Brain Science and Geographic Thinking: A Review and Research Agenda for K-3 Geography
Abstract
:1. Visual Perception
2. Visual Analysis
3. Modes of Spatial Reasoning
Sample research questions: What insights from math educators could help geography teachers design better lessons (and vice versa)? How effective are different ways to “nudge” students to shift from a classificatory (qualitative) to a comparative (quantitative) mode of perception and analysis? What kinds of size comparison activities are likely to be most effective for students who come from different backgrounds? How should comparison activities be deployed for different topics, like deforestation, trade, crime, or voting? Note: Research questions about the effectiveness of specific student activities or nudging strategies will also be appropriate for every other mode of thinking in this article. So, on to the next one.
4. Spatial Thinking, Language Arts, and Mathematics
- -
- The difference between a written “b” and “d” (or “n” and “u”) is the direction it faces;
- -
- The difference between “tar”, “art”, and “rat” is the spatial sequence of the letters;
- -
- Proximity helps clarify what “white” modifies in a phrase like “White House lawn”;
- -
- Prepositions are spatially close to and logically associated with nouns, not verbs;
- -
- Spatial transitions can offer concrete examples that can illustrate different kinds of abstract mathematical gradients on graphs;
- -
- Spatial frameworks can be useful in organizing some kinds of writing (and making sense out of reading some kinds of texts).
5. An Example from a Primary School
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Technical Note about How We Know Where in the Brain We Think about Something
References
- Kimerling, A.J.; Muehrcke, P.C.; Muehrcke, J.O.; Muehrcke, P.M. Map Use: Reading, Analysis, Interpretation, 8th ed.ESRI Press Academic: Redlands, CA, USA, 2016. [Google Scholar]
- Lloyd, R. Attention on maps. Cartogr. Perspect. 2005, 52, 28–57. [Google Scholar] [CrossRef]
- Lloyd, R. Visual search processes used in map reading. Cartographica 1997, 34, 11–32. [Google Scholar] [CrossRef]
- DiCarlo, J.J.; Zoccolan, D.; Rust, N.C. How does the brain solve visual object recognition? Neuron 2012, 73, 415–434. [Google Scholar] [CrossRef]
- Kravitz, D.J.; Saleem, K.S.; Baker, C.I.; Ungerleider, L.G.; Mishkin, M. The ventral visual pathway: An expanded neural framework for the processing of object quality. Trends Cogn. Sci. 2013, 17, 26–49. [Google Scholar] [CrossRef]
- Koláčný, A. Cartographic information—A fundamental concept and term in modern cartography. Cartogr. J. 1969, 6, 47–49. [Google Scholar] [CrossRef]
- Luck, S.J.; Hollingworth, A. Visual Memory; Oxford University Press: New York, NY, USA, 2008. [Google Scholar]
- Vinberg, J.; Grill-Spector, K. Representation of shapes, edges, and surfaces across multiple cues in the human visual cortex. J. Neurophysiol. 2008, 99, 1380–1393. [Google Scholar] [CrossRef]
- Cavina-Pratasi, C.; Kentridge, R.W.; Heywood, C.A.; Milner, A.D. Separate channels for processing form, texture, and color: Evidence from fMRI adaptation and visual object agnosia. Cereb. Cortex 2010, 20, 2819–2832. [Google Scholar] [CrossRef]
- Shigihara, Y.; Zeki, S. Parallel processing in the brain’s visual form system: An fMRI study. Front. Hum. Neurosci. 2013, 8, 506–514. [Google Scholar] [CrossRef]
- Silson, E.H.; McKeefry, D.J.; Rodgers, J.; Gouws, A.D.; Hymers, M.; Morland, A.B. Specialized and independent processing of orientation and shape in visual field maps LO1 and LO2. Nat. Neurosci. 2013, 16, 267–271. [Google Scholar] [CrossRef]
