Peer bullying | 43.69 | 9.37 | 39 | 117 | 43.67 | 9.40 | 39 | 117 |
Parentals-controls | 13.96 | 5.103 | 7 | 28 | 13.94 | 5.03 | 7 | 28 |
Self-esteem | 17.21 | 2.50 | 5 | 20 | 17.22 | 2.60 | 5 | 20 |
School vict. | 9.43 | 3.12 | 6 | 24 | 9.20 | 3.10 | 6 | 24 |
Training-support | 23.01 | 3.47 | 7 | 28 | 22.94 | 3.31 | 7 | 28 |
Shyness-Soc. anxiety | 8.43 | 2.67 | 4 | 16 | 8.45 | 2.61 | 4 | 16 |
Risk behaviors | 9.53 | 3.29 | 5 | 20 | 9.63 | 3.28 | 5 | 20 |
Academic-Performance | 6.10 | 1.69 | 0 | 10 | 6.15 | 1.70 | 0 | 10 |
CBV-Average | 1.17 | 0.18 | 1 | 3.69 | 1.17 | 0.20 | 1 | 3.43 |
Percentages | ||||||||
Variables | Categories | N | % | Categories | N | % | ||
Gender | boys (1) | 941 | 49.3% | boys (1) | 24,700 | 49.4% | ||
girls (2) | 967 | 50.7% | girls (2) | 25,300 | 50.6% | |||
Sexual orientation | heterosexual (1) | 1814 | 95.1% | heterosexual (1) | 47,600 | 95.2% | ||
non-heterosex. (2) | 94 | 4.9% | non-heterosex. (2) | 2400 | 4.8% | |||
TMMS Attention | low-attention (1) | 950 | 49.8% | low-attention (1) | 24,800 | 49.6% | ||
adequate attent. (2) | 793 | 41.6% | adequate atent (2) | 20,800 | 41.6% | |||
excessive attent. (3) | 165 | 8.6% | excessive attent. (3) | 4400 | 8.8% | |||
TMMS Clarity | low-clarity (1) | 769 | 40.8% | low-clarity (1) | 20,300 | 40.6% | ||
adequate-clarity (2) | 895 | 46.9% | adequate-clarity(2) | 23,500 | 47.0% | |||
excessive-clarity (3) | 244 | 12.8% | excessive-clarity (3) | 6200 | 12.4% | |||
TMMS Regulation | low-regulation (1) | 779 | 40.8% | low-regulation (1) | 20,250 | 40.5% | ||
adequate-reg. (2) | 840 | 44.0% | adequate-reg. (2) | 22,100 | 44.2% | |||
excessive-reg. (3) | 289 | 15.1% | Excessive-reg. (3) | 7650 | 15.3% | |||
CBV Severity | CBV occasional (1) | 1771 | 92.8% | CBV occasional (1) | 46,450 | 92.9% | ||
CBV severe (2) | 137 | 7.2% | CBV severe (2) | 3350 | 7.1% |
Data | , δ1, n1; p1 , δ2, n2; p2 |
---|---|
Standardized mean difference | |
Difference of proportions | |
Standardized Mean Differences | SD Estim. | d | Vard | Lower CI 95% | Upper CI 95% |
---|---|---|---|---|---|
Age | 1.35 | −0.001 | 0.0003 | −0.041 | 0.020 |
Peer-bullying | 9.37 | 0.002 | 0.0003 | −0.024 | 0.039 |
FCR Parental-controls | 5.10 | 0.005 | 0.0003 | −0.026 | 0.038 |
FCR Self-esteem | 2.50 | −0.004 | 0.0003 | −0.043 | 0.028 |
FCR School-Vict. | 3.12 | 0.000 | 0.0003 | −0.029 | 0.035 |
FCR Training-Support | 3.47 | 0.000 | 0.0003 | −0.034 | 0.033 |
FCR Shyness-Soc. anxiety | 2.67 | −0.002 | 0.0003 | −0.042 | 0.024 |
FCR Risk-behaviors | 3.29 | 0.003 | 0.0003 | −0.037 | 0.029 |
