Value Premium and Technical Analysis: Evidence from the China Stock Market
Abstract
:1. Introduction
2. Data and Methodology
2.1. Data
2.2. Zero-Cost Trading Strategy
3. Empirical Findings
3.1. Summary Statistics
3.2. Risk-Adjusted Performances
3.3. Components of Strategies
3.4. Alternative Lag Lengths
3.5. Transaction Operations
4. Robustness Tests
4.1. Sub-Period Analysis
4.2. Business Cycles
4.3. Market Timing Ability
4.4. Subsample of Short-Selling
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Balduzzi, Pierluigi, and Anthony W. Lynch. 1999. Transaction costs and predictability: Some utility cost calculations. Journal of Financial Economics 52: 47–78. [Google Scholar] [CrossRef]
- Bauman, W. Scott, Mitchell C. Conover, and Robert E. Miller. 1998. Growth versus value and large-cap versus small-cap stocks in international markets. Financial Analysts Journal 54: 75–89. [Google Scholar] [CrossRef]
- Brock, William, Josef Lakonishok, and Blake LeBaron. 1992. Simple technical trading rules and the stochastic properties of stock returns. The Journal of Finance 47: 1731–64. [Google Scholar] [CrossRef]
- Chen, Kong-Jun, and Xiaoming M. Li. 2006. Is technical analysis useful for stock traders in China? Evidence from the SZSE Component A-Share Index. Pacific Economic Review 11: 477–88. [Google Scholar] [CrossRef]
- Cooper, Michael J., Roberto C. Gutierrez, and Allaudeen Hameed. 2004. Market states and momentum. The Journal of Finance 59: 1345–65. [Google Scholar] [CrossRef]
- Daniel, Kent, and Sheridan Titman. 1997. Evidence on the characteristics of cross sectional variation in stock returns. The Journal of Finance 52: 1–33. [Google Scholar] [CrossRef]
- Datar, Vinay T., Narayan Y. Naik, and Robert Radcliffe. 1998. Liquidity and stock returns: An alternative test. Journal of Financial Markets 1: 203–19. [Google Scholar] [CrossRef]
- Du, Jun, and Wing-Keung Wong. 2018. Predictability of Technical Analysis on Singapore Stock Market, before and after the Asian Financial Crisis. Available online: https://ssrn.com/abstract=3207078 (accessed on 9 September 2019).
- Fama, Eugene F., and Kenneth R. French. 1992. The cross-section of expected stock returns. The Journal of Finance 47: 427–65. [Google Scholar] [CrossRef]
- Fama, Eugene F., and Kenneth R. French. 1993. Common risk factors in the returns on stocks and bonds. Journal of Financial Economics 33: 3–56. [Google Scholar] [CrossRef]
- Fama, Eugene F., and Kenneth R. French. 1996. Multifactor explanations of asset pricing anomalies. The Journal of Finance 51: 55–84. [Google Scholar] [CrossRef]
- Fama, Eugene F., and Kenneth R. French. 1998. Value versus growth: The international evidence. The Journal of Finance 53: 1975–99. [Google Scholar] [CrossRef]
- Han, Yufeng, Guofu Zhou, and Yingzi Zhu. 2016. A trend factor: Any economic gains from using information over investment horizons? Journal of Financial Economics 122: 352–75. [Google Scholar] [CrossRef]
- Han, Yufeng, Ke Yang, and Guofu Zhou. 2013. A new anomaly: The cross-sectional profitability of technical analysis. Journal of Financial and Quantitative Analysis 48: 1433–61. [Google Scholar] [CrossRef]
- Henriksson, Roy D., and Robert C. Merton. 1981. On market timing and investment performance. II. Statistical procedures for evaluating forecasting skills. Journal of Business 54: 513–33. [Google Scholar] [CrossRef]