- Buetti, S.; Cronin, D.A.; Madison, A.M.; Wang, Z.; Lleras, A. Towards a better understanding of parallel visual processing in human vision. J. Exp. Psychol. Gen. 2016, 145, 672–707. [Google Scholar]
- Navalpakkam, V.; Itti, L. Search goal tunes visual features optimally. Neuron 2007, 53, 605–617. [Google Scholar] [CrossRef]
- Lauritzen, T.Z.; D’Esposite, M.; Heeger, D.J.; Silver, M.A. Top–down flow of visual spatial attention signals from parietal to occipital cortex. J. Vis. 2009, 9, 18. [Google Scholar] [CrossRef]
- Shomstein, S.; Lee, J.; Behrmann, M. Top-down and bottom-up attentional guidance: Investigating the role of the dorsal and ventral parietal cortices. Exp. Brain Res. 2010, 206, 197–208. [Google Scholar] [CrossRef]
- Wen, X.; Liu, Y.; Yao, L.; Ding, M. Top-down regulation of default mode activity in visual spatial attention. J. Neurosci. 2013, 33, 6444–6453. [Google Scholar] [CrossRef]
- O’Callaghan, C.; Kveraga, K.; Shine, J.M.; Adams, R.B., Jr.; Bar, M. Predictions penetrate perception: Converging insights from brain, behaviour and disorder. Conscious. Cogn. 2017, 47, 63–74. [Google Scholar] [CrossRef]
- Poltoratski, S.; Ling, S.; McCormack, D.; Tong, F. Characterizing the effects of feature salience and top-down attention in the early visual system. J. Neurophysiol. 2017, 118, 564–573. [Google Scholar] [CrossRef]
- de Lange, F.P.; Heilbron, M.; Kok, P. How Do Expectations Shape Perception? Trends Cogn. Sci. 2018, 22, 764–779. [Google Scholar] [CrossRef]
- Hollingworth, A.; Matsukura, M. Feature-based guidance of attention during post-saccadic selection. Atten. Percept. Psychophys. 2019, 81, 1822–1835. [Google Scholar] [CrossRef]
- Jo, H.G.; Kellermann, T.; Baumann, C.; Ito, J.; Holthausen, B.S.; Schneider, F.; Grün, S.; Habel, U. Distinct modes of top-down cognitive processing in the ventral visual cortex. Neuroimage 2019, 193, 201–213. [Google Scholar] [CrossRef]
- Travis, S.L.; Dux, P.E.; Mattingley, J.B. Neural correlates of goal-directed enhancement and suppression of visual stimuli in the absence of conscious perception. Atten. Percept. Psychophys. 2019, 81, 1346–1364. [Google Scholar] [CrossRef]
- Fehringer, B.C. Spatial thinking from a different view: Disentangling top-down and bottom-up processes using eye tracking. Open Psychol. 2020, 2, 138–212. [Google Scholar] [CrossRef]
- Fischer, M.; Moscovitch, M.; Alain, C. A systematic review and meta-analysis of memory-guided attention: Frontal and parietal activation suggests involvement of fronto-parietal networks. Wiley Interdiscip. Rev. Cogn. Sci. 2020, 12, e1546. [Google Scholar] [CrossRef]
- Forstinger, M.; Grüner, M.; Ansorge, U. Unseeing the white bear: Negative search criteria guide visual attention through top-down suppression. J. Exp. Psychol. Hum. Percept. Perform. 2022, 48, 613–638. [Google Scholar] [CrossRef]
- Oliva, A.; Torralba, A. The role of context in object recognition. Trends Cogn. Sci. 2007, 11, 520–527. [Google Scholar] [CrossRef]
- Kravitz, D.J.; Kreigeskorte, N.; Baker, C.L. High-level visual object representations are constrained by position. Cereb. Cortex 2010, 20, 2916–2925. [Google Scholar] [CrossRef]
- Travis, S.L.; Mattingley, J.B.; Dux, P.E. On the role of working memory in spatial contextual cuing. J. Exp. Psychol. Learn. Mem. Cogn. 2013, 39, 208–219. [Google Scholar] [CrossRef]
- Goujon, A.; Didierjean, A.; Thorpe, S. Investigating implicit statistical learning mechanisms through contextual cueing. Trends Cogn. Sci. 2015, 19, 524–533. [Google Scholar] [CrossRef]
- Anderson, B.A.; Kim, H. Mechanisms of value-learning in the guidance of spatial attention. Cognition 2018, 178, 26–36. [Google Scholar] [CrossRef]