Academic performance | 1.69 | −0.004 | 0.0003 | −0.040 | 0.025 |
CBV-Average | 0.18 | 0.001 | 0.0003 | −0.033 | 0.035 |
Differences of proportions | Categories | d p2-p1 | Var dp2-p1 | Lower CI 95% | Upper CI 95% |
Gender | Boys (1) | 0.004 | 0.0001 | 0.020 | −0.023 |
Gender | Girls (2) | −0.007 | 0.0003 | 0.016 | −0.030 |
Sexual-Or. | Heterosexual (1) | −0.001 | 0.0000 | 0.007 | −0.008 |
Sexual-Or. | Non- heteros. (2) | 0.001 | 0.001 | 0.046 | −0.036 |
TMMS-Attention | Low-attention (1) | −0.002 | 0.000 | 0.024 | −0.023 |
TMMS-Attention | Adequate-attent. (2) | 0.0020 | 0.000 | 0.022 | −0.024 |
TMMS-Attention | Excessive-attent. (3) | 0.0030 | 0.0003 | 0.035 | −0.025 |
TMMS-Clarity | Low-clarity (1) | 0.0010 | 0.0003 | 0.037 | −0.036 |
TMMS-Clarity | Adequate-clar. (2) | −0.001 | 0.0003 | 0.022 | −0.015 |
TMMS-Clarity | Excessive-clar. (3) | −0.001 | 0.0005 | 0.031 | −0.021 |
TMMS-Regulation | Low-regulation (1) | 0.0040 | 0.0003 | 0.039 | −0.032 |
TMMS-Regulation | Adquate-reg. (2) | −0.003 | 0.0003 | 0.032 | −0.038 |
TMMS-Regulation | Excessive-reg. (3) | −0.001 | 0.0005 | 0.025 | −0.044 |
CBV-Severity | CBV-occasional (1) | −0.002 | 0.0000 | 0.011 | −0.012 |
CBV-Severity | CBV-severe (2) | 0.0020 | 0.0006 | 0.035 | −0.034 |
DV: CBV Average | Primary Sample. N = 1908 | Simulated Sample. N = 50,000 | ||||
---|---|---|---|---|---|---|
IV | B (Not-St) | CI95% | B (Not-St) | CI 95% | ||
Age | Const | 0.835 | 0.824; 0.872 | Const | 0.839 | 0.820; 0.862 |
Age | 0.025 | 0.020; 0.031 | Age | 0.024 | 0.022; 0.026 | |
Peer-bullying | Const | 0.447 | 0.412; 0.482 | Const | 0.465 | 0.455; 0.474 |
Peer-bull. | 0.017 | 0.016; 0.017 | Peer-bull. | 0.016 | 0.016; 0.016 | |
FCR-Parental-Control | Const | 1.22 | 1.19; 1.25 | Const | 1.23 | 1.22; 1.23 |
Parent-Cnt | −0.004 | −0.006; −0.002 | Parent-Cnt | −0.004 | −0.005; −0.004 | |
FCR-Self-esteem | Const | 1.58 | 1.53; 1.65 | Const | 1.58 | 1.57; 1.60 |
Self-esteem | −0.024 | −0.028; −0.021 | Self-esteem | −0.024 | −0.025; −0.023 | |
FCR-School-Vict. | Const | 0.819 | 0.795; 0.844 | Const | 0.837 | 0.831; 0.844 |
School-Vict | 0.037 | 0.035; 0.040 | School-Vict | 0.035 | 0.035; 0.036 | |
FCR-Training-Support | Const | 1.43 | 1.37; 1.48 | Const | 1.45 | 1.44; 1.47 |
Training | −0.011 | −0.014; −0.009 | Training | −0.013 | −0.013; −0.012 | |
FCR-Shyness-Soc.Anxiety | Const | 1.09 | 1.07; 1.12 | Const | 1.105 | 1.09; 1.11 |
Soc. Anxiety | 0.008 | 0.005; 0.012 | Soc. Anxiety | 0.008 | 0.007; 0.008 | |
