The Mediating Role of Psychosocial Factors in Academic Performance in Higher Education: Characterization Based on the Adaptation of Teaching Due to COVID-19
Abstract
:1. Introduction
Research Problem and Hypotheses
2. Materials and Methods
2.1. Design and Participants
2.2. Instruments
- Educational Motivation Scale (EME), which was designed by Núñez et al. [17]. This instrument is structured by 19 items (e.g., “12. Before I had good reasons for going to school, but now I wonder if it is worth continuing”, which are dispersed in four subscales: intrinsic motivation (items 2, 3, 7, 11, 15, 16), internal extrinsic motivation (items 5, 6, 9, 13, 18, 19), external extrinsic motivation (items 1, 10, 14), and demotivation (items 4, 8, 12, 17). The responses are scored based on a seven-point Likert-type scale, from: 1 “Does not correspond at all” to 7 “Completely corresponds”. This scale obtained an alpha value of α = 0.886 and an omega value of ω = 0.888. Likewise, when highlighting the estimated values of alpha and omega in the different dimensions of motivation, it is observed that intrinsic motivation obtained α = 0.881 and ω = 0.88, internal extrinsic motivation denoted α = 0.865 and ω = 0.864, external extrinsic motivation showed α = 0.441 and demotivation indicated α = 0.855 and ω = 0.850. Therefore, good values (+0.8) are observed in all dimensions except for external extrinsic motivation.
- Self-Concept Form-5 Questionnaire (SF-5). This instrument was developed by García and Musitu [18] and is based on the theoretical model of Marsh [19]. It is made up of 30 items (e.g., “1. I do academic work well”) that are scored using a Likert-type scale of 5 options, where 1 is “Never” and 5 is “Always”. Self-concept is grouped into five dimensions according to this instrument, which are defined by academic self-concept (items 1, 6, 11, 16, 21 and 26), social self-concept (items 2, 7, 12, 17, 22 and 27), emotional self-concept (items 3, 8, 13, 18, 23 and 28), family self-concept (items 4, 9, 14, 19, 24 and 29) and physical self-concept (items 5, 10, 15, 20, 25 and 30). This scale obtained an alpha value of α = 0.872 and an omega value of ω = 0.871. Likewise, when highlighting the estimated values of alpha and omega in the different dimensions of self-concept, it is observed that the physical self-concept obtained an α = 0.777 and ω = 0.777, the social self-concept denoted an α = 0.816 and ω = 0.832, the family self-concept showed an α = 0.861 and ω = 0.861, the academic self-concept indicated an α = 0.812 and ω = 0.816 and the emotional self-concept determined an α = 0.833 and ω = 0.835. Therefore, good values are observed (+0.8) in the dimensions of social, family, academic and emotional self-concept; however, the physical self-concept points to an acceptable value (+0.7).
- The REIS scale is an instrument designed to measure emotional intelligence (EI) and designed by Pekaar et al. [20]. This scale is composed of 28 items, which are focused on four factors, the evaluation of emotions focused on oneself (items 1, 2, 3, 4, 5, 6, 7), evaluation of emotions focused on others (items 8, 9, 10, 11, 12, 13, 14), personal emotional regulation (items 15, 16, 17, 18, 19, 20, 21), and other-focused emotional regulation (items 22, 23, 24, 25, 26, 27, 28). The score is based on a Likert scale where 1 means “Totally disagree” and 5 means “Totally agree”. This scale obtained an alpha value of α = 0.907 and an omega value of ω = 0.902. Likewise, when highlighting the estimated values of alpha and omega in the different dimensions of emotional intelligence, it is observed that the evaluation of emotions focused on oneself obtained an α = 0.904 and ω = 0.905, the evaluation of emotions focused on others denoted a α = 0.860 and ω = 0.868, self-focused emotion regulation showed α = 0.822 and ω = 0.825, and other-focused emotion regulation indicated α = 0.856 and ω = 0.860. Therefore, good values (+0.8) are observed in all dimensions of emotional intelligence.
