Global Tangerine Trade Market: Revealed Competitiveness and Market Powers
Abstract
1. Introduction
2. Competitiveness of Agricultural Products in International Trade
2.1. Export Competitive Advantage
2.2. Marketing Power
2.3. Global Production and Trade of Tangerines
3. Materials and Methods
3.1. Revealed Competitiveness: RC
3.2. Market Power of Residual Demand
3.3. Data Source
4. Results
4.1. Relative Trade Competitive Advantage
4.2. Heterogeneous Segmentation Variables of Potential Markets
4.3. Empirical Tests and Analysis of RDE
5. Discussion
5.1. Grouping the Revealed Competitiveness Index and Its Implications
5.2. Empirical Analysis of Market Power
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alamri, Y., & Saghaian, S. (2016, February 4–7). Measuring the intensity of competition among rice exporters to Saudi Arabia [Conference session]. Annual Meeting, Mobile, Alabama. [Google Scholar] [CrossRef]
- Alviarez, V. I., Fioretti, M., Kikkawa, K., & Morlacco, M. (2023). Two-sided market power in firm-to-firm trade. Available online: https://www.nber.org/papers/w31253 (accessed on 30 April 2025).
- Asgharizadeh, E., Yazdi, M. T., & Balani, A. M. (2019). An output-oriented classification of multiple attribute decision-making techniques based on fuzzy c-means clustering method. International Transactions in Operational Research, 26(6), 2476–2493. [Google Scholar] [CrossRef]
- Bahrami, F., Shahmoradi, B., Noori, J., Turkina, E., & Bahrami, H. (2023). Economic complexity and the dynamics of regional competitiveness a systematic review. Competitiveness Review: An International Business Journal, 33(4), 711–744. [Google Scholar] [CrossRef]
- Bai, C. G., Dhavale, D., & Sarkis, J. (2016). Complex investment decisions using rough set and fuzzy c-means: An example of investment in green supply chains. European Journal of Operational Research, 248(2), 507–521. [Google Scholar] [CrossRef]
- Balassa, B. (1965). Trade liberalisation and “revealed” comparative advantage. The Manchester School, 33(2), 99–123. [Google Scholar] [CrossRef]
- Benkovskis, K., & Worz, J. (2018). What drives the market share changes? Price versus non-price factors. Structural Change and Economic Dynamics, 45, 9–29. [Google Scholar] [CrossRef]
- Besedeš, T., & Prusa, T. J. (2017). The hazardous effects of antidumping. Economic Inquiry, 55(1), 9–30. [Google Scholar] [CrossRef]
- Bojnec, S., & Ferto, I. (2016). Export competitiveness of the European Union in fruit and vegetable products in the global markets. Agricultural Economics/Zemědělská Ekonomika, 62(7). [Google Scholar] [CrossRef]
- Cameron, M., Viviers, W., & Steenkamp, E. (2017). Breaking the ‘big data’ barrier when selecting agricultural export markets: An innovative approach. Agrekon, 56(2), 139–157. [Google Scholar] [CrossRef]
- Carr, J. A., D’Odorico, P., Suweis, S., & Seekell, D. A. (2016). What commodities and countries impact inequality in the global food system? Environmental Research Letters, 11(9), 095013. [Google Scholar] [CrossRef]
- Chi, S. Y., & Chien, L. H. (2023). Why defuzzification matters: An empirical study of fresh fruit supply chain management. European Journal of Operational Research, 311(2), 648–659. [Google Scholar] [CrossRef]
- Chi, S. Y., Hwang, T. C., & Chien, L. H. (2023). Business policy and competitiveness of farmers’ organizations-empirical evidence from Taiwan. Agriculture, 13(3), 593. [Google Scholar] [CrossRef]
- Costinot, A., Donaldson, D., Vogel, J., & Werning, I. (2015). Comparative advantage and optimal trade policy. The Quarterly Journal of Economics, 130(2), 659–702. [Google Scholar] [CrossRef]
- Danna-Buitrago, J. P., & Stellian, R. (2022). A new class of revealed comparative advantage indexes. Open Economies Review, 33(3), 477–503. [Google Scholar] [CrossRef]
- del Valle, A. R., & Fernández-Vázquez, E. (2024). Analyzing market power of the agricultural industry in Asia. Economic Analysis and Policy, 81, 652–669. [Google Scholar] [CrossRef]
- De Pablo-Valenciano, J., Giacinti-Battistuzzi, M. A., Tassile, V., & Garcia-Azcarate, T. (2017). Changes in the business model for Spanish fresh tomato trade. Spanish Journal of Agricultural Research, 15(1), e0101. [Google Scholar] [CrossRef]
- Fader, M., Gerten, D., Krause, M., Lucht, W., & Cramer, W. (2013). Spatial decoupling of agricultural production and consumption: Quantifying dependences of countries on food imports due to domestic land and water constraints. Environmental Research Letters, 8(1), 014046. [Google Scholar] [CrossRef]
- FAOSTAT. (2021). FAOSTAT. Available online: https://www.fao.org/faostat/en/#data/TCL (accessed on 5 September 2023).
