Identifying Students at Risk to Academic Dropout in Higher Education
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Instruments
2.2.1. D2 Test (Nicolás Seisdedos Cubero, Técnico del Departamento de I+D+i de TEA Ediciones, S.A.U.)
2.2.2. Raven Progressive Matrices (Raven Matrices Progresivas. Copyright Edición Española © 1995, 1996 by TEA Ediciones, S.A. Madrid (España)I.S.B.N.: 84-7174-403-1Depósito Legal: M-535-1996)
2.2.3. Rey-Osterrieth Complex Figure Test (Rey A.Test de Copia de una Figura Compleja. Manuel. Adaptación española. Madrid: TEA Ediciones, 1997)
2.2.4. Questionnaire to Assess the Learning Strategies of University Students (CEVEAPEU)
2.2.5. Academic Performance
2.2.6. Statistical Analysis
3. Results
3.1. Classification Analyses
3.2. Interpretation of Clusters
3.3. Relation between Cluster and Academic Performance Measures
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bowen, H.R. Investment in Learning. The Individual and Social Value of American Higher Education, 2nd ed.; Johns Hopkins University Press: Baltimore, MD, USA, 1997. [Google Scholar]
- Paulsen, M.B. Recent research on the economics of attending college: Returns on investment and responsiveness in price. Res. High. Educ. 1998, 39, 471–489. [Google Scholar] [CrossRef]
- Choudhary, L.A. Economic effects of student dropouts: A comparative study. J. Glob. Econ. 2015, 3, 2–5. [Google Scholar] [CrossRef] [Green Version]
- Arce, M.; Crespo, B.; Míguez-Álvarez, C. Higher Education Drop-Out in Spain: Particular Case of Universities in Galicia. Int. Educ. Stud. 2015, 8, 247–264. [Google Scholar] [CrossRef] [Green Version]
- Cabrera, A.F.; Deil-Amen, R.; Prabju, R.; Lee, C.; Franklin, R.E. Feature articles: Theory, research, policy and practice: Increasing the College Preparedness of At-Risk Students. J. Lat. Educ. 2006, 5, 79–97. [Google Scholar] [CrossRef]
- Comisión Europea/EACEA/Eurydice, 2013. Cifras Clave del Profesorado y la Dirección de Centros Educativos en Europa; Edición 2013; Oficina de Publicaciones de la Unión Europea: Luxemburgo, 2013. [Google Scholar]
- Castaño, E.; Gallón, S.; Gómez, K.; Vásquez, J. Deserción estudiantil universitaria: Una aplicación de modelos de duración. Lect. Econ. 2004, 60, 39–65. [Google Scholar]
- Hicks, T.; Heastie, S. High School to College Transition: A Profile of the Stressors, Physical and Psychological Health Issues That Affect the First-Year On-Campus College Student. J. Cult. Divers 2008, 15, 143–147. [Google Scholar]
- Geng, G.; Midford, R. Investigating first-year education students’ stress level. Aust. J. Teach. Educ. 2015, 40, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Frame, P.; Harwood, T.; Hoult, L.; Jenkins, M.; Lynch, K.; Volpe, G. Transitions into higher education: Processes, outcomes and collaborations. In Proceedings of the Association of Tertiary Learning Advisors Aotearoa, Supporting Learning in the 21st Century, Platform & workflow by OJS/PKP. Dunedin, New Zealand, 15–17 November; 2006; pp. 32–46. [Google Scholar]
- Tinto, V. Dropout from higher education: A theoretical synthesis of recent research. Rev. Educ. Res. 1975, 45, 89–125. [Google Scholar] [CrossRef]
- Tinto, V. Leaving College: Rethinking the Causes and Cures of Student Attrition; University of Chicago Press: Chicago, IL, USA, 1987. [Google Scholar]
- Bowles, A.; Fisher, R.; McPhail, R.; Rosenstreich, D.; Dobson, A. Staying the distance: Students’ perceptions of enablers of transitionto higher education. High. Educ. Res. Dev. 2014, 33, 212–225. [Google Scholar] [CrossRef]