- The CD-RISC scale, conceived by Connor and Davidson [21], aims to assess resilience. It is composed of 25 items, for example, “1. I am able to adapt to change”, and these are arranged in a range of five points, as follows: 0, not true at all; 1, rarely true; 2, sometimes true; 3, often true; and 4, true almost all of the time. The instrument is made up of five dimensions, which are evaluated through different items: persistence–tenacity (items: 10, 11,12, 16, 17, 23, 24, 25); control under pressure (6, 7, 14, 15, 18, 19, 20); adaptability (1, 2, 4, 5, 8); control and purpose (13, 21, 22); and spirituality (3, 9). The scores for each item are added and interpreted so that the higher the score, the more resilient the individual is. This scale obtained an alpha value of α = 0.890 and an omega value of ω = 0.891. Likewise, when highlighting the estimated values of alpha and omega in the different dimensions of resilience, it is observed that personal competence and tenacity obtained an α = 0.799 and ω = 0.800, trust and tolerance to negative effects denoted an α = 0.699 and ω = 0.702, positive acceptance of change showed α = 0.658 and ω = 0.664, control capacity indicated α = 0.575 and ω = 0.584 and spiritual influence denoted α = 0.615. Therefore, acceptable values (+0.7) are observed in all dimensions of resilience.
2.3. Procedure
2.4. Data Analysis
3. Results
4. Discussion
- The relationship between self-concept and emotional intelligence is positive. Furthermore, it is stronger among students who did not experience adaptations in their teaching modality. Therefore, this indicates that a solid self-concept can provide a strong framework from which individuals can interpret and manage emotions more effectively.
- The self-concept was only positively related to personal competence and not to confidence, which was consistent in both groups. Additionally, there was a relationship between the resilience dimensions, which was stronger among students who experienced adaptations, but positive in both cases. This suggests that individuals with a positive self-image are more inclined to feel capable and efficient in task execution and challenge confrontations.
- EI predicted greater intrinsic motivation among students who experienced adaptations. On the other hand, self-concept predicted higher intrinsic motivation among students without adaptations. Additionally, personal competence predicted higher intrinsic motivation among students who experienced adaptations.
- Confidence was negatively associated with intrinsic goals among students without adaptations. However, a positive self-concept acted protectively against demotivation in both groups, especially when there were adaptations.
- Lastly, there was a positive relationship between intrinsic motivation and academic performance in both groups. Moreover, academic performance was positively related to personal competence and inversely related to self-confidence, with a higher regression weight among students who did not experience adaptations.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, C.; Zhao, H.; Zhang, H. Impact of COVID-19 on education systems and future perspectives. High. Educ. Res. 2020, 5, 27–32. [Google Scholar]
