Continuance Intention of Augmented Reality Textbooks in Basic Design Course
Abstract
:1. Introduction
- (1)
- Explore the factors that affect students’ using AR textbooks in learning Basic Design course, and further analyze the impact of student background variables on named factors
- (2)
- Explore the impact of the factors of students’ using AR textbooks in learning Basic Design course on continuance intention.
2. Research Design
2.1. Research Process
2.2. Questionnaire
3. Research Method and Results
3.1. Factor Analysis
3.2. Variance Analysis
3.3. Hypothesis Testing: Structural Equation Model
3.3.1. Measurement Model
3.3.2. Reliability and Validity
3.3.3. Model Fit Test
3.3.4. Path Analysis
3.3.5. Hypothesis Explanation
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, T.-L.; Liao, S.-L. Creating e-shopping multisensory flow experience through augmented-reality interactive technology. Internet Res. 2017, 27, 449–475. [Google Scholar] [CrossRef]
- McLean, G.; Wilson, A. Shopping in the digital world: Examining customer engagement through augmented reality mobile applications. Comput. Hum. Behav. 2019, 101, 210–224. [Google Scholar] [CrossRef]
- Huang, T.-C.; Chen, C.-C.; Chou, Y.-W. Animating eco-education: To see, feel, and discover in an augmented reality-based experiential learning environment. Comput. Educ. 2016, 96, 72–82. [Google Scholar] [CrossRef]
- Harborth, D.; Pape, S. How nostalgic feelings impact Pokémon Go players—Integrating childhood brand nostalgia into the technology acceptance theory. Behav. Inf. Technol. 2020, 39, 1276–1296. [Google Scholar] [CrossRef]
- Akçayır, M.; Akçayır, G. Advantages and challenges associated with augmented reality for education: A systematic review of the literature. Educ. Res. Rev. 2017, 20, 1–11. [Google Scholar] [CrossRef]
- Abad-Segura, E.; González-Zamar, M.-D.; Rosa, A.L.-D.L.; Cevallos, M.B.M. Sustainability of Educational Technologies: An Approach to Augmented Reality Research. Sustainability 2020, 12, 4091. [Google Scholar] [CrossRef]
- Fonseca, D.; Martí, N.; Redondo, E.; Navarro, I.; Sánchez, A. Relationship between student profile, tool use, participation, and academic performance with the use of Augmented Reality technology for visualized architecture models. Comput. Hum. Behav. 2014, 31, 434–445. [Google Scholar] [CrossRef]
- Azuma, R.T. A Survey of Augmented Reality. Presence Teleoperators Virtual Environ. 1997, 6, 355–385. [Google Scholar] [CrossRef]
- Chiang, T.H.; Yang, S.J.; Hwang, G.-J. An augmented reality-based mobile learning system to improve students’ learning achievements and motivations in natural science inquiry activities. J. Educ. Technol. Soc. 2014, 17, 352–365. [Google Scholar]
- Cabero-Almenara, J.; Barroso-Osuna, J.; Llorente-Cejudo, C.; Martínez, M.D.M.F. Educational Uses of Augmented Reality (AR): Experiences in Educational Science. Sustainability 2019, 11, 4990. [Google Scholar] [CrossRef] [Green Version]
- Cai, S.; Wang, X.; Chiang, F.-K. A case study of Augmented Reality simulation system application in a chemistry course. Comput. Hum. Behav. 2014, 37, 31–40. [Google Scholar] [CrossRef] [Green Version]
- Ibáñez, M.-B.; Delgado-Kloos, C. Augmented reality for STEM learning: A systematic review. Comput. Educ. 2018, 123, 109–123. [Google Scholar] [CrossRef]