- McKenzie, K.; Schweitzer, R. Who Succeeds at University? Factors predicting academic performance in first year Australian university students. High. Educ. Res. Dev. 2001, 20, 21–33. [Google Scholar]
- Richardson, M.; Bond, R.; Abraham, C. Psychological correlates of university students’ academic performance: A systematic review and meta-analysis. Psychol. Bull. 2012, 138, 353–387. [Google Scholar] [CrossRef] [Green Version]
- Robbins, S.B.; Lauver, K.; Le, H.; David, D.; Langley, R. Do psychosocial and study skill factors predict college outcomes? A meta-analysis. Psychol. Bull. 2004, 130, 261–288. [Google Scholar] [CrossRef] [Green Version]
- Shure, C.; Jansen, E.; Harskamp, E. Impact of degree program satisfaction on the persistence of college students. High. Educ. 2007, 54, 207–226. [Google Scholar] [CrossRef] [Green Version]
- Van Rooij, E.; Jansen, E.; Van de Grift, W. Correction to: First-year university students´s academic success: The importance of academic adjustment. Eur. J. Psychol. Educ. 2018, 33, 769. [Google Scholar] [CrossRef] [Green Version]
- Morales-Vives, F.; Camps, E.; Dueñas, J.M. Predicting academic achievement in adolescents: The role of maturity, intelligence and personality. Psicothema 2020, 32, 84–91. [Google Scholar] [CrossRef]
- Trigueros, R.; Aguilar-Parra, J.M.; Lopez-Liria, R.; Cangas, A.J.; González, J.J.; Álvarez, J.F. The role of perception of support in the classroom on the students’ motivation and emotions: The impact on metacognition strategies and academic performance in math and english classes. Front. Psychol. 2020, 10, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weinstein, C.E.; Jung, J.; Acee, T.W. Learning strategies. In International Encyclopedia of Education; Elsevier: Amsterdam, The Netherlands, 2010; pp. 323–329. [Google Scholar] [CrossRef]
- Gil, P.; Bernaras, E.; Elizalde, L.M.; Arrieta, M. Learning strategies and motivational patterns of students at the Campus of Gipuzkoa. J. Study Educ. Dev. 2009, 32, 329–341. [Google Scholar] [CrossRef]
- Gargallo, B.; Almerich, G.; Garfella, P.; Fernández, A. Strategic learning in excellent and average university students. Bordon-Rev. Pedagog. 2011, 63, 43–64. Bordon-Rev. Pedagog. 2011, 63, 43–64. [Google Scholar]
- Yip, M.C.W. Differences between high and low academic achieving university students in learning and study strategies: A further investigation. Educ. Res. Eval. 2009, 15, 561–570. [Google Scholar] [CrossRef]
- Yip, M.C.W. Learning strategies and self-efficacy as predictors of academic performance: A preliminary study. Qual. High. Educ. 2012, 18, 23–34. [Google Scholar] [CrossRef]
- Aizpurua, A.; Lizaso, I.; Iturbe, I. Learning strategies and reasoning skills of university students. Rev. Psicodidáctica 2018, 23, 110–116. [Google Scholar] [CrossRef]
- İşgör, İ.Y. Metacognitive skills, academic success and exam anxiety as the predictors of psychological well-being. J. Educ. Train. Stud. 2016, 4, 35–42. [Google Scholar] [CrossRef]
- González-Torres, M.C.; Artuch, R. Profiles of resilience and coping strategies at university: Contextual and demographic variables. Electron. J. Res. Educ. Psychol. 2014, 12, 621–648. [Google Scholar] [CrossRef]
- Roso-Bas, F.; Pades, A.; García Buades, E. Emotional variables, dropout and academic perfomance in Spanish nursing students. Nurse Educ. Today 2016, 37, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Brickenkamp, R. Test de atención d2. Ediciontes tea. Adaptación española: Nicolás Seisdedos Cubero. 4ª edición revisada. 2012. Available online: http://www.web.teaediciones.com/ejemplos/d2-extracto.pdf (accessed on 12 August 2021).