- Viner, R.M.; Russell, S.J.; Croker, H.; Packer, J.; Ward, J.; Stansfield, C.; Mytton, O.; Bonell, C.; Booy, R. School closure and management practices during coronavirus outbreaks including COVID-19: A rapid systematic review. Lancet Child Adolesc. Health 2020, 4, 397–404. [Google Scholar] [CrossRef]
- Toquero, C.M. Challenges and opportunities for higher education amid the COVID-19 pandemic: The Philippine context. Pedagog. Res. 2020, 5, em0063. [Google Scholar] [CrossRef]
- Lee, J. Mental health effects of school closures during COVID-19. Lancet Child Adolesc. Health 2020, 4, 421. [Google Scholar] [CrossRef]
- Arnett, J.J. Emerging adulthood: A theory of development from the late teens through the twenties. Am. Psychol. 2000, 55, 469–480. [Google Scholar] [CrossRef]
- Chacón-Cuberos, R.; Olmedo-Moreno, E.M.; Lara-Sánchez, A.J.; Zurita-Ortega, F.; Castro-Sánchez, M. Basic psychological needs, emotional regulation and academic stress in university students: A structural model according to branch of knowledge. Stud. High. Educ. 2021, 46, 1421–1435. [Google Scholar] [CrossRef]
- Brooks, S.K.; Webster, R.K.; Smith, L.E.; Woodland, L.; Wessely, S.; Greenberg, N.; Rubin, G.J. The psychological impact of quarantine and how to reduce it: Rapid review of the evidence. Lancet 2020, 395, 912–920. [Google Scholar] [CrossRef]
- Marinoni, G.; Van’t Land, H.; Jensen, T. The impact of COVID-19 on higher education around the world. IAU Glob. Surv. Rep. 2020, 23, 1–17. [Google Scholar]
- Bell, D.N.; Blanchflower, D.G. US and UK labour markets before and during the COVID-19 crash. Natl. Inst. Econ. Rev. 2020, 252, R52–R69. [Google Scholar] [CrossRef]
- Loades, M.E.; Chatburn, E.; Higson-Sweeney, N.; Reynolds, S.; Shafran, R.; Brigden, A.; Linney, C.; McManus, M.N.; Borwick, C.; Crawley, E. Rapid systematic review: The impact of social isolation and loneliness on the mental health of children and adolescents in the context of COVID-19. J. Am. Acad. Child Adolesc. Psych. 2020, 59, 1218–1239. [Google Scholar] [CrossRef]
- Pfefferbaum, B.; North, C.S. Mental Health and the COVID-19 Pandemic. N. Engl. J. Med. 2020, 383, 510–512. [Google Scholar] [CrossRef] [PubMed]
- Walsh, F. Family resilience: A developmental systems framework. Eur. J. Develop. Psychol. 2016, 13, 313–324. [Google Scholar] [CrossRef]
- Expósito-López, J.; Chacón-Cuberos, R.; Zahra-Rakdani, F.; Serrano-García, J. Attitudes and components of mentoring and tutoring and their influence on improving academicperformance. RELIEVE—Rev. Elec. Inv. Eval. Educ. 2023, 29, 1–15. [Google Scholar]
- Prime, H.; Wade, M.; Browne, D.T. Risk and resilience in family well-being during the COVID-19 pandemic. Am. Psychol. 2020, 75, 631–643. [Google Scholar] [CrossRef] [PubMed]
- Sanabrias-Moreno, D.; Sánchez-Zafra, M.; Lara-Sánchez, A.J.; Zagalaz-Sánchez, M.L.; Cachón-Zagalaz, J. Factores psicosociales y actividad física en la formación universitaria del futuro profesorado. J. Sport Health Res. 2023, 15, 641–656. [Google Scholar] [CrossRef]
- Gallego, C. Diseños ex post facto. Rev. Inv. Psicol. 2020, 15, 256–300. [Google Scholar]
- Núñez, J.L.; Martín-Albo, J.; Navarro, J.G.; Suárez, Z. Adaptación y validación de la versión española de la Escala de Motivación Educativa en estudiantes de educación secundaria postobligatoria. Est. Psicol. 2010, 31, 89–100. [Google Scholar] [CrossRef]
- García, F.; Musitu, G. Autoconcepto Forma 5; Tea: Madrid, Spain, 1999. [Google Scholar]
