Monetary Policy Transmission Under Global Versus Local Geopolitical Risk: Exploring Time-Varying Granger Causality, Frequency Domain, and Nonlinear Territory in Tunisia
Abstract
1. Introduction
2. Literature Review
2.1. Theoretical Deliberations
2.1.1. Irreversibility Theory
2.1.2. Credit Transmission Channel Theory
2.1.3. Central Bank Communication and Credibility
2.2. Empirical Literature
3. Research Methodology
3.1. Data Collection
3.1.1. The Geopolitical Risk Index
3.1.2. The Dependent Variables and Controls
3.2. Data Properties
3.3. Econometric Modeling
3.3.1. Time-Varying Granger Causality
3.3.2. (Non)linear Local Projections
4. Results and Discussion
4.1. Unit Root Test
4.2. Connection/Disconnection Episodes of the Interest Rate: Time-Varying Granger Causality Results
4.3. Neural Network VAR Nonlinear Causality
4.4. Bivariate Wavelet Coherence Analysis
4.5. Connection/Disconnection and Effectiveness of Monetary Policy: Results of Interacted LPs
4.6. Effectiveness of Monetary Policy Under Test: Results of the Long-Run Dynamics of VECM
4.6.1. VECM with an Interaction Term of the Money Market Rate and Global Geopolitical Risk
0.775811 × LNGPR_{t−1} + 0.147131 × TMM_GPR_{t−1} + 5.917379 + CointEq1
4.6.2. VECM with an Interaction Term of Money Market Rate and Local Geopolitical Risk
4.7. Discussion
4.7.1. Irreversibility Theory
- Improvement in aggregate production—Higher interest rates may create a more stable macroeconomic environment by reducing speculative activity and inflationary pressures in the long run. This stability could encourage firms to invest in productive activities despite higher borrowing costs, especially if uncertainty is reduced;
- Increased consumer prices—If firms pass on higher borrowing costs to consumers via higher prices, it reflects rigidity in pricing decisions. This aligns with the irreversibility theory, where firms, once committed to production and pricing strategies, find it difficult to reverse course quickly in response to changing monetary policy.
4.7.2. Credit Channel Theory
- Bank lending channel—Tightening interest rates reduce bank reserves and loanable funds, increasing the cost of borrowing. This might initially constrain investment and production, but over time, firms that survive the credit squeeze become more efficient, leading to long-term improvements in aggregate production;
- Balance sheet channel: Higher interest rates increase the cost of servicing debt, worsening the financial health of borrowers. This could lead firms to pass on these costs to consumers, contributing to higher consumer prices. Additionally, households might reduce consumption due to higher debt burdens, yet this impact seems overshadowed by inflationary dynamics.
4.8. Robustness Check: Investor Sentiment Sensitivity to Monetary Policy Changes
5. Concluding Notes
Supplementary Materials
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ADF | Augmented Dickey–Fuller |
AIC | Akaike Information Criterion |
CBT | Central Bank of Tunisia |
CE | Cointegrating Equation |
COVID | Coronavirus Infectious Disease |
CPILOGDIFF | Consumer Price Index in First-Difference Logarithm |
DSGE | Dynamic Stochastic General Equilibrium |
ECT | Error Correction Term |
FE | Forward Expanding Window |