- Wei, X.; Weng, D.; Liu, Y.; Wang, Y. Teaching based on augmented reality for a technical creative design course. Comput. Educ. 2015, 81, 221–234. [Google Scholar] [CrossRef]
- Gecu-Parmaksiz, Z.; Delialioğlu, Ö. The effect of augmented reality activities on improving preschool children’s spatial skills. Interact. Learn. Environ. 2018, 28, 876–889. [Google Scholar] [CrossRef]
- Santos, M.E.C.; Chen, A.; Taketomi, T.; Yamamoto, G.; Miyazaki, J.; Kato, H. Augmented reality learning experiences: Survey of prototype design and evaluation. IEEE Trans. Learn. Technol. 2013, 7, 38–56. [Google Scholar] [CrossRef]
- Gün, E.T.; Atasoy, B. The effects of augmented reality on elementary school students’ spatial ability and academic achievement. Egit. Bilim 2017, 42. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.; Billinghurst, M.; Woo, W. Two-handed tangible interaction techniques for composing augmented blocks. Virtual Real. 2010, 15, 133–146. [Google Scholar] [CrossRef]
- Hung, Y.-H.; Chen, C.-H.; Huang, S.-W. Applying augmented reality to enhance learning: A study of different teaching materials. J. Comput. Assist. Learn. 2016, 33, 252–266. [Google Scholar] [CrossRef]
- Cheng, K.-H. Reading an augmented reality book: An exploration of learners’ cognitive load, motivation, and attitudes. Australas. J. Educ. Technol. 2016, 33. [Google Scholar] [CrossRef]
- Radosavljevic, S.; Radosavljevic, V.; Grgurovic, B. The potential of implementing augmented reality into vocational higher education through mobile learning. Interact. Learn. Environ. 2018, 28, 404–418. [Google Scholar] [CrossRef]
- Wu, H.-K.; Lee, S.W.-Y.; Chang, H.-Y.; Liang, J.-C. Current status, opportunities and challenges of augmented reality in education. Comput. Educ. 2013, 62, 41–49. [Google Scholar] [CrossRef]
- Boucharenc, C.G. Research on Basic Design Education: An International Survey. Int. J. Technol. Des. Educ. 2006, 16, 1–30. [Google Scholar] [CrossRef]
- Besgen, A.; Kuloglu, N.; Fathalizadehalemdari, S. Teaching/Learning Strategies Through Art: Art and Basic Design Education. Procedia Soc. Behav. Sci. 2015, 182, 428–432. [Google Scholar] [CrossRef] [Green Version]
- Bligh, D.A. What’s the Use of Lectures? Intellect Books: Bristol, UK, 1998. [Google Scholar]
- Goodyear, P.; Retalis, S. Technology-Enhanced Learning; Sense Publishers: Rotterdam, The Netherlands, 2010. [Google Scholar]
- Wilks, J.; Cutcher, A.; Wilks, S. Digital Technology in the Visual Arts Classroom: An [Un]Easy Partnership. Stud. Art Educ. 2012, 54, 54–65. [Google Scholar] [CrossRef]
- Aykac, V. An Application Regarding the Availability of Mind Maps in Visual Art Education Based on Active Learning Method. Procedia Soc. Behav. Sci. 2015, 174, 1859–1866. [Google Scholar] [CrossRef] [Green Version]
- Fitzgerald, A.; Dawson, V.; Hackling, M. Examining the Beliefs and Practices of Four Effective Australian Primary Science Teachers. Res. Sci. Educ. 2013, 43, 981–1003. [Google Scholar] [CrossRef]
- Fu, Q.-K.; Hwang, G.-J. Trends in mobile technology-supported collaborative learning: A systematic review of journal publications from 2007 to 2016. Comput. Educ. 2018, 119, 129–143. [Google Scholar] [CrossRef]
- Di Serio, Á.; Ibáñez, M.B.; Kloos, C.D. Impact of an augmented reality system on students’ motivation for a visual art course. Comput. Educ. 2013, 68, 586–596. [Google Scholar] [CrossRef] [Green Version]