- Marsh, H.W. The structure of academic self-concept: The Marsh/Shavelson model. J. Educ. Psychol. 1990, 82, 623–636. [Google Scholar] [CrossRef]
- Pekaar, K.A.; Bakker, A.B.; van der Linden, D.; Born, M.P. Self-and other-focused emotional intelligence: Development and validation of the Rotterdam Emotional Intelligence Scale (REIS). Personal. Ind. Diff. 2018, 120, 222–233. [Google Scholar] [CrossRef]
- Connor, K.M.; Davidson, J.R. Development of a new resilience scale: The Connor-Davidson resilience scale (CD-RISC). Depres. Anx. 2003, 18, 76–82. [Google Scholar] [CrossRef]
- Byrne, B.M. Structural Equation Modelling with AMOS: Basic Concepts, Applications, and Programming; Routledge: New York, NY, USA, 2016. [Google Scholar]
- Gómez, M.; Gómez, P.; Valenzuela, B. Adolescencia y edad adulta emergente frente al COVID-19 en España y República Dominicana. Rev. Psicol. Clin. Niños Adolesc. 2020, 7, 36–40. [Google Scholar] [CrossRef]
- Narváez, J.; Obando, L. Relación entre factores predisponentes a la deprivación sociocultural y el apoyo social en adolescentes. Rev. Vir. Univ. Catól. Norte 2021, 63, 39–62. [Google Scholar] [CrossRef]
- Palacios-Garay, J.; Coveñas-Lalupú, J. Predominancia del autoconcepto en estudiantes con conductas antisociales del Callao. Propósitos Represent. 2019, 7, 325–352. [Google Scholar] [CrossRef]
- Quezada, C.; Navarrete, Z.; Sánchez, Y. El autoconcepto e inteligencia emocional como predictores del apoyo social percibido en adolescentes. Rev. Fuentes 2023, 44, 78–91. [Google Scholar]
- Al-Kumaim, N.H.; Alhazmi, A.K.; Mohammed, F.; Gazem, N.A.; Shabbir, M.S.; Fazea, Y. Exploring the impact of the COVID-19 pandemic on university students’ learning life: An integrated conceptual motivational model for sustainable and healthy online learning. Sustainability 2021, 13, 2546. [Google Scholar] [CrossRef]
- Montalvo, L.; Reyes, M. Resiliencia y Autoconcepto Personal en indultados por terrorismo y traición a la patria residentes en Lima. Inf. Psicol. 2018, 19, 119–140. [Google Scholar] [CrossRef]
- Ruíz, C.; Calderón, I.; Juárez, J. La resiliencia como forma de resistir la exclusión social: Un análisis comparativo de casos. Rev. Interuniv. 2017, 29, 129–141. [Google Scholar]
- De la Cruz, M.; Muñoz, S. School & famlily in the youngster’s resilience configuration. Rev. Int. Humanid. 2023, 19, 1–9. [Google Scholar]
- Prado, M.; Becerra, W.V.; Torres, C.C. Resiliencia y edrucación, dualidad conceptual inseparable. Polo Conoc. 2017, 2, 145–161. [Google Scholar]
- Flórez, L.; López, J.; Vílchez, R.A. Resilience Levels and Coping Strategies: Challenge for Higher Education Institutions. Rev. Elec. Interuniv. Formac. Prof. 2020, 23, 35–47. [Google Scholar]
- Savitsky, B.; Findling, Y.; Ereli, A.; Hendel, T. Anxiety and coping strategies among nursing students during the COVID-19 pandemic. Nurse Educ. Pract. 2020, 46, 102809. [Google Scholar] [CrossRef]
- Fernandez, J.; Flores, Y.; Espino, G.; Durán, F. Self-concept, Self-esteem, Motivation, and Their Influence on Academic Performance: Case Study of Public Accounting Students. Rev. Iberoam. Inv. Desarro. Educ. 2021, 12, e015. [Google Scholar]
- Jiménez, A. Competencias Emocionales y Bienestar Subjetivo en Adultos Emergentes. Ph.D. Thesis, Universidad de Valencia, Valencia, Spain, 2022. [Google Scholar]