- Ko, Kuan-Cheng, Shinn-Juh Lin, Hsiang-Ju Su, and Hsing-Hua Chang. 2014. Value investing and technical analysis in Taiwan stock market. Pacific-Basin Finance Journal 26: 14–36. [Google Scholar] [CrossRef]
- Lakonishok, Josef, Andrei Shleifer, and Robert W. Vishny. 1994. Contrarian investment, extrapolation, and risk. The Journal of Finance 49: 1541–78. [Google Scholar] [CrossRef]
- Lam, Keith S., and Lewis H. Tam. 2011. Liquidity and asset pricing: Evidence from the Hong Kong stock market. Journal of Banking & Finance 35: 2217–30. [Google Scholar]
- Liew, Jimmy, and Maria Vassalou. 2000. Can book-to-market, size and momentum be risk factors that predict economic growth? Journal of Financial Economics 57: 221–45. [Google Scholar] [CrossRef]
- Lim, Kian-Ping, and Weiwei Luo. 2012. The weak-form efficiency of Asian stock markets: new evidence from generalized spectral martingale test. Applied Economics Letters 19: 905–8. [Google Scholar] [CrossRef]
- Lo, Andrew W., Harry Mamaysky, and Jiang Wang. 2000. Foundations of technical analysis: Computational algorithms, statistical inference, and empirical implementation. The Journal of Finance 55: 1705–70. [Google Scholar] [CrossRef]
- Menkhoff, Lukas. 2010. The use of technical analysis by fund managers: International evidence. Journal of Banking & Finance 34: 2573–86. [Google Scholar]
- Neely, Christopher J., David E. Rapach, Jun Tu, and Guofu Zhou. 2014. Forecasting the equity risk premium: the role of technical indicators. Management Science 60: 1772–91. [Google Scholar] [CrossRef]
- Newey, Whitney K., and Kenneth D. West. 1987. A simple, positive semi-definite, heteroskedasticity and autocorrelation consistent covariance matrix. Econometrica 55: 703–8. [Google Scholar] [CrossRef]
- Rosenberg, Barr, Kenneth Reid, and Ronald Lanstein. 1985. Persuasive evidence of market inefficiency. Journal of Portfolio Management 11: 9–17. [Google Scholar] [CrossRef]
- Shynkevich, Andrei. 2012. Performance of technical analysis in growth and small cap segments of the US equity market. Journal of Banking & Finance 36: 193–208. [Google Scholar]
- Su, Cheng-jian, and Shun-juan Xu. 2006. Empirical study of the value premium in China stock markets. Mathematics in Practice and Theory 36: 125–30. [Google Scholar]
- Treynor, Jack, and K. Mazuy. 1966. Can mutual funds outguess the market? Harvard Business Review 44: 131–36. [Google Scholar]
- Wang, Jinbin. 2004. Value premium: An empirical study of China stock market (1994–2002). Journal of Financial Research 3: 79–89. [Google Scholar]
- Wang, Zhigang, Yong Zeng, Heping Pan, and Ping Li. 2011. Predictability of moving average rules and nonlinear properties of stock returns: Evidence from the China stock market. New Mathematics and Natural Computation 7: 267–79. [Google Scholar] [CrossRef]
- Wong, Wing-Keung, Jun Du, and Terence Tai-Leung Chong. 2005. Do the technical indicators reward chartists in Greater China stock exchanges? Review of Applied Economics 1: 183–205. [Google Scholar]
- Wong, Wing-Keung, Manzur Meher, and Benjamin Si Hao Chew. 2003. How rewarding is technical analysis? Evidence from Singapore stock market. Applied Financial Economics 13: 543–51. [Google Scholar] [CrossRef]
- Wong, Wing-Keung, and Michael McAleer. 2009. Mapping the Presidential Election Cycle in US stock markets. Mathematics and Computers in Simulation 11: 3267–77. [Google Scholar] [CrossRef]