FCR-Risk-behaviors | Const | 0.943 | 0.918; 0.969 | Const | 0.952 | 0.945; 0.959 |
Risk-behav. | 0.024 | 0.021; 0.026 | Risk-behav. | 0.023 | 0.022; 0.024 | |
Academic-Performance | Const | 1.35 | 1.32; 1.38 | Const | 1.35 | 1.34; 1.36 |
Ac.Perform. | −0.031 | −0.036 | Ac.Perform. | −0.030 | −0.031; −0.028 |
IE | Nexp | Nsim. | Edad | A.Per. | P.Cnt | Self-E | Vict | Train. | Anx. | R.B. | P.B. | Reps% |
---|---|---|---|---|---|---|---|---|---|---|---|---|
11 | 478 | 12,748 | 13.64 | 5.61 | 13.58 | 16.02 | 11.53 | 21.51 | 9.21 | 9.83 | 5.31 | 27.1 |
112 | 66 | 1621 | 13.61 | 6.25 | 13.63 | 17.01 | 8.93 | 22.31 | 8.84 | 9.18 | 6.26 | 21.2 |
113 | 5 | 199 | 13.02 | 6.32 | 14.21 | 18.36 | 8.21 | 23.32 | 9.63 | 8.82 | 6.36 | 21.9 |
121 | 60 | 1330 | 13.74 | 6.34 | 13.22 | 17.05 | 8.81 | 22.56 | 8.03 | 9.63 | 6.42 | 13.2 |
122 | 224 | 6553 | 13.53 | 6.42 | 13.57 | 17.71 | 8.45 | 22.55 | 7.95 | 8.57 | 6.52 | 19.1 |
123 | 27 | 835 | 13.21 | 7.01 | 16.09 | 18.53 | 7.63 | 24.38 | 7.91 | 8.01 | 6.87 | 11.9 |
131 | 8 | 205 | 13.74 | 6.23 | 11.95 | 17.69 | 9.35 | 23.28 | 7.45 | 9.34 | 6.25 | 0.0 |
132 | 17 | 231 | 12.73 | 7.25 | 16.41 | 18.50 | 7.56 | 24.69 | 8.57 | 6.57 | 7.46 | 8.1 |
133 | 44 | 1319 | 13.41 | 5.70 | 14.10 | 18.52 | 8.03 | 23.71 | 7.58 | 8,91 | 5.71 | 22.9 |
211 | 106 | 2749 | 14.10 | 5.97 | 12.27 | 16,05 | 9.62 | 21.63 | 8.82 | 10.15 | 5.97 | 29.8 |
212 | 83 | 1814 | 13.46 | 6.51 | 14.21 | 17.01 | 9.06 | 23.10 | 8.83 | 9.645 | 6.35 | 25.7 |
213 | 9 | 210 | 13.24 | 6.63 | 16.31 | 17.39 | 8.01 | 24.53 | 7.67 | 8.96 | 6.46 | 18.2 |
221 | 72 | 1919 | 13.65 | 5.97 | 14.05 | 16.85 | 8.95 | 22.53 | 8.39 | 9.11 | 5.97 | 24.5 |
222 | 386 | 9927 | 13.65 | 6.31 | 13.97 | 17.46 | 8.35 | 23.26 | 8.02 | 9.31 | 6.12 | 21.7 |
223 | 46 | 1264 | 13.43 | 6.49 | 15.34 | 18.21 | 8.00 | 23.98 | 8.12 | 8.25 | 6.63 | 18.7 |
231 | 3 | 130 | 13.42 | 6.41 | 12.94 | 18.33 | 8.97 | 23.91 | 6.38 | 8.36 | 6.51 | 0.0 |
232 | 22 | 571 | 13.23 | 7.02 | 15.57 | 18.23 | 8.41 | 23.88 | 7.63 | 9.01 | 6.89 | 11.8 |
233 | 96 | 2219 | 13.35 | 6.41 | 15.36 | 18.52 | 8.01 | 25.23 | 7.32 | 8.07 | 6.46 | 20.5 |
311 | 14 | 319 | 14.56 | 5.12 | 10.58 | 15.02 | 9.23 | 22.41 | 10.15 | 11.12 | 5.31 | 49.8 |
312 | 3 | 130 | 14.40 | 5.01 | 11.63 | 17.25 | 8.31 | 23.26 | 8.26 | 9.01 | 5.02 | 49.2 |
313 | 1 | 19 | 13.10 | 7.50 | 11.00 | 17.96 | 7.00 | 22.96 | 7.98 | 6.02 | 7.45 | 0.0 |
321 | 22 | 482 | 13.51 | 6.25 | 11.46 | 15.35 | 10.12 | 23.01 | 9.14 | 10.27 | 6.12 | 25.2 |
322 | 51 | 1437 | 13,72 | 6.01 | 14.62 | 17.56 | 9.02 | 23.47 | 8.26 | 9.87 | 6.01 | 23.8 |