- Chang, K.-E.; Chang, C.-T.; Hou, H.-T.; Sung, Y.-T.; Chao, H.-L.; Lee, C.-M. Development and behavioral pattern analysis of a mobile guide system with augmented reality for painting appreciation instruction in an art museum. Comput. Educ. 2014, 71, 185–197. [Google Scholar] [CrossRef]
- Ding, M. Augmented reality in museums. In Museums & Augmented Reality–A Collection of Essays from the Arts Management and Technology Laboratory; Carnegie Mellon University: Pittsburgh, PA, USA, 2017; pp. 1–15. ISBN 978-1-387-53509-5. [Google Scholar]
- Huang, Y.; Li, H.; Fong, R. Using Augmented Reality in early art education: A case study in Hong Kong kindergarten. Early Child Dev. Care 2015, 186, 879–894. [Google Scholar] [CrossRef] [Green Version]
- Yip, J.; Wong, S.-H.; Yick, K.-L.; Chan, K.; Wong, K.-H. Improving quality of teaching and learning in classes by using augmented reality video. Comput. Educ. 2019, 128, 88–101. [Google Scholar] [CrossRef]
- Elfeky, A.I.M.; Elbyaly, M.Y.H. Developing skills of fashion design by augmented reality technology in higher education. Interact. Learn. Environ. 2021, 29, 1–16. [Google Scholar] [CrossRef]
- Padilla, D.B.; Vázquez-Cano, E.; Cevallos, M.B.M.; Meneses, E.L. Uso de apps de realidad aumentada en las aulas universitarias. Campus Virtuales 2019, 8, 37–48. [Google Scholar]
- Wojciechowski, R.; Cellary, W. Evaluation of learners’ attitude toward learning in ARIES augmented reality environments. Comput. Educ. 2013, 68, 570–585. [Google Scholar] [CrossRef]
- Chiu, C.-M.; Wang, E.T. Understanding Web-based learning continuance intention: The role of subjective task value. Inf. Manag. 2008, 45, 194–201. [Google Scholar] [CrossRef]
- Lin, K.-M.; Chen, N.-S.; Fang, K. Understanding e-learning continuance intention: A negative critical incidents perspective. Behav. Inf. Technol. 2011, 30, 77–89. [Google Scholar] [CrossRef]
- Dai, H.M.; Teo, T.; Rappa, N.A.; Huang, F. Explaining chinese university students’ continuance learning intention in the mooc setting: A modified expectation confirmation model perspective. Comput. Educ. 2020, 150, 103850. [Google Scholar] [CrossRef]
- Huang, R.-T.; Hsiao, C.-H.; Tang, T.-W.; Lien, T.-C. Exploring the moderating role of perceived flexibility advantages in mobile learning continuance intention (mlci). Int. Rev. Res. Open Distrib. Learn. 2014, 15, 140–157. [Google Scholar] [CrossRef]
- Bower, M.; Howe, C.; McCredie, N.; Robinson, A.; Grover, D. Augmented reality in education—Cases, places and potentials. Educ. Media Int. 2014, 51, 1–15. [Google Scholar] [CrossRef]
- Lu, S.-J.; Liu, Y.-C. Integrating augmented reality technology to enhance children’s learning in marine education. Environ. Educ. Res. 2015, 21, 525–541. [Google Scholar] [CrossRef]
- Kim, K.; Hwang, J.; Zo, H.; Lee, H. Understanding users’ continuance intention toward smartphone augmented reality applications. Inf. Dev. 2014, 32, 161–174. [Google Scholar] [CrossRef]
- Cheng, K.-H.; Tsai, C.-C. Children and parents’ reading of an augmented reality picture book: Analyses of behavioral patterns and cognitive attainment. Comput. Educ. 2014, 72, 302–312. [Google Scholar] [CrossRef]