- Xie, Shiqing, and Qiuying Qu. 2016. The three-factor model and size and value premiums in China’s stock market. Emerging Markets Finance and Trade 52: 1092–105. [Google Scholar] [CrossRef]
- Zhu, Hong, Zhi-Qiang Jiang, Sai-Ping Li, and Wei-Xing Zhou. 2015. Profitability of simple technical trading rules of Chinese stock exchange indexes. Physica A: Statistical Mechanics and its Applications 439: 75–84. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Yingzi, and Guofu Zhou. 2009. Technical analysis: An asset allocation perspective on the use of moving averages. Journal of Financial Economics 92: 519–44. [Google Scholar] [CrossRef]
1 | We report Newey and West (1987) t-statistics in parenthesis to adjust for the possible effects of serial correlation and heteroscedasticity. |
2 | In an unablated wealth analysis test, the end wealth of an initial zero-cost investment (long $1 million in highest BM portfolio and short $1 million in lowest BM portfolio) using the TLS(20) strategy is $687 million, while the counterpart from the buy-and-hold strategy is only $10.22 million. |
3 | From unablated robustness test results, we find that other famous cycle effects like the January effect and the Lunar cycle (Wong and McAleer 2009) also have weak influence over the MA and TLS strategies. |
Rank | BM Ratio | BM Decile Portfolios | MA(20) Timing Portfolios | MAP | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ave Ret | Std Dev | Skew | t | Ave Ret | Std Dev | Skew | t | Ave Ret | Std Dev | Skew | t | ||
Panel A: Equally-weighted portfolios | |||||||||||||
Low | 0.12 | 5.51 | 15.97 | 0.55 | 1.54 | 11.88 | 12.80 | 1.02 | 4.15 | 5.57 | 8.39 | 0.52 | 2.97 |
2 | 0.20 | 5.88 | 15.58 | 0.41 | 1.69 | 11.06 | 14.68 | 0.09 | 3.37 | 4.28 | 8.50 | 1.74 | 2.25 |
3 | 0.26 | 6.75 | 16.05 | 0.61 | 1.88 | 10.73 | 13.82 | 0.97 | 3.47 | 3.11 | 7.16 | −0.02 | 1.94 |
4 | 0.31 | 7.82 | 15.97 | 0.62 | 2.19 | 13.23 | 12.56 | 0.55 | 4.71 | 4.44 | 8.12 | 0.75 | 2.45 |
5 | 0.35 | 8.06 | 16.22 | 0.33 | 2.22 | 12.71 | 13.49 | 0.39 | 4.21 | 3.64 | 8.28 | 0.24 | 1.97 |
6 | 0.40 | 9.39 | 16.94 | 0.41 | 2.48 | 13.18 | 13.72 | 0.94 | 4.29 | 2.84 | 6.46 | 0.29 | 1.96 |
7 | 0.45 | 9.46 | 16.65 | 0.40 | 2.54 | 13.81 | 13.55 | 0.61 | 4.56 | 3.36 | 8.25 | 0.31 | 1.82 |
8 | 0.52 | 9.45 | 17.35 | 0.42 | 2.43 | 14.40 | 16.46 | 0.90 | 3.91 | 3.89 | 8.64 | 0.26 | 2.02 |
9 | 0.62 | 9.78 | 17.69 | 0.43 | 2.47 | 13.58 | 14.70 | 0.76 | 4.13 | 2.85 | 5.51 | 0.04 | 2.31 |
High | 0.85 | 10.28 | 17.78 | 0.77 | 2.59 | 13.03 | 15.85 | 0.79 | 3.68 | 1.77 | 7.15 | 0.21 | 1.11 |
High–Low | 4.77 | 8.32 | 1.22 | 2.56 | 0.86 | 9.12 | 2.10 | 0.42 | −4.21 | 7.22 | 0.49 | −2.61 | |
(2.07) | (0.40) | (−2.87) | |||||||||||
TLS | 16.43 | 14.92 | 0.28 | 4.92 | 11.23 | 12.40 | 0.99 | 4.05 | |||||
(4.85) | (4.12) | ||||||||||||
Panel B: Value-weighted portfolios | |||||||||||||
Low | 0.12 | 5.78 | 16.13 | 0.41 | 1.60 | 11.22 | 13.12 | 1.02 | 3.82 | 4.62 | 8.88 | 0.40 | 2.33 |
2 | 0.20 | 5.44 | 14.80 | 0.52 | 1.64 | 10.36 | 14.42 | 0.12 | 3.21 | 4.02 | 8.84 | 1.61 | 2.04 |
3 | 0.26 | 5.34 | 16.42 | 0.87 | 1.45 | 9.76 | 14.26 | 1.14 | 3.06 | 3.49 | 7.29 | 0.24 | 2.14 |
4 | 0.31 | 8.78 | 16.79 | 0.63 | 2.34 | 12.11 | 12.32 | 0.46 | 4.40 | 2.26 | 7.30 | −0.05 | 1.38 |