- Becker, S.I.; Martin, A.; Finlayson, N.J. At what stage of the visual processing hierarchy is visual search relational and context-dependent vs. feature-specific? J. Vis. 2019, 19, 132. [Google Scholar] [CrossRef]
- Buckley, M.G.; Austen, J.M.; Myles, L.A.; Smith, S.; Ihssen, N.; Lew, A.R.; McGregor, A. The effects of spatial stability and cue type on spatial learning: Implications for theories of parallel memory systems. Cognition 2021, 214, 104802. [Google Scholar] [CrossRef]
- Gersmehl, P.; Gersmehl, C. Spatial thinking in early childhood: What can they do and when can they start? J. Geogr. 2007, 106, 181–191. [Google Scholar]
- Baker, T.R.; Battersby, S.; Bednarz, S.W.; Bodzin, A.M.; Kolvoord, B.; Moore, S.; Sinton, D.; Uttal, D. A research agenda for geospatial technologies and learning. J. Geogr. 2015, 114, 118–130. [Google Scholar] [CrossRef]
- Downs, R.M.; de Souza, A. Learning to Think Spatially; The National Academies Press: Washington, DC, USA, 2006. [Google Scholar]
- Bednarz, S.W.; Heffron, S.; Huynh, N.T. (Eds.) A Road Map for 21st Century Geography Education: Geography Education Research; A report from the Geography Education Research Committee of the Road Map for 21st Century Geography Education Project; Association of American Geographers: Washington, DC, USA, 2013. [Google Scholar]
- Bueti, D.; Walsh, V. The parietal cortex and the representation of time, space, number and other magnitudes. Philos. Trans. R. Soc. 2009, 364, 1831–1840. [Google Scholar] [CrossRef]
- Bertin, J. Sémiologie Graphique. Les Diagrammes, Les Réseaux, Les Cartes. With Marc Barbut [et al.] (translated as Semiology of Graphics); Berg, W.J., Translator; Gauthier-Villars: Paris, France, 1967. [Google Scholar]
- Wood, G.; Willmes, K.; Nuerk, H.-C.; Fischer, M.H. On the cognitive link between space and number: A meta-analysis. Psychol. Sci. 2008, 50, 489–525. [Google Scholar]
- Chen, Q.; Verguts, T. Beyond the mental number line: A neural network model of number–space interactions. Cogn. Psychol. 2010, 60, 218–240. [Google Scholar] [CrossRef]
- Núñez, R.E. No innate number line in the human brain. J. Cross-Cult. Psychol. 2011, 42, 651–668. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, C.; Zhou, X. Neural correlates of numbers and mathematical terms. NeuroImage 2012, 60, 230–240. [Google Scholar]
- Tibber, M.S.; Greenwood, J.A.; Dakin, S.C. Number and density discrimination rely on a common metric: Similar psychophysical effects of size, contrast, and divided attention. J. Vis. 2012, 12, 8. [Google Scholar] [CrossRef]
- Damarla, S.R.; Just, M.A. Decoding the representation of numerical values from brain activation patterns. Hum. Brain Mapp. 2013, 34, 2624–2634. [Google Scholar] [CrossRef]
- Harvey, B.M.; Fracasso, A.; Petridou, N.; Dumoulin, S.O. Topographic representations of object size and relationships with numerosity reveal generalized quantity processing in human parietal cortex. Proc. Natl. Acad. Sci. USA 2015, 112, 13525–13530. [Google Scholar] [CrossRef]
- Shaki, S.; Fischer, M.H. Deconstructing spatial-numerical associations. Cognition 2018, 175, 109–113. [Google Scholar] [CrossRef]
- Kutter, E.F.; Bostroem, J.; Elger, C.E.; Mormann, F.; Nieder, A. Single neurons in the human brain encode numbers. Neuron 2018, 100, 753–761. [Google Scholar] [CrossRef]
- Hawes, Z.; Sokolowski, H.M.; Ononye, C.B.; Ansari, D. Neural underpinnings of numerical and spatial cognition: An fMRI meta-analysis of brain regions associated with symbolic number, arithmetic, and mental rotation. Neurosci. Biobehav. Rev. 2019, 103, 316–336. [Google Scholar] [CrossRef]
- Sixtus, E.; Krause, F.; Lindemann, O.; Fischer, M.H. A sensorimotor perspective on numerical cognition. Trends Cogn. Sci. 2023, 27, 367–378. [Google Scholar] [CrossRef]