GPR_TUNLOGDIFF | Local Geopolitical Risk in first-difference Logarithm |
GPRLOGDIFF | Global Geopolitical Risk in first-difference Logarithm |
IFS | International Financial Statistics |
IPILOGDIFF | Industrial Production in first-difference logarithm |
IRFs | Impulse Response Functions |
IS1 | Investor Sentiment |
LA VAR | Lag Augmented Vector Autoregressive |
LNCPI | Consumer Price Index in Logarithm |
LNGPR | Global Geopolitical Risk in Logarithm |
LNGPR_TUN | Local Geopolitical Risk in Logarithm |
LNIPIT | Industrial Production in Logarithm |
LNM2TND | Monetary Aggregate 2 in Logarithm |
LNTCER | Real Effective Exchange Rate in Logarithm |
LPs | Local Projections |
M2TNDLOGDIFF | Monetary Aggregate 2 in First-Difference Logarithm |
MAN | Manufacturing |
NIS | National Institute of Statistics |
PCA | Principal Component Analysis |
PP | Phillips–Perron |
RE | Recursive Evolving Window |
RO | Rolling Window |
SC | Schwarz Criterion |
TCERLOGDIFF | Real Effective Exchange Rate in first-difference Logarithm |
TMM | Money Market Rate |
TMMDIFF | Money Market Rate in first difference |
TND | Tunisian Dinar |
US | United States |
USD | United States Dollar |
VAR | Vector Autoregressive |
VECM | Vector Error Correction Model |
Appendix A
Appendix A.1
UNIT ROOT TEST TABLE (PP) | ||||||||
---|---|---|---|---|---|---|---|---|
Null Hypothesis: the variable is nonstationary | ||||||||
At Level | ||||||||
LNIPIT | LNCPI | LNM2TND | TMM | LNTCER | LNGPR | LNGPR_TUN | ||
With Constant | t-Statistic | −3.9169 | 3.0317 | −1.2611 | −1.7358 | 1.5059 | −5.6212 | −7.8735 |
Prob. | 0.0022 | 1.0000 | 0.6483 | 0.4122 | 0.9993 | 0.0000 | 0.0000 | |
*** | no | no | no | no | *** | *** | ||
With Constant and Trend | t-Statistic | −6.7627 | 1.6769 | −0.9652 | 0.4786 | −1.9803 | −5.7019 | −8.1825 |
Prob. | 0.0000 | 1.0000 | 0.9458 | 0.9992 | 0.6093 | 0.0000 | 0.0000 | |
*** | no | no | no | no | *** | *** | ||
Without Constant and Trend | t-Statistic | 1.0094 | 16.8441 | 13.2768 | −0.6814 | −2.7989 | −0.1701 | −6.4268 |
Prob. | 0.9177 | 1.0000 | 1.0000 | 0.4213 | 0.0052 | 0.6241 | 0.0000 | |
no | no | no | no | *** | no | *** | ||
At First Difference | ||||||||
d(LNIPIT) | d(LNCPI) | d(LNM2TND) | d(TMM) | d(LNTCER) | d(LNGPR) | d(LNGPR_TUN) | ||
With Constant | t-Statistic | −56.1953 | −13.4437 | −21.1482 | −13.8814 | −15.5335 | −31.7360 | −41.4198 |
Prob. | 0.0001 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0001 | |
*** | *** | *** | *** | *** | *** | *** | ||
With Constant and Trend | t-Statistic | −83.9170 | −13.6979 | −20.8271 | −14.1820 | −15.6408 | −31.6253 | −41.2756 |
Prob. | 0.0001 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0001 | |
*** | *** | *** | *** | *** | *** | *** | ||
Without Constant and Trend | t-Statistic | −49.3566 | −8.2853 | −18.0517 | −13.9004 | −15.1685 | −31.8156 | −41.5243 |
Prob. | 0.0001 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0001 | |
*** | *** | *** | *** | *** | *** | *** | ||
UNITROOTTESTTABLE (ADF) | ||||||||
Null Hypothesis: the variable is stationary | ||||||||
At Level | ||||||||
LNIPIT | LNCPI | LNM2TND | TMM | LNTCER | LNGPR | LNGPR_TUN | ||
With Constant | t-Statistic | −2.8165 | 2.6154 | −1.4502 | −1.3709 | 1.4832 | −5.9467 | −4.4626 |