323 | 8 | 303 | 13.02 | 6.50 | 15.78 | 18.63 | 9.35 | 24.01 | 9.25 | 7.02 | 6.52 | 0.5 |
331 | 2 | 32 | 12.90 | 7.32 | 15.29 | 16.02 | 8.00 | 26.96 | 10.97 | 5.98 | 7.12 | 0.0 |
332 | 9 | 288 | 13.81 | 5.59 | 15.63 | 18.31 | 7.82 | 23.70 | 6.45 | 9.08 | 5.58 | 22.5 |
333 | 46 | 1146 | 13.41 | 6.11 | 14.41 | 18.28 | 8.11 | 23.72 | 7.53 | 9.27 | 6.03 | 23.1 |
Total | 1908 | 50,000 | 13.60 | 6.21 | 14.01 | 17.15 | 9.26 | 22.74 | 8.51 | 9.26 | 6.02 | 22.5 |
ICC | 0.082 | 0.097 | 0.096 | 0.170 | 0.094 | 0.075 | 0.120 | 0.125 | 0.120 |
Fixed-effects | |||||
Parameter | Estimator | Standard error | t | Sig | CI 95% |
Intercept | 1.166 | 0.001 | 1209.7384,74 | 0.000 | 1.164; 1.168 |
Random effects | |||||
Covariance parameter | Estimator | Standard error | Wald Z. | Sig | CI 95% |
Residue | 0.046 | 0.000 | 158.071 | 0.000 | 0.046; 0.047 |
Level I+II Effect | 1.363 | 0.371 | 3.674 | <0.001 | 0.800; 2.325 |
ICC | 1.363/(1.363 + 0.046) = 0.967 | ||||
Null model fit information for cyber-victimization | |||||
Description | Value | ||||
Deviance | −11,330.01 | ||||
AIC | −11,326.01 | ||||
BIC | −11,308.37 | ||||
df (parameters −1): 2 | |||||
Coefficient of determination Pseudo-R squared (conditional): 0.967 |
Subject Level (L1) | Importance | Standardized Importance | Strata Level (L2) | Importance | Standardized Importance |
---|---|---|---|---|---|
L1 Peer Bullying | 0.43 | 100% | L2 Peer-Bullying by stratum | 0.12 | 45.6% |
L1 FCR Parental Control | 0.03 | 6.5% | L2 FCR P. Control by stratum | 0.08 | 32.6% |
L1 FCR Self-esteem | 0.09 | 24% | L2 FCR Self-E. by stratum | 0.25 | 100% |
L1 FCR Off-line Victimization | 0.14 | 34.1% | L2 FCR Off-line Victimization by stratum | 0.24 | 92.9% |
L1 FCR Training | 0.10 | 24.8% | L2 FCR Training by stratum | 0.06 | 21.6% |
L1 FCR Anxiety | 0.07 | 16.4% | L2 FCR Anxiety by stratum | 0.19 | 78.1% |
L1 FCR Risk Behaviors | 0.15 | 36.8% | L2 FCR Risk-behav. by stratum | 0.06 | 23.5% |
Fixed-effects | ||||||
Parameter | Estimator | Standard error | df | t | Sig | CI 95% |
Intercept | 1.021 | 0.004 | 49,989 | 260.22 | 0.000 | 1.013; 1.029 |
L2_FCR_Self-esteem Centered | −0.012 | 0.003 | 49,989 | 16.41 | <0.001 | −0.059; −0.047 |
L1_Sex (1) | 0.001 | 0.002 | 49,988.9 | 0.76 | 0.441 | −0.002; 0.004 |
L1_Sexual Orientation (1) | 0.001 | 0.004 | 49,993 | 0.385 | 0.700 | −0.006; −0.009 |
L1_Age Centered | 0.012 | 0.001 | 49,993 | 24.23 | <0.001 | 0.011; 0.013 |
L1_Academic Performance Centered | −0.011 | 0.000 | 49,993 | −23.59 | <0.001 | −0.012; −0.010 |