5 | 0.35 | 7.28 | 17.78 | 0.58 | 1.83 | 11.86 | 14.03 | 0.54 | 3.78 | 3.55 | 9.00 | 0.73 | 1.76 |
6 | 0.40 | 7.13 | 18.43 | 0.01 | 1.73 | 12.33 | 14.06 | 0.78 | 3.92 | 4.19 | 6.85 | 0.76 | 2.73 |
7 | 0.45 | 9.49 | 16.60 | 0.41 | 2.56 | 13.21 | 13.42 | 0.72 | 4.40 | 2.74 | 8.09 | 0.24 | 1.51 |
8 | 0.52 | 8.31 | 17.79 | 0.58 | 2.09 | 13.02 | 17.48 | 1.02 | 3.33 | 3.61 | 8.81 | 0.44 | 1.83 |
9 | 0.62 | 10.35 | 19.24 | 0.84 | 2.41 | 13.41 | 15.59 | 0.95 | 3.85 | 2.12 | 6.65 | 0.11 | 1.42 |
High | 0.85 | 10.79 | 18.43 | 0.85 | 2.62 | 13.03 | 17.01 | 0.80 | 3.42 | 1.24 | 6.80 | 0.28 | 0.82 |
High–Low | 4.78 | 8.46 | 0.58 | 2.53 | 1.39 | 10.32 | 1.44 | 0.60 | −3.87 | 8.16 | 0.16 | −2.12 | |
(2.15) | (0.60) | (−2.12) | |||||||||||
TLS | 15.34 | 15.97 | 0.42 | 4.30 | 9.94 | 12.06 | 0.87 | 3.68 | |||||
(4.50) | (3.95) |
Rank | CAPM | LIQ4F Model | |||||||
---|---|---|---|---|---|---|---|---|---|
α | βmkt | Adj. R2 | α | βmkt | βsmb | βhml | βliq | Adj. R2 | |
Low | 8.18 | −0.45 | 0.40 | 9.08 | −0.46 | −0.59 | 0.20 | 0.15 | 0.45 |
(5.41) | (−18.52) | (6.26) | (−18.38) | (−9.45) | (6.21) | (4.13) | |||
2 | 7.13 | −0.49 | 0.42 | 8.10 | −0.49 | −0.53 | 0.15 | 0.17 | 0.46 |
(4.73) | (−18.38) | (5.59) | (−18.35) | (−8.92) | (5.03) | (4.99) | |||
3 | 5.77 | −0.46 | 0.39 | 6.70 | −0.47 | −0.51 | 0.15 | 0.16 | 0.42 |
(3.75) | (−16.98) | (4.48) | (−16.78) | (−7.97) | (4.84) | (4.36) | |||
4 | 7.42 | −0.52 | 0.43 | 8.53 | −0.51 | −0.43 | 0.07 | 0.19 | 0.46 |
(4.76) | (−18.50) | (5.58) | (−18.30) | (−6.95) | (2.24) | (5.39) | |||
5 | 6.69 | −0.53 | 0.44 | 8.12 | −0.52 | −0.53 | 0.05 | 0.15 | 0.47 |
(4.20) | (−18.79) | (5.33) | (−18.59) | (−8.19) | (1.54) | (4.21) | |||
6 | 5.64 | −0.49 | 0.40 | 7.12 | −0.48 | −0.44 | −0.01 | 0.19 | 0.44 |
(3.48) | (−17.45) | (4.60) | (−17.56) | (−7.33) | (−0.28) | (5.41) | |||
7 | 5.64 | −0.49 | 0.40 | 8.00 | −0.49 | −0.47 | −0.04 | 0.18 | 0.45 |
(3.48) | (−17.45) | (5.12) | (−18.31) | (−7.44) | (−1.23) | (5.14) | |||
8 | 6.98 | −0.54 | 0.41 | 8.98 | −0.51 | −0.43 | −0.12 | 0.19 | 0.48 |
(4.10) | (−18.26) | (5.61) | (−18.34) | (−6.82) | (−3.20) | (5.18) | |||
9 | 5.63 | −0.49 | 0.39 | 7.30 | −0.47 | −0.37 | −0.09 | 0.18 | 0.43 |
(3.45) | (−17.32) | (4.69) | (−17.41) | (−6.29) | (−2.46) | (5.36) | |||
High | 4.65 | −0.50 | 0.40 | 6.57 | −0.48 | −0.40 | −0.14 | 0.15 | 0.45 |
(2.86) | (−17.57) | (4.25) | (−17.92) | (−6.57) | (−3.56) | (4.20) | |||
High–Low | −3.53 | −0.05 | 0.01 | −2.51 | −0.02 | 0.19 | −0.33 | 0.00 | 0.08 |
(−2.49) | (−3.27) | (−1.82) | (−1.24) | (3.71) | (−8.34) | (−0.08) | |||
TLSMAP | 13.24 | −0.09 | 0.01 | 15.14 | −0.04 | 0.14 | −0.46 | 0.12 | 0.06 |
(5.24) | (−1.88) | (6.08) | (−0.86) | (1.39) | (−7.99) | (1.90) |
Rank | Condition | Position | Equally-Weighted Portfolio | |
---|---|---|---|---|
Rp > Rf | Rp ≤ Rf | |||
Low | Pi,t−1 > Ai,t−1,L | BM portfolio | 58.8 | 41.2 |
Pi,t−1 ≤ Ai,t−1,L | Risk-free asset | 47.83 | 52.17 | |
2 | Pi,t−1 > Ai,t−1,L | BM portfolio | 56.71 | 43.29 |
Pi,t−1 ≤ Ai,t−1,L | Risk-free asset | 49.35 | 50.65 | |
3 | Pi,t−1 > Ai,t−1,L | BM portfolio | 56.96 | 43.04 |
Pi,t−1 ≤ Ai,t−1,L | Risk-free asset | 46.8 | 53.2 | |
4 | Pi,t−1 > Ai,t−1,L | BM portfolio | 59.29 | 40.71 |
Pi,t−1 ≤ Ai,t−1,L | Risk-free asset | 48.82 | 51.18 | |
5 | Pi,t−1 > Ai,t−1,L | BM portfolio | 59.71 | 40.29 |
Pi,t−1 ≤ Ai,t−1,L | Risk-free asset | 47.85 | 52.15 | |