Prob. | 0.0571 | 1.0000 | 0.5575 | 0.5967 | 0.9993 | 0.0000 | 0.0003 | |
* | no | no | no | no | *** | *** | ||
With Constant and Trend | t-Statistic | −0.4333 | 1.3959 | −1.6424 | 0.5761 | −1.8407 | −6.0146 | −7.8762 |
Prob. | 0.9860 | 1.0000 | 0.7738 | 0.9995 | 0.6825 | 0.0000 | 0.0000 | |
no | no | no | no | no | *** | *** | ||
Without Constant and Trend | t-Statistic | 2.0226 | 10.1470 | 2.4372 | −0.4301 | −3.0322 | −0.2960 | −3.1723 |
Prob. | 0.9900 | 1.0000 | 0.9966 | 0.5273 | 0.0025 | 0.5786 | 0.0016 | |
no | no | no | no | *** | no | *** | ||
At First Difference | ||||||||
d(LNIPIT) | d(LNCPI) | d(LNM2TND) | d(TMM) | d(LNTCER) | d(LNGPR) | d(LNGPR_TUN) | ||
With Constant | t-Statistic | −7.1762 | −13.3547 | −2.9650 | −10.7848 | −15.5572 | −17.0047 | −13.3922 |
Prob. | 0.0000 | 0.0000 | 0.0395 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | |
*** | *** | ** | *** | *** | *** | *** | ||
With Constant and Trend | t-Statistic | −7.8624 | −13.6912 | −3.2194 | −11.1417 | −15.7319 | −16.9768 | −13.3699 |
Prob. | 0.0000 | 0.0000 | 0.0827 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | |
*** | *** | * | *** | *** | *** | *** | ||
Without Constant and Trend | t-Statistic | −6.8185 | −0.6343 | −1.0028 | −10.8174 | −15.1615 | −17.0330 | −13.4153 |
Prob. | 0.0000 | 0.4420 | 0.2833 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | |
*** | no | no | *** | *** | *** | *** |
UNIT ROOT TEST RESULTS TABLE (KPSS) | ||||||||
---|---|---|---|---|---|---|---|---|
Null Hypothesis: the variable is stationary | ||||||||
At Level | ||||||||
LNIPIT | LNCPI | LNM2TND | TMM | LNTCER | LNGPR | LNGPR_TUN | ||
With Constant | t-Statistic | 1.6823 | 2.1075 | 2.1255 | 1.2531 | 2.0436 | 0.2273 | 0.4129 |
Prob. | *** | *** | *** | *** | *** | no | * | |
With Constant and Trend | t-Statistic | 0.4601 | 0.4614 | 0.3400 | 0.3817 | 0.1816 | 0.1393 | 0.0729 |
Prob. | *** | *** | *** | *** | ** | * | no | |
Without Constant and Trend | t-Statistic | ======= | ======= | ======= | ======= | ======= | ======= | ======= |
Prob. | ||||||||
At First Difference | ||||||||
d(LNIPIT) | d(LNCPI) | d(LNM2TND) | d(TMM) | d(LNTCER) | d(LNGPR) | d(LNGPR_TUN) | ||
With Constant | t-Statistic | 0.3219 | 0.9203 | 0.2445 | 0.6290 | 0.3615 | 0.0751 | 0.1042 |
Prob. | no | *** | no | ** | * | no | no | |
With Constant and Trend | t-Statistic | 0.0654 | 0.4173 | 0.0944 | 0.0859 | 0.0741 | 0.0638 | 0.1006 |
Prob. | no | *** | no | no | no | no | no | |
Without Constant and Trend | t-Statistic | ======= | ======= | ======= | ======= | ======= | ======= | ======= |
Prob. |
Appendix A.2
UNIT ROOT TEST TABLE (PP) | ||
---|---|---|
At Level | ||
IS1 | ||
With Constant | t-Statistic | −1.4953 |
Prob. | 0.5342 | |
no | ||
With Constant and Trend | t-Statistic | −3.3420 |
Prob. | 0.0625 | |
* | ||
Without Constant and Trend | t-Statistic | −1.5060 |
Prob. | 0.1235 | |
no | ||
At First Difference | ||
d(IS1) | ||
With Constant | t-Statistic | −16.1866 |
Prob. | 0.0000 | |
*** | ||
With Constant and Trend | t-Statistic | −16.2158 |
Prob. | 0.0000 | |
*** | ||
Without Constant and Trend | t-Statistic | −16.2182 |
Prob. | 0.0000 | |
*** | ||
UNIT ROOT TEST TABLE (ADF) | ||
At Level | ||
IS1 | ||
With Constant | t-Statistic | −1.6809 |
Prob. | 0.4394 | |