- Felt, M. H., Gervais, J. P., & Larue, B. (2011). Market power and import bans: The case of Japanese pork imports. Agribusiness, 27(1), 47–61. [Google Scholar] [CrossRef]
- Ferto, I., & Hubbard, L. J. (2003). Revealed comparative advantage and competitiveness in Hungarian agri-food sectors. World Economy, 26(2), 247–259. [Google Scholar] [CrossRef]
- Gafarova, G., Perekhozhuk, O., & Glauben, T. (2023). The oligopolistic behavior of Kazakh and Russian wheat exporters in the South Caucasus: Evidence from a residual demand elasticity analysis. Journal of Industry, Competition and Trade, 23(1), 1–32. [Google Scholar] [CrossRef]
- Go, Y. H., & Lau, W. Y. (2024). Terms of trade or market power? Further evidence from dynamic spillovers in return and volatility between Malaysian crude palm oil and foreign exchange markets. North American Journal of Economics and Finance, 73, 102178. [Google Scholar] [CrossRef]
- Goldberg, P. K., & Knetter, M. M. (1999). Measuring the intensity of competition in export markets. Journal of International Economics, 47(1), 27–60. [Google Scholar] [CrossRef]
- Gouel, C., & Laborde, D. (2018). The crucial role of international trade in adaptation to climate change. Available online: https://www.nber.org/papers/w25221 (accessed on 30 April 2025).
- Graubner, M., Salhofer, K., & Tribl, C. (2021). A line in space: Pricing, location, and market power in agricultural product markets. Annual Review of Resource Economics, 13, 85–107. [Google Scholar] [CrossRef]
- Gullstrand, J., & Persson, M. (2015). How to combine high sunk costs of exporting and low export survival. Review of World Economics, 151, 23–51. [Google Scholar] [CrossRef]
- Istudor, N., Constantin, M., Ignat, R., Chiripuci, B. C., & Petrescu, I. E. (2022). The complexity of agricultural competitiveness: Going beyond the balassa index. Journal of Competitiveness, 14(4), 61–77. [Google Scholar] [CrossRef]
- Kopp, T., & Brümmer, B. (2017). Traders’ market power along Indonesian rubber value chains. China Agricultural Economic Review, 9(2), 169–187. [Google Scholar] [CrossRef]
- Laursen, K. (2015). Revealed comparative advantage and the alternatives as measures of international specialization. Eurasian Business Review, 5, 99–115. [Google Scholar] [CrossRef]
- Martin, W. (2019). Economic growth, convergence, and agricultural economics. Agricultural Economics, 50, 7–27. [Google Scholar] [CrossRef]
- Mavrogiannis, M., Bourlakis, M. A., Dawson, P. J., & Ness, M. R. (2008). Assessing export performance in the Greek food and beverage industry—An integrated structural equation model approach. British Food Journal, 110(6–7), 638–654. [Google Scholar] [CrossRef]
- Mayer, T., Melitz, M. J., & Ottaviano, G. I. (2021). Product mix and firm productivity responses to trade competition. Review of Economics and Statistics, 103(5), 874–891. [Google Scholar] [CrossRef]
- Mizik, T. (2021). Agri-Food Trade Competitiveness: A Review of the Literature. Sustainability, 13(20), 11235. [Google Scholar] [CrossRef]