- Dehaene, S. The neural basis of the Weber-Fechner law: A logarithmic mental number line. Trends Cogn. Sci. 2003, 7, 145–147. [Google Scholar] [CrossRef]
- Siegler, R.S.; Thompson, C.A.; Opfer, J.E. The logarithmic-to-linear shift: One learning sequence, many tasks, many time scales. Mind Brain Educ. 2009, 3, 143–150. [Google Scholar] [CrossRef]
- Flannery, J. The relative effectiveness of some common graduated point symbols in the presentation of quantitative data. Can. Cartogr. 1971, 8, 96–109. [Google Scholar] [CrossRef]
- Chen, L.; Qiao, C.; Wang, Y.; Jiang, Y. Subconscious processing reveals dissociable contextual modulations of visual size perception. Cognition 2018, 180, 259–267. [Google Scholar] [CrossRef]
- Jenks, G.E.; Knos, D. The use of shading patterns in graded series. Ann. Assoc. Am. Geogr. 1961, 51, 316–334. [Google Scholar] [CrossRef]
- Göbel, F.; Kiefer, P.; Giannopoulos, I.; Duchowski, A.T.; Raubal, M. Improving map reading with gaze-adaptive legends. In Proceedings of the 2018 ACM Symposium on Eye Tracking Research & Applications, Warsaw, Poland, 14–17 June 2018. [Google Scholar]
- Yu, D.; Xiao, X.; Bemis, D.K.; Franconeri, S.L. Similarity grouping as feature-based selection. Psychol. Sci. 2019, 30, 376–385. [Google Scholar] [CrossRef]
- MacEachren, A.M. Grouping. In How Maps Work; Guilford Press: New York, NY, USA, 1995; pp. 71–86. [Google Scholar]
- Xu, Y.; Chun, M.M. Visual grouping in human parietal cortex. Proc. Natl. Acad. Sci. USA 2007, 104, 18766–18771. [Google Scholar] [CrossRef]
- Wagemans, J.; Elder, J.H.; Kubovy, M.; Palmer, S.E.; Peterson, M.A.; Singh, M. A century of Gestalt psychology in visual perception: I. Perceptual grouping and figure-ground organization. Psychol. Bull. 2012, 138, 1172–1217. [Google Scholar] [CrossRef]
- Montoro, P.R.; Luna, D.; Ortells, J.J. Subliminal Gestalt grouping: Evidence of perceptual grouping by proximity and similarity in absence of conscious perception. Conscious. Cogn. 2014, 25, 1–8. [Google Scholar] [CrossRef]
- Huang, L. Grouping by similarity is mediated by feature selection: Evidence from the failure of cue combination. Psychon. Bull. Rev. 2015, 22, 1364–1369. [Google Scholar] [CrossRef]
- Kimchi, R.; Devyatko, D.; Sabary, S. Can perceptual grouping unfold in the absence of awareness? Conscious. Cogn. 2018, 60, 37–51. [Google Scholar] [CrossRef]
- Kim, J.; Linsley, D.; Thakkar, K.; Serre, T. Disentangling neural mechanisms for perceptual grouping. arXiv 2019, arXiv:1906.01558. [Google Scholar]
- Peng, P.; Yang, K.F.; Li, Y.J. A computational model for gestalt proximity principle on dot patterns and beyond. J. Vis. 2021, 21, 23. [Google Scholar] [CrossRef]
- Harrison, T.B.; Stiles, J. Hierarchical forms processing in adults and children. J. Exp. Child Psychol. 2009, 103, 222–240. [Google Scholar] [CrossRef]
- Huizinga, M.; Burack, J.A.; van der Molen, M.W. Age-related change in shifting attention between global and local levels of hierarchical stimuli. J. Cogn. Dev. 2010, 11, 408–436. [Google Scholar] [CrossRef]
- Sturz, B.R.; Gaskin, K.A.; Robert, J.E. Incidental encoding of enclosure geometry. Mem. Cogn. 2014, 42, 935–942. [Google Scholar] [CrossRef]
- Choi, M.J.; Lim, J.J.; Torralba, A.; Willsky, A.S. Exploiting hierarchical context on a large database of object categories. In Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010; pp. 129–136. [Google Scholar]
- Tobler, W. A computer movie simulating urban growth in the Detroit region. Econ. Geogr. 1970, 46, 234–240. [Google Scholar] [CrossRef]
- Venables, D.; Pidgeon, N.F.; Parkhill, K.A.; Henwood, K.L.; Simmons, P. Living with nuclear power: Sense of place, proximity, and risk perceptions in local host communities. J. Environ. Psychol. 2012, 32, 371–383. [Google Scholar] [CrossRef]