no | ||
With Constant and Trend | t-Statistic | −3.4282 |
Prob. | 0.0505 | |
* | ||
Without Constant and Trend | t-Statistic | −1.6896 |
Prob. | 0.0862 | |
* | ||
At First Difference | ||
d(IS1) | ||
With Constant | t-Statistic | −16.1804 |
Prob. | 0.0000 | |
*** | ||
With Constant and Trend | t-Statistic | −16.2158 |
Prob. | 0.0000 | |
*** | ||
Without Constant and Trend | t-Statistic | −16.2123 |
Prob. | 0.0000 | |
*** |
1 | For further details on how GPR is derived, we refer readers to Caldara and Iacoviello (2022). |
2 | Trying an optimizer like the False Nearest Neighbor is not appropriate because the series are not sufficiently long. |
References
- Agénor, P. R., & Montiel, P. (2007). Credit market imperfections and the monetary transmission mechanism part II: Flexible exchange rates. Centre for Growth and Business Cycle Research, Economic Studies, University of Manchester. [Google Scholar]
- Agoraki, M. E. K., Kouretas, G. P., & Laopodis, N. T. (2022). Geopolitical risks, uncertainty, and stock market performance. Economic and Political Studies, 10(3), 253–265. [Google Scholar] [CrossRef]
- Alpanda, S., Granziera, E., & Zubairy, S. (2021). State dependence of monetary policy across business, credit and interest rate cycles. European Economic Review, 140, 103936. [Google Scholar] [CrossRef]
- Andersson, M., Dillén, H., & Sellin, P. (2006). Monetary policy signaling and movements in the term structure of interest rates. Journal of Monetary Economics, 53(8), 1815–1855. [Google Scholar] [CrossRef]
- Ante, L., & Saggu, A. (2024). Time-varying bidirectional causal relationships between transaction fees and economic activity of subsystems utilizing the ethereum blockchain network. Journal of Risk and Financial Management, 17(1), 19. [Google Scholar] [CrossRef]
- Arellano, C., Bai, Y., & Kehoe, P. (2010). Financial markets and fluctuations in uncertainty. Working Paper, No. 896. Federal Reserve Bank of Minneapolis. [Google Scholar]
- Arieff, A. (2018). Tunisia: In brief. Current Politics & Economics of Africa, 11(4), 287. [Google Scholar]
- Arieff, A., & Humud, C. E. (2011). Political transition in Tunisia (Vol. 15). Congressional Research Service. [Google Scholar]
- Arieff, A., & Humud, C. E. (2014). Political transition in Tunisia. CRS Report, RS21666. CRS. [Google Scholar]
- Arora, V., & Shi, S. (2016). Energy consumption and economic growth in the United States. Applied Economics, 48(39), 3763–3773. [Google Scholar] [CrossRef]
- Balcilar, M., Ozdemir, Z. A., Ozdemir, H., Aygun, G., & Wohar, M. E. (2022). Effectiveness of monetary policy under the high and low economic uncertainty states: Evidence from the major Asian economies. Empirical Economics, 63(4), 1741–1769. [Google Scholar] [CrossRef]
- Banerjee, A., Dolado, J., & Mestre, R. (1998). Error-correction mechanism tests for cointegration in a single-equation framework. Journal of Time Series Analysis, 19(3), 267–283. [Google Scholar] [CrossRef]
- Barnichon, R., & Matthes, C. (2018). Functional approximation of impulse responses. Journal of Monetary Economics, 99, 41–55. [Google Scholar] [CrossRef]
- Belhoula, M. M. (2024). Economic Policy Uncertainty (EPU) in emerging countries: The case of Tunisia. Journal of Accounting and Finance in Emerging Economies, 10(2), 127–138. [Google Scholar] [CrossRef]