- Mondliwa, P., Roberts, S., & Ponte, S. (2021). Competition and power in global value chains. Competition & Change, 25(3–4), 328–349. [Google Scholar] [CrossRef]
- Nayak, J., Naik, B., & Behera, H. S. (2015). Fuzzy C-Means (FCM) clustering algorithm: A decade review from 2000 to 2014. In L. C. Jain, H. S. Behera, J. K. Mandal, & D. P. Mohapatra (Eds.), Computational intelligence in data mining—Volume 2. Springer. [Google Scholar]
- Pall, Z., Perekhozhuk, O., Glauben, T., Prehn, S., & Teuber, R. (2014). Residual demand measures of market power of Russian wheat exporters. Agricultural Economics, 45(3), 381–391. [Google Scholar] [CrossRef]
- Peterson, E. B., Grant, J. H., & Rudi-Polloshka, J. (2018). Survival of the fittest: Export duration and failure into united states fresh fruit and vegetable markets. American Journal of Agricultural Economics, 100(1), 23–45. [Google Scholar] [CrossRef]
- Pinilla, V., & Rayes, A. (2019). How Argentina became a super-exporter of agricultural and food products during the First Globalisation (1880–1929). Cliometrica, 13(3), 443–469. [Google Scholar] [CrossRef]
- Remeikiene, R., Rozsa, Z., Gaspareniene, L., & Pencík, J. (2018). Assessment of the impact of the international trade in agricultural products on the EU economic growth. E & M Ekonomie a Management, 21(4), 33–47. [Google Scholar] [CrossRef]
- Roosta, R. A., Moghaddasi, R., & Hosseini, S. S. (2017). Export target markets of medicinal and aromatic plants. Journal of Applied Research on Medicinal and Aromatic Plants, 7, 84–88. [Google Scholar] [CrossRef]
- Rousseau, R. (2019). Balassa = revealed competitive advantage = activity. Scientometrics, 121(3), 1835–1836. [Google Scholar] [CrossRef]
- Scheelbeek, P. F. D., Moss, C., Kastner, T., Alae-Carew, C., Jarmul, S., Green, R., Taylor, A., Haines, A., & Dangour, A. D. (2020). United Kingdom’s fruit and vegetable supply is increasingly dependent on imports from climate-vulnerable producing countries. Nature Food, 1(11), 705. [Google Scholar] [CrossRef]
- Silveira, J. W., & Resende, M. (2020). Competition in the international niobium market: A residual demand approach. Resources Policy, 65, 101564. [Google Scholar] [CrossRef]
- Son, E., & Lim, S. S. (2019). Market power of genetically modified soybeans traded between the United States and Korea. Journal of Korea Trade, 23(6), 131–144. [Google Scholar] [CrossRef]
- Stellian, R., Ojeda-Joya, J. N., & Danna-Buitrago, J. P. (2024). Time stationarity, shape and ordinal ranking bias of RCA indexes: A new set of measures. Review of World Economics, 160(2), 675–711. [Google Scholar] [CrossRef]
- Sun, C., & Zhou, X. (2018). Imperfect competition in China’s import market of roundwood and lumber products. Journal of Agricultural and Applied Economics, 50(2), 149–168. [Google Scholar] [CrossRef]
- Uhl, K. M., Perekhozhuk, O., & Glauben, T. (2019). Russian market power in international wheat exports: Evidence from a residual demand elasticity analysis. Journal of Agricultural & Food Industrial Organization, 17(2), 20160026. [Google Scholar] [CrossRef]