6 | Pi,t−1 > Ai,t−1,L | BM portfolio | 59.85 | 40.15 |
Pi,t−1 ≤ Ai,t−1,L | Risk-free asset | 46.03 | 53.97 | |
7 | Pi,t−1 > Ai,t−1,L | BM portfolio | 60.02 | 39.98 |
Pi,t−1 ≤ Ai,t−1,L | Risk-free asset | 48.46 | 51.54 | |
8 | Pi,t−1 > Ai,t−1,L | BM portfolio | 59.66 | 40.34 |
Pi,t−1 ≤ Ai,t−1,L | Risk-free asset | 49.38 | 50.62 | |
9 | Pi,t−1 > Ai,t−1,L | BM portfolio | 60.15 | 39.85 |
Pi,t−1 ≤ Ai,t−1,L | Risk-free asset | 48.97 | 51.03 | |
High | Pi,t−1 > Ai,t−1,L | BM portfolio | 58.83 | 41.17 |
Pi,t−1 ≤ Ai,t−1,L | Risk-free asset | 49.82 | 50.18 |
Rank | MAP(5) | MAP(10) | MAP(20) | MAP(50) | MAP(100) | MAP(200) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Holding | Freq | BETC | Holding | Freq | BETC | Holding | Freq | BETC | Holding | Freq | BETC | Holding | Freq | BETC | Holding | Freq | BETC | |
Low | 3.80 | 0.29 | 38.77 | 5.56 | 0.20 | 41.20 | 9.35 | 0.13 | 83.35 | 19.37 | 0.07 | 81.28 | 50.06 | 0.04 | −7.51 | 168.65 | 0.02 | 87.36 |
2 | 3.81 | 0.29 | 8.50 | 5.76 | 0.20 | 17.49 | 10.34 | 0.13 | 64.09 | 16.06 | 0.09 | −8.96 | 51.74 | 0.04 | 16.88 | 150.48 | 0.02 | 41.78 |
3 | 3.92 | 0.29 | 11.84 | 6.34 | 0.19 | 15.16 | 9.90 | 0.13 | 47.22 | 25.57 | 0.07 | 24.41 | 43.17 | 0.05 | −41.89 | 130.99 | 0.02 | 28.16 |
4 | 3.87 | 0.28 | 13.58 | 6.14 | 0.19 | 23.75 | 10.54 | 0.12 | 76.79 | 19.94 | 0.08 | 8.84 | 50.81 | 0.05 | −25.54 | 137.26 | 0.02 | 0.30 |
5 | 3.95 | 0.28 | 8.28 | 6.16 | 0.19 | 18.48 | 9.59 | 0.13 | 58.54 | 21.51 | 0.07 | 33.90 | 48.25 | 0.04 | −2.14 | 176.57 | 0.02 | 121.70 |
6 | 4.07 | 0.28 | 3.56 | 6.26 | 0.19 | 10.09 | 10.95 | 0.12 | 48.74 | 25.31 | 0.07 | 45.19 | 67.41 | 0.04 | −10.50 | 183.08 | 0.02 | 126.02 |
7 | 3.92 | 0.28 | 4.66 | 6.40 | 0.18 | 28.86 | 11.45 | 0.11 | 61.02 | 22.11 | 0.07 | 22.78 | 46.50 | 0.05 | −22.12 | 141.55 | 0.02 | 65.13 |
8 | 4.07 | 0.27 | 16.91 | 6.63 | 0.18 | 13.19 | 11.04 | 0.11 | 69.38 | 27.90 | 0.07 | 78.57 | 47.64 | 0.05 | −9.26 | 146.77 | 0.02 | 81.68 |
9 | 4.00 | 0.28 | 4.42 | 6.37 | 0.18 | 22.56 | 10.80 | 0.12 | 48.92 | 20.48 | 0.07 | 33.73 | 46.56 | 0.05 | −18.22 | 156.47 | 0.02 | 120.17 |
High | 4.01 | 0.28 | −3.00 | 6.72 | 0.18 | 10.80 | 10.45 | 0.12 | 28.91 | 21.22 | 0.08 | −9.39 | 48.86 | 0.06 | −60.33 | 141.45 | 0.02 | 52.11 |
High–Low | 0.45 | 0.32 | 0.22 | 0.13 | 0.09 | 0.03 | ||||||||||||
TLS | 0.45 | 0.32 | 0.22 | 0.13 | 0.09 | 0.03 | ||||||||||||
Transaction Cost for TLS | 7.09 | 5.24 | 3.95 | 2.99 | 2.68 | 2.58 | ||||||||||||
MAP for TLS | 9.99 | 9.67 | 11.23 | 7.08 | 3.39 | 1.51 | ||||||||||||
Return after Transaction Cost | 2.91 | 4.43 | 7.28 | 4.08 | 0.70 | −1.08 |
Panel A: Normality Check (Kolmogorov–Smirnov) | Panel B: Wilcoxon Two-Sample Test | |||||||||||
Rank | First Sub-Period | Second Sub-Period | Rank | Statistic | Normal Approximation Z | Two-Sided Pr > |Z| | ||||||
Statistic D | p-Value | Statistic D | p-Value | |||||||||
Low | 0.2586 | <0.0100 | 0.3258 | <0.0100 | Low | 6021507 | 3.50 | 0.0005 | ||||
2 | 0.2884 | <0.0100 | 0.3415 | <0.0100 | 2 | 5905501 | 0.91 | 0.3607 | ||||
3 | 0.2925 | <0.0100 | 0.3346 | <0.0100 | 3 | 5967378 | 2.36 | 0.0184 | ||||
4 | 0.2687 | <0.0100 | 0.3349 | <0.0100 | 4 | 5992645 | 2.89 | 0.0038 | ||||
5 | 0.2741 | <0.0100 | 0.3203 | <0.0100 | 5 | 5956286 | 2.06 | 0.0399 | ||||
6 | 0.2917 | <0.0100 | 0.3289 | <0.0100 | 6 | 5992566 | 2.93 | 0.0034 | ||||
7 | 0.285 | <0.0100 | 0.3341 | <0.0100 | 7 | 5942272 | 1.76 | 0.0781 | ||||