- Ibáñez, M.B.; Di Serio, Á.; Villarán, D.; Kloos, C.D. Experimenting with electromagnetism using augmented reality: Impact on flow student experience and educational effectiveness. Comput. Educ. 2014, 71, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Bujak, K.R.; Radu, I.; Catrambone, R.; Macintyre, B.; Zheng, R.; Golubski, G. A psychological perspective on augmented reality in the mathematics classroom. Comput. Educ. 2013, 68, 536–544. [Google Scholar] [CrossRef]
- Arrindell, W.A.; Van der Ende, J. An empirical test of the utility of the observations-to-variables ratio in factor and components analysis. Appl. Psychol. Meas. 1985, 9, 165–178. [Google Scholar] [CrossRef]
- MacCallum, R.C.; Widaman, K.F.; Zhang, S.; Hong, S. Sample size in factor analysis. Psychol. Methods 1999, 4, 84. [Google Scholar] [CrossRef]
- Qiu, H.Z. Quantitative Research and Statistical Analysis: Spss (pasw) Data Analysis Paradigm Resolve; Wu-Nan Book: Taipei, Taiwan, 2010. [Google Scholar]
- Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E.; Tatham, R.L. Multivariate Data Analysis; Prentice Hall: Upper Saddle River, NJ, USA, 1998; Volume 5. [Google Scholar]
- Bhattacherjee, A. Understanding Information Systems Continuance: An Expectation-Confirmation Model. MIS Q. 2001, 25, 351–370. [Google Scholar] [CrossRef]
- Ashrafi, A.; ZareRavasan, A.; Savoji, S.R.; Amani, M. Exploring factors influencing students’ continuance intention to use the learning management system (LMS): A multi-perspective framework. Interact. Learn. Environ. 2020, 1–23. [Google Scholar] [CrossRef]
- Dağhan, G.; Akkoyunlu, B. Modeling the continuance usage intention of online learning environments. Comput. Hum. Behav. 2016, 60, 198–211. [Google Scholar] [CrossRef]
- Anderson, J.C.; Gerbing, D.W. Structural equation modeling in practice: A review and recommended two-step approach. Psychol. Bull. 1988, 103, 411. [Google Scholar] [CrossRef]
- Nunnally, J.C.; Bernstein, I.H. Psychological Theory; McGraw-Hill: New York, NY, USA, 1994. [Google Scholar]
- Fornell, C.; Larcker, D.F. Evaluating structural equation models with unobservable variables and measurement error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Chin, W.W. Commentary: Issues and Opinion on Structural Equation Modeling; JSTOR: New York, NY, USA, 1998. [Google Scholar]
- Hooper, D.; Coughlan, J.; Mullen, M. Structural equation modelling: Guidelines for determining model fit. Electron. J. Bus. Res. Methods 2008, 6, 53–60. [Google Scholar]
- Kline, R.B. Principles and Practice of Structural Equation Modeling; Guilford Publications: New York, NY, USA, 2015. [Google Scholar]
- Schumacker, R.E.; Lomax, R.G. A Beginner’s Guide to Structural Equation Modeling; Psychology Press: London, UK, 2004. [Google Scholar]
- Hu, L.T.; Bentler, P.M. Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Struct. Equ. Modeling A Multidiscip. J. 1999, 6, 1–55. [Google Scholar] [CrossRef]
- Echeverría, A.; Améstica, M.; Gil, F.; Nussbaum, M.; Barrios, E.; Leclerc, S. Exploring different technological platforms for supporting co-located collaborative games in the classroom. Comput. Hum. Behav. 2012, 28, 1170–1177. [Google Scholar] [CrossRef]
- Dirin, A.; Alamäki, A.; Suomala, J. Gender differences in perceptions of conventional video, virtual reality and augmented reality. Int. J. Interact. Mobile Technol. 2019, 13, 93–103. [Google Scholar] [CrossRef]