- Ben Youssef, A. (2024). Accelerating the progress of Tunisia towards the sustainable development goals. Working Paper, PRR 53. ERF. [Google Scholar]
- Bernanke, B. (1999). The financial accelerator in a quantitative business cycle framework. In Handbook of macroeconomics. Elsevier. [Google Scholar]
- Bernanke, B. S. (1983). Irreversibility, uncertainty, and cyclical investment. The Quarterly Journal Of Economics, 98(1), 85–106. [Google Scholar] [CrossRef]
- Bernanke, B. S., & Gertler, M. (1995). Inside the black box: The credit channel of monetary policy transmission. Journal of Economic Perspectives, 9(4), 27–48. [Google Scholar] [CrossRef]
- Blinder, A. S. (2000). Central-bank credibility: Why do we care? how do we build it? American Economic Review, 90(5), 1421–1431. [Google Scholar] [CrossRef]
- Blinder, A. S. (2009). Talking about monetary policy: The virtues (and vice?) of central bank communication. BIS Working Paper, No. 274. Bank for International Settlements. [Google Scholar]
- Blinder, A. S., Ehrmann, M., Fratzscher, M., De Haan, J., & Jansen, D. J. (2008). Central bank communication and monetary policy: A survey of theory and evidence. Journal of Economic Literature, 46(4), 910–945. [Google Scholar] [CrossRef]
- Bloom, N. (2009). The impact of uncertainty shocks. Econometrica, 77(3), 623–685. [Google Scholar]
- Bloom, N. (2014). Fluctuations in uncertainty. Journal of economic Perspectives, 28(2), 153–176. [Google Scholar] [CrossRef]
- Bondarenko, Y., Lewis, V., Rottner, M., & Schüler, Y. (2024). Geopolitical risk perceptions. Journal of International Economics, 152, 104005. [Google Scholar] [CrossRef]
- Brignone, D., Gambetti, L., & Ricci, M. (2024). Geopolitical risk shocks: When the size matters. Working Paper n°2024/2972. ECB. [Google Scholar]
- Brunnermeier, M. K., & Sannikov, Y. (2014). Monetary analysis: Price and financial stability. Navigating Monetary Policy in the New Normal, 8, 61. [Google Scholar]
- Bruns, M., & Piffer, M. (2023). A new posterior sampler for Bayesian structural vector autoregressive models. Quantitative Economics, 14(4), 1221–1250. [Google Scholar] [CrossRef]
- Caldara, D., Ferrante, F., Iacoviello, M., Prestipino, A., & Queralto, A. (2024). The international spillovers of synchronous monetary tightening. Journal of Monetary Economics, 141, 127–152. [Google Scholar] [CrossRef]
- Caldara, D., & Iacoviello, M. (2022). Measuring geopolitical risk. American Economic Review, 112(4), 1194–1225. [Google Scholar] [CrossRef]
- Cepni, O., Dogru, T., & Ozdemir, O. (2023). The contagion effect of COVID-19-induced uncertainty on US tourism sector: Evidence from time-varying granger causality test. Tourism Economics, 29(4), 906–928. [Google Scholar] [CrossRef]
- Choi, S. Y., & Hadad, E. (2025). The dynamic relationship among economic and monetary policy, geopolitical risk, sentiment, and risk aversion: A TVP-VAR approach. Finance Research Letters, 72, 106532. [Google Scholar] [CrossRef]
- Christiano, L. J., Motto, R., & Rostagno, M. (2014). Risk shocks. American Economic Review, 104(1), 27–65. [Google Scholar] [CrossRef]
- Ciccarelli, M., & Mojon, B. (2010). Global inflation. The Review of Economics and Statistics, 92(3), 524–535. [Google Scholar] [CrossRef]