- Hansen, T. Substitution or overlap? The relations between geographical and non-spatial proximity dimensions in collaborative innovation projects. Reg. Stud. 2015, 49, 1672–1684. [Google Scholar] [CrossRef]
- Histed, M.H.; Miller, E.K. Microstimulation of Frontal Cortex Can Reorder a Remembered Spatial Sequence. PLoS Biol. 2006, 4, 826–834. [Google Scholar] [CrossRef]
- Dehaene, S.; Meyniel, F.; Wacongne, C.; Wang, L.; Pallier, C. The neural representation of sequences: From transition probabilities to algebraic patterns and linguistic trees. Neuron 2015, 88, 2–19. [Google Scholar] [CrossRef]
- Hurlstone, M.J.; Hitch, G.J. How is the serial order of a spatial sequence represented? Insights from transposition latencies. J. Exp. Psychol. Learn. Mem. Cogn. 2015, 41, 295–324. [Google Scholar] [CrossRef]
- Spalding, K.N.; Schlichting, M.L.; Zeithamova, D.; Preston, A.R.; Tranel, D.; Duff, M.C.; Warren, D.E. Ventromedial prefrontal cortex is necessary for normal associative inference and memory integration. J. Neurosci. 2018, 38, 3767–3775. [Google Scholar] [CrossRef]
- Davis, B.; Spatial Reasoning Study Group. Spatial Reasoning in the Early Years; Routledge: New York, NY, USA, 2015. [Google Scholar]
- Anaya, E.M.; Pisoni, D.B.; Kronenberger, W.G. Visual-spatial sequence learning and memory in trained musicians. Psychol. Music. 2017, 45, 5–21. [Google Scholar] [CrossRef]
- Gouldthorp, B.; Katsipis, L.; Mueller, C. An investigation of the role of sequencing in children’s reading comprehension. Read. Res. Q. 2018, 53, 91–106. [Google Scholar] [CrossRef]
- Hachmann, W.M.; Cashdollar, N.; Postiglione, F.; Job, R. The relationship of domain-general serial order memory and reading ability in school children with and without dyslexia. J. Exp. Child Psychol. 2020, 198, 104789. [Google Scholar] [CrossRef]
- Hollingworth, A. Object-position binding in visual memory for natural scenes and object arrays. J. Exp. Psychology. Hum. Percept. Perform. 2007, 33, 31–47. [Google Scholar] [CrossRef]
- Van Buuren, M.; Kroes, M.C.W.; Wagner, I.C.; Genzel, L.; Morris, R.G.M.; Fernandez, G. Initial investigation of the effects of an experimentally learned schema on spatial associative memory in humans. J. Neurosci. 2014, 34, 16612–16620. [Google Scholar] [CrossRef]
- Earth Environments. Interactive Maps, Online Text, and Activities to Explore Associations with Different Climates. 2022. Available online: http://textbooks.wmisd.org/EarthEnvironments.html (accessed on 16 November 2023).
- Turk-Browne, N.B.; Scholl, B.J.; Chun, M.M.; Johnson, M.K. Neural evidence of statistical learning: Efficient detection of visual regularities without awareness. J. Cogn. Neurosci. 2008, 21, 1934–1945. [Google Scholar] [CrossRef]
- Alais, D.; Xu, Y.; Wardle, S.; Taubert, J. Expression in human and illusory faces (pareidolia) shows cross-domain serial dependence: Evidence for common processing. J. Vis. 2020, 20, 1748. [Google Scholar] [CrossRef]
- MacEachren, A.M.; Ganter, J. A pattern identification approach to geovisualization. Cartographica 1992, 27, 64–81. [Google Scholar] [CrossRef]
- Keefe, B.D.; Gouws, A.D.; Sheldon, A.A.; Vernon, R.J.; Lawrence, S.J.; McKeefry, D.J.; Wade, A.R.; Morland, A.B. Emergence of symmetry selectivity in the visual areas of the human brain: fMRI responses to symmetry presented in both frontoparallel and slanted planes. Hum. Brain Mapp. 2020, 39, 3813–3826. [Google Scholar] [CrossRef]
- Gersmehl, P. The National Council’s Geography Education Research Fund: Because It Would Still Be Nice to Have Data. J. Geogr. 2022, 121, 141–144. [Google Scholar] [CrossRef]