- Park, C.; Kim, D.-G.; Cho, S.; Han, H.-J. Adoption of multimedia technology for learning and gender difference. Comput. Hum. Behav. 2019, 92, 288–296. [Google Scholar] [CrossRef]
No | Item Description | Frequency | References |
---|---|---|---|
VAR 01 | Telepresence Using AR textbooks to study can make me have “telepresence” | 65 | [42] |
VAR 02 | Fun Using AR textbooks can increase the “fun” of learning | 59 | [3,43] |
VAR 03 | Interactivity AR textbooks have “interactive” virtual learning scenes | 41 | [10] |
VAR 04 | Innovation The learning content of AR textbooks is “innovative” | 34 | [33] |
VAR 05 | Learning experience Compared with paper textbooks, learning with AR textbooks has a different “learning experience” | 26 | [15,16] |
VAR 06 | Easy to get started I think the operation of AR textbooks is “easy to get started” | 24 | [22] |
VAR 07 | Understanding level AR textbooks can increase my “understanding” of the learning content | 16 | [20,21] |
VAR 08 | Interest AR textbooks can increase my “interest” in learning content | 14 | [3] |
VAR 09 | Spatial Ability Using AR textbooks to study can improve my “spatial ability” | 12 | [14,16] |
VAR 10 | Learning efficiency Using AR textbooks to study can improve my “learning efficiency” | 11 | [20] |
VAR 11 | Vivid I think the learning content of AR textbooks is “vivid” | 10 | [31] |
VAR 12 | Visuality I think AR textbooks have “visual” learning content | 10 | [31,32] |
VAR 13 | Richness I think AR textbooks have learning content of “richness” | 9 | [32,34] |
VAR 14 | Portability AR textbooks have the function of “portability” | 9 | [44] |
VAR 15 | Imagination Learning with AR textbooks can improve my “imagination” | 9 | [45] |
VAR 16 | Teaching quality Compared with paper textbooks, I think AR textbooks have higher “teaching quality” | 8 | [34] |
VAR 17 | Teaching atmosphere AR textbooks can improve the “teaching atmosphere” of the classroom | 8 | [30] |
VAR 18 | Practicability I think AR textbooks have “practicability” in learning | 7 | [44,45] |
VAR 19 | Thinking ability Using AR textbooks to study can improve my “thinking ability” | 7 | [42] |
VAR 20 | Immersion Learning with AR textbooks can make me feel “immersed” | 6 | [31,46] |
VAR 21 | Curiosity Compared with paper textbooks, AR textbooks make me more “curious” | 5 | [13,35] |
VAR 22 | Paper textbook I think AR textbooks can replace “paper textbooks” in learning | 3 | [34] |
VAR 23 | Humanistic I think the design for learning content of AR textbooks is “humanistic” | 2 | [47] |
Demographics | No. of Respondents | % of Respondents | |
---|---|---|---|
Gender | Female | 128 | 57.1 |
Male | 96 | 42.9 | |
Age | 19–20 | 64 | 28.6 |
22–22 | 151 | 67.4 | |
23–24 | 9 | 4 | |
Grade | Second | 129 | 57.6 |
Third | 95 | 42.4 | |
Major | Product design | 94 | 42 |
Digital media | 75 | 33.5 | |
Environmental design | 55 | 24.5 |
Item | Commonality | Corrected Item-Total Correlation |
---|---|---|
VAR 01 Telepresence | 0.390 | 0.574 |
VAR 02 Fun | 0.320 | 0.502 |
VAR 03 Interactivity | 0.315 | 0.512 |
VAR 04 Innovation | 0.347 | 0.538 |
VAR 05 Learning experience | 0.394 | 0.564 |
VAR 06 Easy to get started | 0.284 | 0.480 |
VAR 07 Understanding level | 0.378 | 0.556 |
VAR 08 Interest | 0.379 | 0.548 |
VAR 09 Spatial ability | 0.331 | 0.510 |