- Wan, X.-Y. (2017). An analysis of measuring market power in the international iron ore trade. Journal of Interdisciplinary Mathematics, 20(3), 749–759. [Google Scholar] [CrossRef]
- Wang, W., Liang, Y., Ru, Z., Guo, H., & Zhao, B. (2023). World forage import market: Competitive structure and market forces. Agriculture, 13(9), 1695. [Google Scholar] [CrossRef]
- Yan, J., Xue, Y., Quan, C., Wang, B., & Zhang, Y. (2023). Oligopoly in grain production and consumption: An empirical study on soybean international trade in China. Economic Research-Ekonomska Istraživanja, 36(2), 2142818. [Google Scholar] [CrossRef]
- Yuret, T. (2016). International trade in ideas. Scientometrics, 107, 899–916. [Google Scholar] [CrossRef]
- Zhao, C., Liu, B., Piao, S., Wang, X., Lobell, D. B., Huang, Y., Huang, M., Yao, Y., Bassu, S., & Ciais, P. (2017). Temperature increase reduces global yields of major crops in four independent estimates. Proceedings of the National Academy of Sciences, 114(35), 9326–9331. [Google Scholar] [CrossRef]
Country Code | AVE-Pro | AVE-Export | Export 2008 | Export 2012 | Export 2016 | Export 2021 |
---|---|---|---|---|---|---|
ESP | 7.1% | 36.01% | 52.85% | 40.01% | 32.19% | 28.32% |
CHN | 52.9% | 17.04% | 9.12% | 17.34% | 20.49% | 16.81% |
TUR | 3.8% | 7.24% | 5.87% | 6.80% | 7.20% | 7.53% |
MAR | 2.9% | 6.96% | 6.26% | 5.97% | 6.70% | 7.54% |
ZAF | 0.8% | 4.27% | 2.10% | 2.62% | 4.23% | 8.64% |
PAK | 1.8% | 2.96% | 1.43% | 3.42% | 3.53% | 2.66% |
NLD | 0.0% | 2.63% | 3.36% | 2.03% | 2.78% | 3.18% |
PER | 1.1% | 2.75% | 1.24% | 1.82% | 3.03% | 3.80% |
CHL | 0.3% | 2.42% | 0.56% | 1.73% | 2.99% | 3.29% |
ISR | 0.5% | 1.91% | 1.56% | 1.71% | 1.49% | 0.97% |
AUS | 0.4% | 1.64% | 0.70% | 1.27% | 2.52% | 2.38% |
ITA | 2.3% | 1.46% | 2.21% | 1.91% | 0.98% | 0.40% |
USA | 2.3% | 1.51% | 1.43% | 1.38% | 1.39% | 1.78% |
ARG | 1.4% | 1.26% | 0.82% | 1.33% | 1.58% | 2.32% |
Subtotal | 77.8% | 90.06% | 89.53% | 89.33% | 91.10% | 89.62% |
Variable Type | Variable Symbols | Variable Name | Data Sources |
---|---|---|---|
Dependent variable (y) | Import value (unit: 1000 USD/ton) | FAOSTAT database, calculations given | |
Core variables | Import quantity (unit: ton) | FAOSTAT database | |
The country’s total import minus that of the importing country | FAOSTAT database, calculations given | ||
GDP per capita (constant 2015 USD) of the importing country | World Development Indicators | ||
Domestic total population | World Development Indicators | ||
Consumer price index (2010 = 100) for export-competing country | World Development Indicators | ||
Real effective exchange rate index (2010 = 100) | World Development Indicators | ||
Official exchange rate (LCU per USD, period average) | World Development Indicators | ||
Time (T) | T | Time dummy, 2008 = 0, 2009 = 1,… | Dummy |
Cluster | Mean | SD | Max | Min | RC 2021 |
---|---|---|---|---|---|
A | −0.83 | 0.53 | −0.49 | −1.32 | −0.87 |
B | −2.03 | 2.37 | −0.97 | −4.35 | −2.08 |