8 | 0.2857 | <0.0100 | 0.3285 | <0.0100 | 8 | 5956512 | 2.08 | 0.0375 | ||||
9 | 0.2863 | <0.0100 | 0.3307 | <0.0100 | 9 | 5982790 | 2.69 | 0.0071 | ||||
High | 0.2883 | <0.0100 | 0.3223 | <0.0100 | High | 5924624 | 1.35 | 0.1766 | ||||
High–Low | 0.2286 | <0.0100 | 0.2402 | <0.0100 | High–Low | 5818216 | −1.03 | 0.3020 | ||||
TLS | 0.1373 | <0.0100 | 0.1305 | <0.0100 | TLS | 5744009 | −2.52 | 0.0118 | ||||
Panel C: Time-series regressions with LIQ4F model | ||||||||||||
Rank | First Sub-Period | Second Sub-Period | ||||||||||
α | βmkt | βsmb | βhml | βliq | Adj. R2 | α | βmkt | βsmb | βhml | βliq | Adj. R2 | |
Low | 7.24 | −0.43 | −0.56 | 0.22 | 0.14 | 0.44 | 10.96 | −0.48 | −0.53 | 0.09 | 0.20 | 0.46 |
(4.01) | (−11.98) | (−6.95) | (5.61) | (2.82) | (4.86) | (−14.38) | (−6.15) | (1.67) | (3.84) | |||
2 | 3.95 | −0.49 | −0.52 | 0.15 | 0.11 | 0.48 | 12.07 | −0.49 | −0.43 | 0.08 | 0.28 | 0.45 |
(2.13) | (−11.99) | (−6.18) | (3.94) | (2.35) | (5.47) | (−14.29) | (−5.23) | (1.35) | (5.37) | |||
3 | 6.07 | −0.44 | −0.54 | 0.13 | 0.08 | 0.43 | 7.16 | −0.48 | −0.38 | 0.09 | 0.30 | 0.42 |
(3.43) | (−10.85) | (−6.56) | (3.67) | (1.69) | (2.97) | (−13.11) | (−4.16) | (1.54) | (5.11) | |||
4 | 6.92 | −0.49 | −0.45 | 0.04 | 0.11 | 0.49 | 10.02 | −0.52 | −0.33 | 0.04 | 0.31 | 0.45 |
(3.81) | (−12.09) | (−5.74) | (1.11) | (2.37) | (4.06) | (−14.01) | (−3.72) | (0.69) | (5.49) | |||
5 | 6.45 | −0.49 | −0.44 | 0.02 | 0.06 | 0.47 | 9.86 | −0.55 | −0.44 | −0.04 | 0.32 | 0.48 |
(3.41) | (−11.56) | (−5.42) | (0.65) | (1.19) | (4.19) | (−15.19) | (−4.77) | (−0.71) | (5.34) | |||
6 | 5.75 | −0.44 | −0.39 | −0.03 | 0.13 | 0.43 | 8.73 | −0.51 | −0.42 | −0.03 | 0.26 | 0.44 |
(3.07) | (−11.45) | (−4.98) | (−0.89) | (3.10) | (3.57) | (−13.69) | (−4.82) | (−0.48) | (4.47) | |||
7 | 5.43 | −0.44 | −0.45 | −0.07 | 0.10 | 0.44 | 10.83 | −0.54 | −0.41 | −0.08 | 0.29 | 0.48 |
(2.88) | (−11.79) | (−5.91) | (−1.77) | (2.48) | (4.43) | (−14.70) | (−4.43) | (−1.30) | (4.94) | |||
8 | 7.63 | −0.48 | −0.40 | −0.13 | 0.17 | 0.49 | 10.58 | −0.55 | −0.43 | −0.15 | 0.22 | 0.48 |
(3.83) | (−11.48) | (−4.93) | (−2.87) | (3.83) | (4.24) | (−14.84) | (−4.77) | (−2.20) | (3.58) | |||
9 | 5.81 | −0.44 | −0.40 | −0.10 | 0.12 | 0.43 | 8.71 | −0.49 | −0.25 | −0.17 | 0.29 | 0.44 |
(2.94) | (−11.57) | (−5.15) | (−2.19) | (2.85) | (3.64) | (−13.22) | (−2.98) | (−2.77) | (5.22) | |||
High | 3.83 | −0.41 | −0.33 | −0.13 | 0.14 | 0.42 | 9.73 | −0.54 | −0.39 | −0.21 | 0.18 | 0.48 |
(1.94) | (−10.87) | (−4.39) | (−2.84) | (3.06) | (4.23) | (−15.22) | (−4.60) | (−3.34) | (3.18) | |||
High–Low | −3.41 | 0.02 | 0.22 | −0.35 | 0.00 | 0.12 | −1.22 | −0.05 | 0.14 | −0.30 | −0.02 | 0.04 |
(−1.83) | (1.09) | (3.05) | (−7.28) | (−0.03) | (−0.60) | (−2.46) | (1.90) | (−6.23) | (−0.45) | |||
TLS | 11.12 | 0.04 | −0.05 | −0.41 | 0.19 | 0.09 | 19.32 | −0.11 | 0.22 | −0.52 | 0.06 | 0.05 |
(3.42) | (0.52) | (−0.31) | (−5.62) | (2.25) | (5.20) | (−1.81) | (1.61) | (−5.35) | (0.70) |
Rank | Good and Bad States Are Identified by GDP Growth (Past 20 Years) | Good and Bad States Are Identified by Past Three-Year Market Returns | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
α | βmkt | βsmb | βhml | βliq | βGood | βBad | Adj. R2 | α | βmkt | βsmb | βhml | βliq | βBad | Adj. R2 | |
Low | 9.74 | −0.46 | −0.59 | 0.20 | 0.15 | 1.91 | −4.45 | 0.45 | 9.60 | −0.46 | −0.59 | 0.20 | 0.15 | −1.29 | 0.45 |