VAR 10 Learning efficiency | 0.343 | 0.523 |
VAR 11 Vivid | 0.285 | 0.472 |
VAR 12 Visuality | 0.350 | 0.530 |
VAR 13 Richness | 0.370 | 0.549 |
VAR 14 Portability | 0.286 | 0.485 |
VAR 15 Imagination | 0.393 | 0.566 |
VAR 16 Teaching quality | 0.260 | 0.457 |
VAR 17 Teaching atmosphere | 0.273 | 0.473 |
VAR 18 Practicality | 0.245 | 0.445 |
VAR 19 Thinking ability | 0.319 | 0.510 |
VAR 20 Immersion | 0.336 | 0.521 |
VAR 21 Curiosity | 0.381 | 0.558 |
VAR 22 Paper textbook | 0.183 | 0.379 |
VAR 23 Humanistic | 0.174 | 0.374 |
Barrett Sphericity Test and KMO Value | ||
---|---|---|
KMO sampling fitness measure | 0.895 | |
Bartlett sphericity test | The approximate chi-square | 1088.429 |
Degrees of freedom | 105 | |
Significance | 0.000 |
Item Number | Factor 1 | Factor 2 | Factor 3 |
---|---|---|---|
VAR 02 | 0.691 | – | – |
VAR 12 | 0.665 | – | – |
VAR 08 | 0.641 | – | – |
VAR 05 | 0.629 | – | – |
VAR 13 | 0.625 | – | – |
VAR 21 | 0.575 | – | – |
VAR 07 | 0.573 | – | – |
VAR 19 | – | 0.782 | – |
VAR 09 | – | 0.725 | – |
VAR 15 | – | 0.692 | – |
VAR 10 | – | 0.596 | – |
VAR 03 | – | – | 0.748 |
VAR 01 | – | – | 0.734 |
VAR 20 | – | – | 0.716 |
VAR 04 | – | – | 0.606 |
Eigenvalue | 3.139 | 2.645 | 2.404 |
Extraction sums of squared loadings % | 37.505 | 20.926 | 8.879 |
Rotation Sums of Squared Loadings % | 20.926 | 17.634 | 16.030 |
Total explanatory variance % | 54.590 | ||
The overall-scale Cronbach’s α | 0.880 | ||
Subscale Cronbach’s α | 0.816 | 0.763 | 0.754 |
Factor | Gender | N | Mean | SD | t | p |
---|---|---|---|---|---|---|
Visual attraction | Female | 128 | 3.826 | 0.527 | −2.699 | 0.007 ** |
Male | 96 | 4.012 | 0.500 | |||
Knowledge-ability | Female | 128 | 3.641 | 0.627 | −2.702 | 0.008 ** |
Male | 96 | 3.850 | 0.491 | |||
Situational experience | Female | 128 | 3.839 | 0.585 | −2.460 | 0.015 * |
Male | 96 | 4.023 | 0.535 |
Factor | Grade | N | Mean | SD | t | p |
---|---|---|---|---|---|---|
Visual attraction | Second | 129 | 3.980 | 0.504 | 1.537 | 0.126 |
Third | 95 | 3.872 | 0.535 | |||
Knowledge-ability | Second | 129 | 3.797 | 0.529 | 1.133 | 0.258 |
Third | 95 | 3.711 | 0.605 | |||
Situational experience | Second | 129 | 3.953 | 0.565 | 0.281 | 0.779 |
Third | 95 | 3.932 | 0.565 |
Factor | Major | N | Mean | SD | F | p |
---|---|---|---|---|---|---|
Visual attraction | Product Design | 94 | 3.991 | 0.559 | 1.225 | 0.296 |
Digital Media | 75 | 3.914 | 0.487 | |||
Environmental Design | 55 | 3.857 | 0.485 | |||
Knowledge-ability | Product Design | 94 | 3.793 | 0.573 | 0.380 | 0.684 |
Digital Media | 75 | 3.717 | 0.543 | |||
Environmental Design | 55 | 3.764 | 0.574 | |||
Situational experience | Product Design | 94 | 3.997 | 0.600 | 0.720 | 0.488 |
Digital Media | 75 | 3.907 | 0.498 | |||
Environmental Design | 55 | 3.905 | 0.584 |
Item Description | References |
---|---|
CI1 I plan to continue to use AR textbooks in Basic Design course in the future CI2 I plan to use AR textbooks in Basic Design courses often in the future CI3 Generally speaking, I intend to continue to use AR textbooks in Basic Design course | [53,54] |
Demographics | No. of Respondents | % of Respondents | |
---|---|---|---|
Gender | Female | 133 | 58.3 |
Male | 95 | 41.7 | |
Age | 19–20 | 51 | 22.4 |
22–22 | 163 | 71.5 | |
23–24 | 14 | 6.1 | |