- Yuan, L.; Uttal, D.; Gentner, D. Analogical processes in children’s understanding of spatial representations. Dev. Psychol. 2017, 53, 1098–1114. [Google Scholar] [CrossRef]
- Guelke, L. Cartographic communication and geographic understanding. Cartographica 1977, 14, 129–145. [Google Scholar] [CrossRef]
- Wartenburger, I.; Heekeren, H.R.; Preusse, F.; Kramer, J.; ven der Meer, E. Cerebral correlates of analogical processing and their modulation by training. NeuroImage 2009, 48, 291–302. [Google Scholar] [CrossRef]
- Uttal, D.H.; Sheehan, K.J. The development of children’s understanding of maps and models. J. Cogn. Educ. Psychol. 2014, 13, 2014. [Google Scholar] [CrossRef]
- Vendetti, M.S.; Wu, A.; Rowshanbdshad, E.; Knowlton, B.J.; Holyoak, K.J. When reasoning modifies memory: Schematic assimilation triggered by analogical mapping. J. Exp. Psychol. Learn. Mem. Cogn. 2014, 40, 1172–1180. [Google Scholar] [CrossRef] [PubMed]
- Kroczek, B.; Ciechanowska, I.; Chuderski, A. Uncovering the course of analogical mapping using eye tracking. Cognition 2022, 225, 105140. [Google Scholar] [CrossRef]
- Gentner, D. Children’s performance on a spatial analogies task. Child Dev. 1977, 48, 1034–1039. [Google Scholar] [CrossRef]
- Marzolf, D.P.; DeLoache, J.S.; Kolstad, V. The role of relational similarity in young children’s use of a scale model. Dev. Sci. 1999, 2, 296–305. [Google Scholar] [CrossRef]
- Vasilyeva, M.; Bowers, E. Exploring the effects of similarity on mapping spatial relations. J. Exp. Child Psychol. 2010, 106, 221–239. [Google Scholar] [CrossRef]
- Hribar, A.; Haun, D.B.M.; Call, J. Children’s reasoning about spatial relational similarity: The effect of alignment and relational complexity. J. Exp. Child Psychol. 2012, 111, 490–500. [Google Scholar] [CrossRef]
- GIANTS. Presentations, Activities, and Other Resources for a Classroom-Mapping Activity with Scaffold Activities that Introduce Key Concepts and Spinoff Activities that Link with Reading and Math, in Units 1 and 2. 2022. Available online: www.misocialstudies.org/k2overview.html (accessed on 16 November 2023).
- Nieder, A.; DeHaene, S. Representation of number in the brain. Annu. Rev. Neurosci. 2009, 32, 185–208. [Google Scholar] [CrossRef]
- Davis, C.J. The spatial coding model of visual word identification. Psychol. Rev. 2010, 117, 713–758. [Google Scholar] [CrossRef]
- Soltész, F.; Szucs, D.; Szucs, L. Relationships between magnitude representation, counting, and memory in 4- to 7-year old children: A developmental study. Behav. Brain Funct. 2010, 6, 13. [Google Scholar] [CrossRef]
- Desoete, A.; Ceulemans, A.; De Weerdt, F.; Pieters, S. Can we predict mathematical learning disabilities from symbolic and non-symbolic comparison tasks in kindergarten? Br. J. Educ. Psychol. 2012, 82, 64–81. [Google Scholar] [CrossRef] [PubMed]
- Lonnemann, J.; Linkersdorfer, J.; Nagler, T.; Hasselhorn, M.; Lindberg, S. Spatial representations of numbers and letters in children. Front. Psychol. 2013, 4, 544. [Google Scholar] [CrossRef] [PubMed]
- Sasanguie, D.; Göbel, S.M.; Moll, K.; Smets, K.; Reynvoet, B. Approximate number sense, symbolic number processing, or number–space mappings: What underlies mathematics achievement? J. Exp. Child Psychol. 2013, 114, 418–431. [Google Scholar] [CrossRef]
- Carreiras, M.; Armstrong, B.C.; Perea, M.; Frost, R. The what, when, where, and how of visual word recognition. Trends Cogn. Sci. 2014, 18, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Link, T.; Huber, S.; Nuerk, H.-C.; Moeller, K. Unbounding the mental number-line—New evidence on children’s spatial representation of numbers. Front. Psychol. 2014, 4, 1021. [Google Scholar] [CrossRef]