(4.93) | (−18.36) | (−9.43) | (6.16) | (4.13) | (0.50) | (−1.46) | (4.88) | (−18.38) | (−9.46) | (6.21) | (4.13) | (−0.47) | |||
2 | 7.55 | −0.49 | −0.52 | 0.15 | 0.17 | 6.48 | −3.94 | 0.46 | 8.68 | −0.49 | −0.53 | 0.15 | 0.17 | −1.45 | 0.46 |
(3.78) | (−18.33) | (−8.89) | (4.99) | (4.98) | (1.79) | (−1.21) | (4.53) | (−18.35) | (−8.93) | (5.03) | (4.99) | (−0.52) | |||
3 | 7.27 | −0.47 | −0.51 | 0.15 | 0.16 | 1.69 | −3.88 | 0.42 | 7.19 | −0.47 | −0.51 | 0.15 | 0.16 | −1.22 | 0.42 |
(3.61) | (−16.77) | (−7.93) | (4.81) | (4.36) | (0.44) | (−1.20) | (3.48) | (−16.79) | (−7.96) | (4.84) | (4.37) | (−0.44) | |||
4 | 8.77 | −0.51 | −0.43 | 0.07 | 0.19 | 2.01 | −2.85 | 0.46 | 10.33 | −0.51 | −0.43 | 0.07 | 0.19 | −4.49 | 0.47 |
(4.29) | (−18.28) | (−6.92) | (2.21) | (5.39) | (0.50) | (−0.89) | (4.97) | (−18.30) | (−6.96) | (2.24) | (5.40) | (−1.56) | |||
5 | 8.49 | −0.52 | −0.53 | 0.05 | 0.15 | 2.00 | −3.36 | 0.47 | 9.59 | −0.52 | −0.53 | 0.05 | 0.15 | −3.65 | 0.47 |
(4.14) | (−18.58) | (−8.17) | (1.52) | (4.21) | (0.51) | (−1.03) | (4.57) | (−18.60) | (−8.21) | (1.55) | (4.21) | (−1.28) | |||
6 | 7.67 | −0.48 | −0.43 | −0.01 | 0.19 | 1.29 | −3.42 | 0.44 | 8.59 | −0.48 | −0.44 | −0.01 | 0.19 | −3.66 | 0.44 |
(3.66) | (−17.55) | (−7.32) | (−0.31) | (5.42) | (0.32) | (−1.06) | (4.00) | (−17.56) | (−7.35) | (−0.28) | (5.42) | (−1.27) | |||
7 | 8.31 | −0.49 | −0.47 | −0.04 | 0.18 | 5.03 | −6.01 | 0.45 | 9.56 | −0.49 | −0.48 | −0.04 | 0.18 | −3.90 | 0.45 |
(3.99) | (−18.31) | (−7.42) | (−1.29) | (5.14) | (1.28) | (−1.75) | (4.47) | (−18.31) | (−7.47) | (−1.23) | (5.15) | (−1.33) | |||
8 | 9.63 | −0.51 | −0.43 | −0.12 | 0.19 | 1.65 | −4.18 | 0.48 | 11.75 | −0.51 | −0.43 | −0.12 | 0.19 | −6.91 | 0.48 |
(4.46) | (−18.33) | (−6.78) | (−3.24) | (5.19) | (0.41) | (−1.21) | (5.27) | (−18.35) | (−6.86) | (−3.20) | (5.19) | (−2.33) | |||
9 | 8.26 | −0.47 | −0.37 | −0.09 | 0.18 | 0.05 | −3.89 | 0.43 | 7.94 | −0.47 | −0.37 | −0.09 | 0.18 | −1.60 | 0.43 |
(3.95) | (−17.39) | (−6.25) | (−2.49) | (5.36) | (0.01) | (−1.18) | (3.63) | (−17.40) | (−6.29) | (−2.46) | (5.36) | (−0.55) | |||
High | 6.04 | −0.48 | −0.39 | −0.14 | 0.15 | 3.46 | −1.15 | 0.45 | 8.74 | −0.48 | −0.40 | −0.14 | 0.15 | −5.41 | 0.45 |
(2.90) | (−17.92) | (−6.57) | (−3.57) | (4.20) | (0.84) | (−0.37) | (3.98) | (−17.93) | (−6.60) | (−3.56) | (4.21) | (−1.91) | |||
High–Low | −3.70 | −0.02 | 0.19 | −0.33 | 0.00 | 1.55 | 3.30 | 0.08 | −0.85 | −0.02 | 0.19 | −0.33 | 0.00 | −4.12 | 0.08 |
(−1.95) | (−1.25) | (3.67) | (−8.31) | (−0.09) | (0.43) | (1.11) | (−0.49) | (−1.23) | (3.68) | (−8.35) | (−0.08) | (−1.50) | |||
TLS | 14.84 | −0.04 | 0.15 | −0.46 | 0.12 | 5.53 | −4.02 | 0.06 | 18.04 | −0.04 | 0.14 | −0.46 | 0.12 | −7.22 | 0.06 |
(4.30) | (−0.86) | (1.42) | (−8.01) | (1.90) | (0.84) | (−0.77) | (5.05) | (−0.86) | (1.37) | (−8.00) | (1.91) | (−1.57) |
Rank | TM Regression | HM Regression | ||||||
---|---|---|---|---|---|---|---|---|
α | βmkt | βmkt2 | Adj. R2 | α | βmkt | γmkt | Adj. R2 | |
Low | 7.22 | −0.45 | 0.30 | 0.40 | 3.39 | −0.49 | 0.08 | 0.40 |
(3.93) | (−18.54) | (0.50) | (1.23) | (−13.02) | (1.41) | |||
2 | 3.88 | −0.49 | 1.03 | 0.43 | −1.46 | −0.56 | 0.14 | 0.43 |
(2.01) | (−18.82) | (1.55) | (−0.50) | (−13.55) | (2.40) | |||
3 | 4.14 | −0.46 | 0.52 | 0.39 | 0.21 | −0.51 | 0.09 | 0.39 |