Grade | Second | 148 | 64.9 |
Third | 80 | 35.1 | |
Major | Product design | 126 | 55.3 |
Digital media | 68 | 29.8 | |
Environmental design | 34 | 14.9 |
Constructs | Items | Cronbach’s α | Unstd. | S.E. | Unstd./S.E. | p-Value | Std. | CR | CV |
---|---|---|---|---|---|---|---|---|---|
Visual attraction (VA) Cronbach’s α = 0.895 | VA1 | 0.866 | 1.000 | – | – | – | 0.853 | 0.898 | 0.560 |
VA2 | 0.873 | 0.968 | 0.066 | 14.713 | 0.000 | 0.801 | |||
VA3 | 0.875 | 0.903 | 0.065 | 13.832 | 0.000 | 0.769 | |||
VA4 | 0.877 | 0.911 | 0.069 | 13.250 | 0.000 | 0.748 | |||
VA5 | 0.879 | 0.902 | 0.068 | 13.234 | 0.000 | 0.747 | |||
VA6 | 0.892 | 0.769 | 0.073 | 10.562 | 0.000 | 0.635 | |||
VA7 | 0.889 | 0.709 | 0.065 | 10.950 | 0.000 | 0.653 | |||
Knowledge-ability (KA) Cronbach’s α = 0.808 | KA1 | 0.759 | 1.000 | – | – | – | 0.722 | 0.807 | 0.512 |
KA2 | 0.756 | 1.056 | 0.100 | 10.537 | 0.000 | 0.747 | |||
KA3 | 0.758 | 0.984 | 0.101 | 9.702 | 0.000 | 0.686 | |||
KA4 | 0.766 | 1.063 | 0.106 | 10.004 | 0.000 | 0.708 | |||
Situational experience (SE) Cronbach’s α = 0.844 | SE1 | 0.824 | 1.000 | – | – | – | 0.712 | 0.845 | 0.578 |
SE2 | 0.791 | 1.126 | 0.103 | 10.950 | 0.000 | 0.779 | |||
SE3 | 0.794 | 1.038 | 0.096 | 10.814 | 0.000 | 0.769 | |||
SE4 | 0.798 | 1.103 | 0.101 | 10.933 | 0.000 | 0.778 | |||
Continuance intention (CI) Cronbach’s α = 0.845 | CI1 | 0.805 | 1.000 | – | – | – | 0.803 | 0.846 | 0.647 |
CI2 | 0.796 | 1.022 | 0.082 | 12.446 | 0.000 | 0.777 | |||
CI3 | 0.751 | 1.085 | 0.080 | 13.522 | 0.000 | 0.834 |
AVE | VA | KA | SE | CI | |
---|---|---|---|---|---|
VA | 0.560 | 0.748 | – | – | – |
KA | 0.512 | 0.709 | 0.716 | – | – |
SE | 0.578 | 0.729 | 0.709 | 0.760 | – |
CI | 0.647 | 0.709 | 0.698 | 0.670 | 0.805 |
Indicators | Norm | Results | Judgment |
---|---|---|---|
MLχ2 | – | 225.658 | – |
DF | – | 129 | – |
Χ2/DF | 1 < χ2/DF < 5 | 1.749 | Yes |
RMSEA | <0.08 | 0.057 | Yes |
SRMR | <0.08 | 0.043 | Yes |
TLI (NNFI) | >0.9 | 0.952 | Yes |
CFI | >0.9 | 0.959 | Yes |
NFI | >0.9 | 0.911 | Yes |
GFI | >0.8 | 0.901 | Yes |
PGFI | >0.5 | 0.680 | Yes |
PNFI | >0.5 | 0.768 | Yes |
IFI | >0.9 | 0.960 | Yes |
Hypothesis | Hypothesised Relationship | Unstd | S.E. | Unstd./S.E. | p-Value | Std. | R2 | Result |
---|---|---|---|---|---|---|---|---|
H1 | VA→CI | 0.257 | 0.104 | 2.479 | 0.013 ** | 0.289 | 0.752 | Yes |
H2 | KA→CI | 0.547 | 0.168 | 3.251 | 0.001 *** | 0.498 | Yes | |
H3 | SE→CI | 0.135 | 0.157 | 0.855 | 0.393 | 0.128 | No |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.-J.; Hsu, Y.; Wei, W.; Yang, C. Continuance Intention of Augmented Reality Textbooks in Basic Design Course. Educ. Sci. 2021, 11, 208. https://doi.org/10.3390/educsci11050208
Chen J-J, Hsu Y, Wei W, Yang C. Continuance Intention of Augmented Reality Textbooks in Basic Design Course. Education Sciences. 2021; 11(5):208. https://doi.org/10.3390/educsci11050208
Chicago/Turabian StyleChen, Jiang-Jie, Yen Hsu, Wei Wei, and Chun Yang. 2021. "Continuance Intention of Augmented Reality Textbooks in Basic Design Course" Education Sciences 11, no. 5: 208. https://doi.org/10.3390/educsci11050208
APA StyleChen, J. -J., Hsu, Y., Wei, W., & Yang, C. (2021). Continuance Intention of Augmented Reality Textbooks in Basic Design Course. Education Sciences, 11(5), 208. https://doi.org/10.3390/educsci11050208