- Mix, K.S. Why are spatial skill and mathematics related? Child Dev. Perspect. 2019, 13, 121–126. [Google Scholar] [CrossRef]
- Hawes, Z.C.; Gilligan-Lee, K.A.; Mix, K.S. Effects of spatial training on mathematics performance: A meta-analysis. Dev. Psychol. 2022, 58, 112–137. [Google Scholar] [CrossRef]
- Vinci-Booher, S.; James, K.H. Visual experiences during letter production contribute to the development of the neural systems supporting letter perception. Dev. Sci. 2020, 23, e12965. [Google Scholar] [CrossRef]
- Dehaene, S. Reading in the Brain; Penguin Group: New York, NY, USA, 2009. [Google Scholar]
- Bergen, B.K.; Lindsay, S.; Matlock, T.; Narayanan, S. Spatial and linguistic aspects of visual imagery in sentence comprehension. Cogn. Sci. 2007, 31, 733–764. [Google Scholar] [CrossRef]
- Barnes, M.A.; Raghubar, K.P.; Faulkner, H.; Denton, C.A. The construction of visual-spatial situation models and their relation to reading comprehension. J. Exp. Child Psychol. 2014, 119, 101–111. [Google Scholar] [CrossRef]
- Newcombe, N.S. Picture this: Increasing math and science learning by improving spatial thinking. Am. Educ. 2010, 34, 29–35. [Google Scholar]
- Casasola, M.; Wei, W.S.; Suh, D.D.; Donskoy, P.; Ransom, A. Children’s exposure to spatial language promotes their spatial thinking. J. Exp. Psychol. Gen. 2020, 149, 1116–1136. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Bednarz, R. Components of spatial thinking: Evidence from a spatial thinking ability test. J. Geogr. 2012, 111, 15–26. [Google Scholar] [CrossRef]
- Manning, A. Spotlight on Gersmehl and Gersmehl’s ‘Wanted: A concise list of spatial thinking skills’. Geography 2014, 99, 108–110. [Google Scholar] [CrossRef]
- Anderson, J.R.; Pyke, A.A.; Fincham, J.M. Hidden stages of cognition revealed in patterns of brain activation. Psychol. Sci. 2016, 27, 1215–1226. [Google Scholar] [CrossRef] [PubMed]
- Uttal, D.H.; Meadow, N.G.; Tipton, E.; Hand, L.L.; Alden, A.R.; Warren, C.; Newcombe, N.S. The malleability of spatial skills: A meta-analysis of training studies. Psychol. Bull. 2012, 139, 353–402. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.-L.; Mix, K.S. Spatial training improves children’s mathematics ability. J. Cogn. Dev. 2014, 15, 2–11. [Google Scholar] [CrossRef]
- Gersmehl, P.; Gersmehl, C. Wanted: A concise list of neurologically defensible and assessable spatial-thinking skills. Res. Geogr. Educ. 2006, 8, 5–39. [Google Scholar]
- Kanwisher, N.; Dilks, D.D. The functional organization of the ventral visual pathway in humans. In The New Visual Neurosciences; Chalupa, L., Werner, J., Eds.; The MIT Press: Cambridge, MA, USA, 2013; Chapter 52; pp. 733–748. [Google Scholar]
- Carroll, J.B. Human Cognitive Abilities: A Survey of Factor Analytic Studies; Cambridge University Press: New York, NY, USA, 1993. [Google Scholar]
- Gersmehl, P. Tour of a Map-Reader’s Brain, Part 2: Conditions and Comparisons. Geogr. Teach. 2023, 20, 39–44. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gersmehl, P. Brain Science and Geographic Thinking: A Review and Research Agenda for K-3 Geography. Educ. Sci. 2023, 13, 1199. https://doi.org/10.3390/educsci13121199
Gersmehl P. Brain Science and Geographic Thinking: A Review and Research Agenda for K-3 Geography. Education Sciences. 2023; 13(12):1199. https://doi.org/10.3390/educsci13121199
Chicago/Turabian StyleGersmehl, Phil. 2023. "Brain Science and Geographic Thinking: A Review and Research Agenda for K-3 Geography" Education Sciences 13, no. 12: 1199. https://doi.org/10.3390/educsci13121199
APA StyleGersmehl, P. (2023). Brain Science and Geographic Thinking: A Review and Research Agenda for K-3 Geography. Education Sciences, 13(12), 1199. https://doi.org/10.3390/educsci13121199