- Coenen, G., Ehrmann, M., Gaballo, G., Hoffmann, P., Nakov, A., Nardelli, S., Persson, E., & Strasser, G. (2017). Communication of monetary policy in unconventional times. Working Paper, WP No. 578. CFS. [Google Scholar]
- Cutcu, I., Altiner, A., & Bozkurt, E. (2025). The impact of economic policy uncertainty and geopolitical risk on environmental quality: An analysis of the environmental kuznets curve hypothesis with the novel QRPD approach. Sustainability, 17(1), 269. [Google Scholar] [CrossRef]
- Dang, B. K., Anh, H. N., & Pham, T. V. T. (2025). The Impact of policy uncertainty and economic freedom on bank stability: Global evidence. Journal of International Commerce, Economics and Policy, 2025, 2550005. [Google Scholar] [CrossRef]
- De Haan, J., & Sturm, J. E. (2019). Central bank communication. In The Oxford handbook of the economics of central banking (p. 231). Oxford University Press. [Google Scholar]
- Dickey, D. A., & Fuller, W. A. (1979). Distribution of the estimators for autoregressive time series with a unit root. Journal of the American Statistical Association, 74(366a), 427–431. [Google Scholar]
- Elliott, G., Rothenberg, T. J., & Stock, J. H. (1996). Efficient tests for an autoregressive unit root. Econometrica, 64, 813–836. [Google Scholar] [CrossRef]
- End, N., El Hamiani Khatat, M., & Kolsi, R. (2020). Tunisia monetary policy since the arab spring: The fall of the exchange rate anchor and rise of inflation targeting. Working Paper, No. 2020/167. IMF. [Google Scholar]
- Filardo, A. J. (2004). Monetary policy and asset price bubbles: Calibrating the monetary policy trade-offs. BIS Working Paper, No. 155. BIS. [Google Scholar]
- Forbes, K. J., Hjortsoe, I., & Nenova, T. (2017). Current account deficits during heightened risk: Menacing or mitigating? The Economic Journal, 127(601), 571–623. [Google Scholar] [CrossRef]
- Forbes, K. J., & Warnock, F. E. (2012). Capital flow waves: Surges, stops, flight, and retrenchment. Journal of International Economics, 88(2), 235–251. [Google Scholar] [CrossRef]
- Franconi, A. (2024). Central banking in times of high geopolitical risk. SSRN, 4728914. DNB.
- Friedman, M. (1961). The lag in effect of monetary policy. Journal of Political Economy, 69(5), 447–466. [Google Scholar] [CrossRef]
- Friedman, M. (1968). Money: Quantity theory. In D. L. Sills (Ed.), International encyclopedia of the social sciences. Macmillan Free Press. [Google Scholar]
- Friedman, M. (1970). A theoretical framework for monetary analysis. Journal of Political Economy, 78(2), 193–238. [Google Scholar] [CrossRef]
- Friedman, S. J., & Sharkey, H. (2010). A tale of two economic developments: Tunisia and Morocco. College Undergraduate Research Electronic Journal, 2010, 1–69. [Google Scholar]
- Ghali, S., & Mohnen, P. (2004, May 25–27). The Tunisian path to development: 1961–2001. World bank global conference on reducing poverty, sustaining growth: What works, what doesn’t, and why, Shanghai, China. [Google Scholar]
- Ginn, W. (2023a). Global dimensions of economic uncertainty: Evidence via global VECM. Preprint (Version 1). Available online: https://www.researchsquare.com/article/rs-3203983/v1 (accessed on 24 January 2025).