- Corwin, J.; Bylsma, F.W. Psychological examination of traumatic encephalopathy. Clin. Neuropsychol. 1993, 7, 3–21. [Google Scholar] [CrossRef]
- Meyers, J. The Meyers Scoring System for the Rey Complex Figure and the Recognition Trial: Professional Manual; Psychological Assessment Resources: Odessa, FL, USA, 1995. [Google Scholar]
- Shin, M.-S.; Park, S.-Y.; Park, S.-R.; Seol, S.-H.; Kwon, J.S. Clinical and empirical applications of the Rey–Osterrieth complex figure test. Nat. Protoc. 2006, 1, 892. [Google Scholar] [CrossRef] [PubMed]
- Gargallo, B.; Almerich, G.; Suárez-Rodríguez, J.M.; García-Félix, E. Estrategias de aprendizaje en estudiantes universitarios excelentes y medios. Suevolución a lo largo del primer año de carrera. Rev. Electron. Investig. Eval. Educ. 2012, 18, 1–22. [Google Scholar] [CrossRef]
- Gargallo, B.; Suárez-Rodríguez, J.M.; Pérez-Pérez, C. El cuestionario CEVEAPEU. un instrumento para la evaluación de las estrategias de aprendizaje de los estudiantes universitarios. Rev. Electron. Investig. Eval. Educ. 2009, 15, 1–31. [Google Scholar] [CrossRef] [Green Version]
- Joseph, F.; Hair, J.; Black, W.; Babin, B.; Anderson, R. Multivariate Data Analysis: A Global Perspective, 7th ed.; Pearson, Prentice Hall: Upper Saddle River, NJ, USA, 2010. [Google Scholar]
- Wei, F.-Y.F.; Wang, Y.K.; Klausner, M. Rethinking college students’ self-regulation and sustained attention: Does text messaging during class influence cognitive learning? Commun. Educ. 2012, 61, 185–204. [Google Scholar] [CrossRef]
- Miñano, P.; Gilar, R.; Castejón, J.L. A structural model of cognitive-motivational variables as explanatory factors of academic achievement in Spanish Language and Mathematics. Analesan Psicol. 2012, 28, 45–54. [Google Scholar]
- Kuncel, N.R.; Kochevar, R.J.; Ones, D.S. A meta-analysis of letters of recommendation in college and graduate admissions: Reasons for hope. Int. J. Sel. Assess. 2004, 22, 101–107. [Google Scholar] [CrossRef]
- Kaya, F.; Juntune, J.; Stough, L. Intelligence and Its relationship to achievement. İlköğretim Online 2015, 14–23. [Google Scholar] [CrossRef] [Green Version]
- Marsh, H.W.; Martin, A.J. Academic self-concept and academic achievement: Relations and causal ordering. Br. J. Educ. Psychol. 2011, 81, 59–77. [Google Scholar] [CrossRef] [PubMed]
- Plomin, R.; von Stumm, S. The new genetics of intelligence. Nat. Rev. Genet. 2018, 19, 148–159. [Google Scholar] [CrossRef]
- Conway, A.R.A.; Getz, S.J.J. Cognitive Ability: Does Working Memory Training Enhance Intelligence? Curr. Biol. 2010, 20, 362–364. [Google Scholar] [CrossRef] [Green Version]
- Cano, F.; Berbén, A.B.G. University students’ achievement goals and approaches to learning in mathematics. Br. J. Educ. Psychol. 2009, 79, 131–153. [Google Scholar] [CrossRef]
- Rosário, P.; Núñez, J.C.; Ferrando, P.J.; Paiva, M.O.; Lourenço, A.; Cerezo, R.; Valle, A. The relationship between approaches to teaching and approaches to studying: A two-level structural equation model for biology achievement in high school. Metacogn. Learn. 2013, 8, 47–77. [Google Scholar] [CrossRef]
- Pereles, A.; Núñez, J.C.; Rodríguez, C.; Fernández, E.; Rosário, P. Personal and instructional variables related to the learning process in postgraduate courses. Psicothema 2020, 32, 525–532. [Google Scholar] [CrossRef] [PubMed]