L1_Peer-Bullying Centered | 0.006 | 0.000 | 4992.6 | 134.52 | 0.000 | 0.006; 0.006 |
Random-effects | ||||||
Covariance parameter | Estimator | Standard error | Wald Z | Sig | CI95% | |
Residue | 0.030 | 0.000 | 15,810 | 0.000 | 0.029; 0.030 | |
Level I + II Effect | 0.001 | 0.000 | ||||
2-simplified model fit information for cyber-victimization | ||||||
Description | Value | |||||
Deviance | −10,582.59 | |||||
AIC | −10,578.59 | |||||
BIC | −10,561.04 | |||||
df (parameters −1): 8 |
Fixed-effects | |||||
Parameter | Estimator | Standard error | t | Sig | CI95% |
Intercept | 1.029 | 0.006 | 176.19 | 0.000 | 1.02; 1.04 |
L2_FCR_Self-Esteem Centered | −0.015 | 0.001 | −10.527 | <0.001 | −0.018; −0.013 |
L1_Sex (1) | 0.001 | 0.006 | 0.78 | 0.432 | −0.002; 0.004 |
L1_Sexual Orientation (1) | −0.001 | 0.006 | 0.18 | 0.855 | −0.010; 0.013 |
L1_Age Centered | 0.012 | 0.001 | 24.25 | <0.001 | 0.011; 0.013 |
L1_Academic Performance Centered | −0.011 | 0.000 | −23.54 | <0.001 | −0.012; −0.010 |
L1_Peer-Bullying Centered | 0.006 | 0.000 | 31.18 | <0.001 | 0.006; 0.007 |
L2_FCR_Self-Esteem Centered * L1_Peer-Bullying Centered | −0.007 | 0.002 | −3.08 | 0.005 | −0.012; −0.002 |
L1_Sexual Orientation (1)* L1_Peer-Bullying Centered | −0.002 | 0.000 | −5.28 | <0.001 | −0.003; −0.001 |
Model 4 fit information for cyber-victimization | |||||
Description | Value | Likelihood-ratio M0-M4 [SIG.CHISQ (14,704.2, 9)] | |||
Deviance | −10,906.22 | 4122.11−(−10,582.59) = 14,704.7 (Sig. 0.000) | |||
AIC | −10,900.22 | Likelihood-ratio M2s-M5 [SIG.CHISQ (323.63, 3)] (Sig. 0.000) | |||
BIC | −10,873.89 | ||||
df (parameters −1): 11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Villegas-Lirola, F. Emotional Intelligence Profiles and Cyber-Victimization in Secondary School Students: A Multilevel Analysis. Educ. Sci. 2024, 14, 971. https://doi.org/10.3390/educsci14090971
Villegas-Lirola F. Emotional Intelligence Profiles and Cyber-Victimization in Secondary School Students: A Multilevel Analysis. Education Sciences. 2024; 14(9):971. https://doi.org/10.3390/educsci14090971
Chicago/Turabian StyleVillegas-Lirola, Francisco. 2024. "Emotional Intelligence Profiles and Cyber-Victimization in Secondary School Students: A Multilevel Analysis" Education Sciences 14, no. 9: 971. https://doi.org/10.3390/educsci14090971
APA StyleVillegas-Lirola, F. (2024). Emotional Intelligence Profiles and Cyber-Victimization in Secondary School Students: A Multilevel Analysis. Education Sciences, 14(9), 971. https://doi.org/10.3390/educsci14090971