- Hardy, S.; Nadal, Á.; Schwartz, S. La integración de la identidad personal, la identidad religiosa y la identidad moral en la edad adulta emergente. Identidad 2017, 17, 96–107. [Google Scholar]
- Guerreo, E.; Ruiz, L.; Marín, P.; Carrillo, L.; Barriosnuevo, M. Análisis factorial confirmatorio de una escala de autoconcepto para una población universitaria colombiana. Ans. Estrés 2022, 28, 91–99. [Google Scholar] [CrossRef]
- Fernández-Lasarte, O.; Ramos-Díaz, E.; Rodríguez-Fernández, A. Comparative Study between Higher Education and Secondary Education: Effect of Perceived Social Support, Self-concept, and Emotional Repair on Academic Performance. Educatio XXI 2019, 22, 165–185. [Google Scholar]
- Quiroga, D.; Peláez, S. Autoeficacia y engagement académico en estudiantes. Rev. Dif. Cult. Científ. Univ. La Salle Bol. 2021, 21, 17–34. [Google Scholar]
- Noriega, G.; Herrera, L.; Montenegro, M.; Torres, V. Autoestima, Motivación y Resiliencia en escuelas panameñas con puntajes diferenciados en la Prueba TERCE. Rev. Invest. Educ. 2020, 38, 533–548. [Google Scholar] [CrossRef]
- Stover, J.; Bruno, F.; Uriel, F.; Fernández, M. Teoría de la Autodeterminación: Una revisión teórica. Rev. Psicol. Cienc. Afines 2017, 14, 105–115. [Google Scholar]
- Salomón, A.; Martínez, C.; Wren, J. Convertirse en lo que está buscando: Construir la autoconciencia relacional en adultos emergentes. Fam. Process 2021, 60, 1539–1554. [Google Scholar]
- Larruzea, N.; Díaz-Iso, A.; Velasco, E.; Cardeñoso, O. Discriminaciones de género autopercibidas por alumnado universitario de Educación. Escuchando sus voces. RELIEVE—Rev. Elec. Inv. Eval. Educ. 2022, 28, 1–18. [Google Scholar]
- Jiménez, C.; Peinado, E.; Solano, N.; Ornelas, M.; Blanco, H. Relaciones entre autoconcepto y bienestar psicológico en universitarios. Rev. Iberoam. Diagnóst. Eval. 2020, 2, 59–69. [Google Scholar]
- Deci, E.L.; Ryan, R.M. Intrinsic and extrinsic motivation from a self-determination theory perspective: Definitions, theory, practices, and future directions. Contemp. Educ. Psychol. 2020, 61, 2–11. [Google Scholar]
- Zwane, N.; Mukuna, K. Psychosocial factors influencing the academic performance of students at a rural college in the COVID-19 era. Int. J. Stud. Psychol. 2023, 1, 6–12. [Google Scholar]
- Frazier, P.; Gabriel, A.; Merians, A.; Lust, K. Understanding stress as an impediment to academic performance. J. Am. Coll. Health 2019, 6, 562–570. [Google Scholar]
- Doménech-Betoret, F.; Abellán-Roselló, L.; Gómez-Artiga, A. Self-efficacy, satis-faction, and academic achievement: The mediator role of students, expectancy-value beliefs. Front. Psychol. 2017, 8, 1193. [Google Scholar]
- Expósito-López, J.; Romero-Diaz de la Guardia, J.J.; Olmedo-Moreno, E.M.; Pistón Rodríguez, M.D.; Chacón-Cuberos, R. Adaptation of the Educational motivation scale into a short form with multigroup analysis in a vocational training and baccalaureate setting. Front. Psychol. 2021, 12, 663834. [Google Scholar]
- Kivlighan, D.; Schreier, B.; Gates, C.; Hong, J.; Corkery, J.; Anderson, C.; Keeton, P. The role of mental health counseling in college students’ academic success: An interrupted time series analysis. J. Couns. Psychol. 2021, 5, 562–570. [Google Scholar]
- Martínez, I.; Carolyn, M.; Youssef-Morgan, M.; Marques-Pinto, A. Antecedents of academic performance of university students: Academic engagement and psychological capital resources. Educ. Psychol. 2019, 8, 1047–1067. [Google Scholar]