- O’Malley, J.M.; Chamot, A.U.; Küpper, L. Listening comprehension strategies in second language acquisition. Appl. Linguist. 1989, 10, 418–437. [Google Scholar] [CrossRef]
- Kosnin, A.M. Self-regulated learning and academic achievement in Malaysian undergraduates. Int. Educ. J. 2007, 8, 221–228. [Google Scholar]
- Montero, C.R.; Sierra, B. Eficacia de un programa demejora de las estrategias de aprendizaje en la enseñanza superior. Psicothema 2017, 29, 527–532. [Google Scholar] [CrossRef]
- Hassanbeigi, A.; Askari, J.; Nakhjavani, M.; Shirkhoda, S.; Barzegar, K.; Mozayyan, M.R.; Fallahzadeh, H. The relationship between study skills and academic performance of university students. Procedia Soc. Behav. Sci. 2011, 30, 1416–1424. [Google Scholar] [CrossRef] [Green Version]
- Gallego-Gómez, J.I.; Balanza, S.; Leal-Llopis, J.; García-Méndez, J.A.; Oliva-Pérez, J.; Doménech-Tortosa, J.; Gómez-Gallego, M.; Simonelli-Muñoz, A.J.; Rivera-Caravaca, J.M. Effectiveness of music therapy and progressive muscle relaxation in reducing stress before exams and improving academic performance in Nursing students: A randomized trial. Nurse Educ. Today 2020, 84, 104217. [Google Scholar] [CrossRef] [PubMed]
Pearson’s Correlation Coefficient | ||||
---|---|---|---|---|
Mean | SD | % ECTS | GPA | |
TOT | 190.13 | 39.06 | 0.17 ** | 0.16 ** |
CON | 468.63 | 76.76 | 0.19 ** | 0.18 ** |
RVN | 22.22 | 5.87 | 0.26 ** | 0.25 ** |
FCR-M | 65.16 | 19.37 | 0.01 | 0.02 |
MOT | 3.71 | 0.26 | 0.15 * | 0.15 * |
AFE | 2.84 | 0.51 | 0.14 * | 0.13 * |
MTC | 3.69 | 0.42 | 0.13 * | 0.13 * |
ECC | 3.99 | 0.46 | 0.05 | 0.01 |
EBI | 3.39 | 0.50 | 0.04 | 0.05 |
EPI | 3.73 | 0.44 | 0.06 | 0.07 |
Function 1 | Function 2 | |
---|---|---|
TOT | 0.65 | |
RVN | 0.84 | |
MOT | 0.48 | |
AFE | 0.63 | |
MTC | 0.62 |
Differences in Mean | |||
---|---|---|---|
Cluster 1 vs. Cluster 2 | Cluster1 vs. Cluster 3 | Cluster 2 vs. Cluster 3 | |
TOT | −5.38 | 36.61 ** | 41.99 ** |
CON | −9.96 | 72.68 ** | 82.63 ** |
RVN | −1.31 * | 4.07 ** | 5.38 ** |
FCR-M | −0.71 | 3.19 ** | 3.90 ** |
MOT | −0.41 ** | −0.23 ** | 0.18 ** |
AFE | −0.79 ** | −0.51 ** | 0.27 ** |
MTC | −0.67 ** | −0.39 ** | 0.28 ** |
ECC | −0.49 ** | −0.30 ** | 0.18 ** |
EBI | −0.59 ** | −0.24 ** | 0.35 ** |
EPI | −0.44 ** | −0.21 ** | 0.23 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gallego, M.G.; Perez de los Cobos, A.P.; Gallego, J.C.G. Identifying Students at Risk to Academic Dropout in Higher Education. Educ. Sci. 2021, 11, 427. https://doi.org/10.3390/educsci11080427
Gallego MG, Perez de los Cobos AP, Gallego JCG. Identifying Students at Risk to Academic Dropout in Higher Education. Education Sciences. 2021; 11(8):427. https://doi.org/10.3390/educsci11080427
Chicago/Turabian StyleGallego, María Gómez, Alfonso Palazón Perez de los Cobos, and Juan Cándido Gómez Gallego. 2021. "Identifying Students at Risk to Academic Dropout in Higher Education" Education Sciences 11, no. 8: 427. https://doi.org/10.3390/educsci11080427
APA StyleGallego, M. G., Perez de los Cobos, A. P., & Gallego, J. C. G. (2021). Identifying Students at Risk to Academic Dropout in Higher Education. Education Sciences, 11(8), 427. https://doi.org/10.3390/educsci11080427