C | −1.75 | 1.48 | −0.85 | −2.87 | −1.62 |
D | −11.96 | 4.93 | −3.69 | −18.65 | −11.77 |
Destination | Exporting Country | 2008 | 2010 | 2012 | 2014 | 2016 | 2018 | 2020 | 2021 |
---|---|---|---|---|---|---|---|---|---|
NLD | South Africa | 9.4 | 7.66 | 10.97 | 14.3 | 20.62 | 23.14 | 35.67 | 41.72 |
Morocco | 11.68 | 14.35 | 7.74 | 12.1 | 18.47 | 25.64 | 15.84 | 18.57 | |
Peru | 5.83 | 6.45 | 9.62 | 8.64 | 7.73 | 9.95 | 10.61 | 11.91 | |
Spain | 41.07 | 41.65 | 42.74 | 39.97 | 33.38 | 15.86 | 14.54 | 9.76 | |
Others | 32.02 | 29.89 | 28.93 | 24.99 | 19.8 | 25.41 | 23.34 | 18.04 | |
USA | Chile | 14.7 | 25.2 | 37.1 | 29.6 | 41.4 | 48.3 | 44 | 46.4 |
Peru | 7.9 | 10.4 | 12 | 16.8 | 19 | 19.7 | 26.3 | 21.4 | |
Morocco | 13.2 | 14.4 | 10.1 | 23.9 | 11.7 | 13.8 | 11 | 11.5 | |
South Africa | 4.3 | 5.5 | 4.8 | 4.3 | 4.5 | 3.6 | 7.7 | 10 | |
Spain | 48.3 | 38 | 30.7 | 18.2 | 8.7 | 3.4 | 0.1 | 0.1 | |
Others | 11.6 | 6.5 | 5.3 | 7.2 | 14.7 | 11.2 | 10.9 | 10.6 | |
GBR | Spain | 46.5 | 43.8 | 48.4 | 45.4 | 44.1 | 38 | 37.7 | 33.8 |
South Africa | 16.6 | 17 | 17 | 16.9 | 19.6 | 23.1 | 26.3 | 28.9 | |
Morocco | 6.1 | 7.8 | 6.4 | 10.7 | 15.1 | 17.8 | 14.6 | 19.3 | |
Peru | 5.4 | 5.6 | 8.5 | 8.4 | 8.4 | 10 | 8.1 | 10.4 | |
Others | 25.4 | 25.8 | 19.7 | 18.6 | 12.8 | 11.1 | 13.3 | 7.6 |
Destination | Residual Demand Elasticity | South Africa’s Market Share (2021) | Morocco’s Market Share (2021) | Other Competitors (2021) |
---|---|---|---|---|
NLD | −0.292 | 41.7 | 18.6 | Peru (11.9), Spain (9.8) |
USA | −0.358 | 10.0 | 11.5 | Chile (46.4), Peru (21.4) |
GBR | −0.470 | 28.9 | 19.3 | Spain (33.8), Peru (10.4) |
Destination | NLD | USA | GBR | |||
---|---|---|---|---|---|---|
Variable | Coefficient | t-Statistic | Coefficient | t-Statistic | Coefficient | t-Statistic |
−0.292 ** | −2.926 | −0.358 *** | −5.769 | −0.470 ** | −2.935 | |
−0.189 * | −2.143 | 1.172 *** | 5.976 | 0.301 *** | 5.229 | |
2.426 ** | 2.897 | |||||
−21.322 ** | −4.547 | 33.420 ** | 4.033 | |||
0.021 | 0.797 | 0.047 *** | 6.218 | |||
−1.096 ** | −4.627 | 3.748 *** | 5.471 | −0.767 ** | −2.709 | |
−1.507 ** | −4.783 | −0.469 ** | −3.009 | |||
Time | 0.181 ** | 4.613 | −0.353 *** | −4.240 | ||
Adj.R2 | 0.522 | 0.304 | 0.889 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chi, S.-Y.; Chang, C.-C.; Chien, L.-H. Global Tangerine Trade Market: Revealed Competitiveness and Market Powers. Economies 2025, 13, 203. https://doi.org/10.3390/economies13070203
Chi S-Y, Chang C-C, Chien L-H. Global Tangerine Trade Market: Revealed Competitiveness and Market Powers. Economies. 2025; 13(7):203. https://doi.org/10.3390/economies13070203
Chicago/Turabian StyleChi, Shu-Yi, Chiao-Chun Chang, and Li-Hsien Chien. 2025. "Global Tangerine Trade Market: Revealed Competitiveness and Market Powers" Economies 13, no. 7: 203. https://doi.org/10.3390/economies13070203
APA StyleChi, S.-Y., Chang, C.-C., & Chien, L.-H. (2025). Global Tangerine Trade Market: Revealed Competitiveness and Market Powers. Economies, 13(7), 203. https://doi.org/10.3390/economies13070203