- Quintero-Ovalle, C.; Madiedo-Parra, M.; Torres-Avendaño, M.J.; Londoño-Salazar, J.; ToroMarin, M.P.; Latorre-Niño, S.; Riveros, F. Relación entre características psicológicas asociadas al rendimiento deportivo, con variables sociodemográficas y deportivas, en una muestra de deportistas colombianos. J. Sport Health Res. 2023, 15, 215–240. [Google Scholar]
- Quintiliani, L.; Sisto, A.; Vicinanza, F.; Curcio, G.; Tambone, V. Resilience and psychological impact on Italian university students during COVID-19 pandemic. Distance learning and health. Psychol. Health Med. 2022, 27, 69–80. [Google Scholar]
- Wu, H.; Li, S.; Zheng, J.; Guo, J. Medical students’ motivation and academic performance: The mediating roles of self-efficacy and learning engagement. Med. Educ. Online 2020, 25, 1742964. [Google Scholar] [PubMed]
Instrument | KMO | χ2 (Bartlett) | DF | p (Bartlett) | S2 (Explained) | Factors |
---|---|---|---|---|---|---|
EME | 0.914 | 8667.92 | 171 | 0.000 | 67.02 | 4 |
SF-5 | 0.863 | 10,535.50 | 435 | 0.000 | 56.29 | 5 |
REIS | 0.919 | 11,396.75 | 378 | 0.000 | 57.44 | 4 |
CD-RISC | 0.921 | 6227.99 | 300 | 0.000 | 51.65 | 5 |
Instrument | RMR | GFI | NFI | IFI | CFI | RMSEA |
---|---|---|---|---|---|---|
EME | 0.131 | 0.919 | 0.924 | 0.939 | 0.939 | 0.068 |
SF-5 | 0.069 | 0.902 | 0.876 | 0.908 | 0.908 | 0.052 |
REIS | 0.056 | 0.900 | 0.894 | 0.921 | 0.920 | 0.057 |
CD-RISC | 0.046 | 0.901 | 0.880 | 0.908 | 0.908 | 0.055 |
SC | DM | IM | R-CO | R-TR | AP | |
---|---|---|---|---|---|---|
EI | 0.313 ** | −0.031 | 0.267 ** | 0.475 ** | 0.547 ** | 0.035 |
SC | −0.194 ** | 0.356 ** | 0.449 ** | 0.237 ** | 0.318 ** | |
DM | −0.315 ** | −0.197 ** | −0.032 | −0.075 * | ||
IM | 0.380 ** | 0.217 ** | 0.169 ** | |||
R-CO | 0.625 ** | 0.116 ** | ||||
R-TR | −0.017 |
Structural Relationships | RW | SRW | |||||
---|---|---|---|---|---|---|---|
EST | EE | CR | P | EST | |||
R-CO | ← | SC | 0.020 | 0.002 | 11.639 | *** | 0.461 |
R-CO | ← | EI | 0.012 | 0.002 | 7.326 | *** | 0.290 |
R-TR | ← | SC | 0.001 | 0.002 | 0.529 | 0.596 | 0.022 |
R-TR | ← | EI | 0.013 | 0.002 | 7.920 | *** | 0.311 |
R-TR | ← | R-CO | 0.460 | 0.043 | 10.636 | *** | 0.471 |
IM | ← | SC | 0.006 | 0.004 | 1.625 | 0.104 | 0.085 |
IM | ← | EI | 0.010 | 0.004 | 2.638 | ** | 0.137 |
IM | ← | R-CO | 0.609 | 0.107 | 5.668 | *** | 0.347 |
IM | ← | R-TR | −0.126 | 0.105 | −1.195 | 0.232 | −0.070 |
DM | ← | EI | 0.009 | 0.005 | 1.828 | 0.068 | 0.097 |
DM | ← | SC | −0.017 | 0.005 | −3.507 | *** | −0.187 |
DM | ← | IM | −0.404 | 0.057 | −7.057 | *** | −0.340 |
DM | ← | R-CO | −0.054 | 0.134 | −0.401 | 0.689 | −0.026 |
DM | ← | R-TR | 0.281 | 0.127 | 2.210 | * | 0.132 |
AP | ← | IM | 0.094 | 0.036 | 2.617 | ** | 0.141 |
AP | ← | DM | 0.025 | 0.028 | 0.899 | 0.369 | 0.045 |
AP | ← | R-CO | 0.157 | 0.074 | 2.120 | * | 0.135 |
AP | ← | R-TR | −0.159 | 0.072 | −2.220 | * | −0.134 |
SC | ↔ | EI | 75.562 | 10.398 | 7.267 | *** | 0.367 |
Structural Relationships | RW | SRW | |||||
---|---|---|---|---|---|---|---|
EST | EE | CR | P | EST | |||
R-CO | ← | SC | 0.021 | 0.002 | 10.511 | *** | 0.459 |
R-CO | ← | EI | 0.012 | 0.002 | 6.790 | *** | 0.297 |
R-TR | ← | SC | 0.001 | 0.002 | 0.689 | 0.491 | 0.033 |
R-TR | ← | EI | 0.013 | 0.002 | 7.532 | *** | 0.331 |
R-TR | ← | R-CO | 0.432 | 0.048 | 8.993 | *** | 0.440 |
IM | ← | SC | 0.017 | 0.005 | 3.414 | *** | 0.204 |