(2.05) | (−17.14) | (0.73) | (0.07) | (−11.84) | (1.48) | |||
4 | 6.13 | −0.51 | 0.41 | 0.43 | 1.51 | −0.56 | 0.10 | 0.44 |
(3.05) | (−18.65) | (0.57) | (0.49) | (−12.74) | (1.53) | |||
5 | 4.29 | −0.53 | 0.76 | 0.44 | −0.20 | −0.58 | 0.11 | 0.44 |
(2.18) | (−19.11) | (1.09) | (−0.07) | (−13.19) | (1.82) | |||
6 | 5.86 | −0.49 | −0.07 | 0.40 | 2.56 | −0.51 | 0.05 | 0.40 |
(3.14) | (−17.54) | (−0.10) | (0.86) | (−11.55) | (0.81) | |||
7 | 4.72 | −0.51 | 0.49 | 0.41 | −0.43 | −0.56 | 0.11 | 0.41 |
(2.44) | (−18.15) | (0.72) | (−0.14) | (−12.77) | (1.76) | |||
8 | 3.22 | −0.53 | 1.20 | 0.43 | −3.06 | −0.61 | 0.16 | 0.43 |
(1.61) | (−18.61) | (1.65) | (−0.99) | (−13.30) | (2.51) | |||
9 | 4.92 | −0.49 | 0.23 | 0.39 | 0.93 | −0.52 | 0.08 | 0.39 |
(2.61) | (−17.38) | (0.33) | (0.31) | (−11.72) | (1.21) | |||
High | 2.73 | −0.50 | 0.61 | 0.40 | −2.15 | −0.55 | 0.11 | 0.40 |
(1.45) | (−17.70) | (0.88) | (−0.72) | (−12.29) | (1.74) | |||
High–Low | −4.49 | −0.05 | 0.31 | 0.01 | −5.53 | −0.06 | 0.03 | 0.01 |
(−3.61) | (−3.22) | (1.15) | (−3.29) | (−2.77) | (0.94) | |||
TLS | 11.88 | −0.09 | 0.43 | 0.01 | 7.52 | −0.14 | 0.09 | 0.01 |
(3.58) | (−1.86) | (0.35) | (1.42) | (−1.85) | (0.86) |
Rank | BM Decile Portfolios | MA(20) Timing Portfolios | MAPs | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Ave Ret | Std Dev | Skew | t | Ave Ret | Std Dev | Skew | t | Ave Ret | Std Dev | Skew | t | |
Low | −0.53 | 20.78 | −0.45 | −0.06 | 4.31 | 16.94 | 0.01 | 0.62 | 4.22 | 7.02 | 0.33 | 1.47 |
2 | 1.68 | 21.79 | −0.30 | 0.19 | 10.07 | 10.94 | 1.74 | 2.25 | 7.57 | 13.07 | 1.74 | 1.42 |
3 | 2.10 | 26.75 | −0.25 | 0.19 | 2.44 | 24.12 | −0.58 | 0.25 | −0.25 | 5.58 | 0.92 | −0.11 |
4 | 2.41 | 25.37 | −0.24 | 0.23 | 10.17 | 14.66 | 1.67 | 1.70 | 6.93 | 14.02 | 1.69 | 1.21 |
5 | 0.48 | 27.54 | −0.62 | 0.04 | 7.44 | 13.93 | 0.47 | 1.31 | 6.01 | 14.94 | 1.45 | 0.99 |
6 | 1.80 | 28.38 | −0.49 | 0.16 | 9.07 | 15.86 | 1.16 | 1.40 | 6.47 | 15.42 | 1.41 | 1.03 |
7 | 0.48 | 29.43 | −0.45 | 0.04 | 4.70 | 16.32 | 0.08 | 0.71 | 3.39 | 13.41 | 0.92 | 0.62 |
8 | 0.52 | 30.35 | −0.59 | 0.04 | 5.97 | 19.34 | 0.77 | 0.76 | 4.63 | 13.11 | 1.16 | 0.87 |
9 | 0.67 | 31.17 | −0.57 | 0.05 | 7.78 | 19.22 | 1.03 | 0.99 | 6.17 | 13.88 | 1.80 | 1.09 |
High | −0.81 | 32.97 | −0.53 | −0.06 | 6.77 | 16.41 | 1.63 | 1.01 | 6.84 | 19.27 | 1.99 | 0.87 |
High–Low | −0.94 | 12.81 | −0.55 | −0.18 | 1.76 | 7.90 | −0.28 | 0.55 | 2.25 | 15.05 | 2.15 | 0.37 |
(−0.18) | (0.99) | (0.45) | ||||||||||
TLS | 10.50 | 14.12 | 1.61 | 1.82 | 10.86 | 15.62 | 0.43 | 1.70 | ||||
(3.25) | (2.81) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lam, K.S.K.; Dong, L.; Yu, B. Value Premium and Technical Analysis: Evidence from the China Stock Market. Economies 2019, 7, 92. https://doi.org/10.3390/economies7030092
Lam KSK, Dong L, Yu B. Value Premium and Technical Analysis: Evidence from the China Stock Market. Economies. 2019; 7(3):92. https://doi.org/10.3390/economies7030092
Chicago/Turabian StyleLam, Keith S. K., Liang Dong, and Bo Yu. 2019. "Value Premium and Technical Analysis: Evidence from the China Stock Market" Economies 7, no. 3: 92. https://doi.org/10.3390/economies7030092
APA StyleLam, K. S. K., Dong, L., & Yu, B. (2019). Value Premium and Technical Analysis: Evidence from the China Stock Market. Economies, 7(3), 92. https://doi.org/10.3390/economies7030092