IM | ← | EI | 0.007 | 0.004 | 1.644 | 0.100 | 0.098 |
IM | ← | R-CO | 0.460 | 0.124 | 3.703 | *** | 0.253 |
IM | ← | R-TR | −0.240 | 0.121 | −1.984 | * | −0.130 |
DM | ← | EI | 0.009 | 0.005 | 1.727 | 0.084 | 0.105 |
DM | ← | SC | −0.012 | 0.006 | −2.028 | * | −0.125 |
DM | ← | IM | −0.231 | 0.060 | −3.831 | *** | −0.200 |
DM | ← | R-CO | −0.477 | 0.148 | −3.222 | ** | −0.228 |
DM | ← | R-TR | 0.203 | 0.142 | 1.425 | 0.154 | 0.095 |
AP | ← | IM | 0.095 | 0.038 | 2.529 | ** | 0.138 |
AP | ← | DM | −0.041 | 0.032 | −1.270 | 0.204 | −0.068 |
AP | ← | R-CO | 0.214 | 0.086 | 2.479 | * | 0.170 |
AP | ← | R-TR | −0.202 | 0.082 | −2.452 | * | −0.158 |
SC | ↔ | EI | 86.640 | 11.237 | 7.711 | *** | 0.433 |
Standardized Direct Effects for “Adaptation” | Standardized Indirect Effects for “Adaptation” | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
EI | SC | R-CO | R-TR | IM | DM | EI | SC | R-CO | R-TR | IM | DM | ||
R-CO | 0.290 | 0.461 | - | - | - | - | R-CO | - | - | - | - | - | - |
R-TR | 0.311 | 0.022 | 0.471 | - | - | - | R-TR | 0.137 | 0.217 | - | - | - | - |
IM | 0.137 | 0.085 | 0.347 | −0.070 | - | - | IM | 0.070 | 0.143 | −0.033 | - | - | - |
DM | 0.097 | −0.187 | −0.026 | 0.132 | −0.340 | - | DM | −0.019 | −0.058 | −0.045 | 0.024 | - | - |
AP | - | - | 0.135 | −0.134 | 0.141 | 0.045 | AP | 0.012 | 0.051 | −0.022 | −0.003 | −0.015 | - |
Standardized Direct Effects for “Non-Adaptation” | Standardized Indirect Effects for “Non-Adaptation” | ||||||||||||
EI | SC | R-CO | R-TR | IM | DM | EI | SC | R-CO | R-TR | IM | DM | ||
R-CO | 0.297 | 0.459 | - | - | - | - | R-CO | - | - | - | - | - | - |
R-TR | 0.331 | 0.033 | 0.440 | - | - | - | R-TR | 0.131 | 0.202 | - | - | - | - |
IM | 0.098 | 0.204 | 0.253 | −0.130 | - | - | IM | 0.015 | 0.086 | −0.057 | - | - | - |
DM | 0.105 | −0.125 | −0.228 | 0.095 | −0.200 | - | DM | −0.046 | −0.140 | 0.003 | 0.026 | - | - |
AP | - | - | 0.170 | −0.158 | 0.138 | −0.068 | AP | −0.011 | 0.099 | −0.027 | −0.026 | 0.014 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gamarra-Vengoechea, M.A.; Chacón-Cuberos, R.; Pérez-Mármol, M.; Castro-Sánchez, M. The Mediating Role of Psychosocial Factors in Academic Performance in Higher Education: Characterization Based on the Adaptation of Teaching Due to COVID-19. Educ. Sci. 2023, 13, 1105. https://doi.org/10.3390/educsci13111105
Gamarra-Vengoechea MA, Chacón-Cuberos R, Pérez-Mármol M, Castro-Sánchez M. The Mediating Role of Psychosocial Factors in Academic Performance in Higher Education: Characterization Based on the Adaptation of Teaching Due to COVID-19. Education Sciences. 2023; 13(11):1105. https://doi.org/10.3390/educsci13111105
Chicago/Turabian StyleGamarra-Vengoechea, María Alejandra, Ramón Chacón-Cuberos, Mariana Pérez-Mármol, and Manuel Castro-Sánchez. 2023. "The Mediating Role of Psychosocial Factors in Academic Performance in Higher Education: Characterization Based on the Adaptation of Teaching Due to COVID-19" Education Sciences 13, no. 11: 1105. https://doi.org/10.3390/educsci13111105
APA StyleGamarra-Vengoechea, M. A., Chacón-Cuberos, R., Pérez-Mármol, M., & Castro-Sánchez, M. (2023). The Mediating Role of Psychosocial Factors in Academic Performance in Higher Education: Characterization Based on the Adaptation of Teaching Due to COVID-19. Education Sciences, 13(11), 1105. https://doi.org/10.3390/educsci13111105