- Ginn, W. (2023b). The impact of economic policy uncertainty on stock prices. Economics Letters, 233, 111432. [Google Scholar] [CrossRef]
- Ginn, W. (2023c). World output and commodity price cycles. International Economic Journal, 37(4), 530–554. [Google Scholar] [CrossRef]
- Ginn, W., & Saadaoui, J. (2024). Monetary policy reaction to geopolitical risks: Some nonlinear evidence. Working Papers 2024.03. International Network for Economic Research—INFER. [Google Scholar]
- Gopinath, G. (2015). The international price system. No. w21646. National Bureau of Economic Research. [Google Scholar]
- Hansen, S., McMahon, M., & Tong, M. (2019). The long-run information effect of central bank communication. Journal of Monetary Economics, 108, 185–202. [Google Scholar] [CrossRef]
- He, Z., & Krishnamurthy, A. (2013). Intermediary asset pricing. American Economic Review, 103(2), 732–770. [Google Scholar] [CrossRef]
- Henry, C. (1974). Investment decisions under uncertainty: The “irreversibility effect”. The American Economic Review, 64(6), 1006–1012. [Google Scholar]
- Hmamouche, Y. (2020). NlinTS: An R package for causality detection in time series. The R Journal, 12(1), 21. [Google Scholar] [CrossRef]
- Ivanov, V., & Kilian, L. (2005). A practitioner’s guide to lag order selection for VAR impulse response analysis. Studies in Nonlinear Dynamics & Econometrics, 9(1), 1–36. [Google Scholar]
- Jallouli, F., & Yalouli, T. (2022). Monetary policy in Tunisia during the COVID-19 pandemic: A BVAR model. Journal of Financial, Accounting & Managerial Studies, 9(2), 76–92. [Google Scholar]
- Jarociński, M., & Karadi, P. (2017). Central bank information shocks. In 2017 meeting papers. No. 1193. Society for Economic Dynamics. [Google Scholar]
- Jarociński, M., & Karadi, P. (2020). Deconstructing monetary policy surprises—The role of information shocks. American Economic Journal: Macroeconomics, 12(2), 1–43. [Google Scholar] [CrossRef]
- Ji, J., Cao, Z., Zhang, C. Y., & Zheng, X. (2025). Dissecting the influence of geopolitical risks on employment decisions: The role of employment protection across countries. SSRN Working Paper, 4995635. [Google Scholar]
- Johansen, S. (1995). Identifying restrictions of linear equations with applications to simultaneous equations and cointegration. Journal of Econometrics, 69(1), 111–132. [Google Scholar] [CrossRef]
- Jordà, Ò. (2005). Estimation and inference of impulse responses by local projections. American Economic Review, 95(1), 161–182. [Google Scholar] [CrossRef]
- Jordà, Ò., & Taylor, A. M. (2025). Local projections. Journal of Economic Literature, 63(1), 59–110. [Google Scholar] [CrossRef]
- Kilian, L., Plante, M., & Richter, A. W. (2024). Geopolitical oil price risk and economic fluctuations. FRB of Dallas Working Paper, No. 2403. FRB. [Google Scholar]
- Kisswani, K. M., & Elian, M. I. (2021). Analyzing the (a) symmetric impacts of oil price, economic policy uncertainty, and global geopolitical risk on exchange rate. The Journal of Economic Asymmetries, 24, e00204. [Google Scholar] [CrossRef]
- Kohn, D. L., & Sack, B. P. (2003). Central bank talk: Does it matter and why? Finance and Economics Discussion Series (FEDS). [Google Scholar]
- Kose, M. A., Prasad, E. S., & Terrones, M. E. (2003). Financial integration and macroeconomic volatility. IMF Staff Papers, 50(Suppl. 1), 119–142. [Google Scholar] [CrossRef]
- Kurov, A. (2010). Investor sentiment and the stock market’s reaction to monetary policy. Journal of Banking & Finance, 34(1), 139–149. [Google Scholar]
- Kwiatkowski, D., Phillips, P. C., Schmidt, P., & Shin, Y. (1992). Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root? Journal of econometrics, 54(1–3), 159–178. [Google Scholar] [CrossRef]
- Laséen, S. (2020). Monetary policy surprises, central bank information shocks, and economic activity in a small open economy. Working Paper Series, No. 396. Sveriges Riksbank. [Google Scholar]
- Laumer, S., & Santos, I. M. (2024). The impact of monetary policy shocks—Do not rule out central bank information effects or economic news. Economics Letters, 237, 111634. [Google Scholar] [CrossRef]
- Lutz, C. (2015). The impact of conventional and unconventional monetary policy on investor sentiment. Journal of Banking & Finance, 61, 89–105. [Google Scholar]
- Marschner, P. F., & Ceretta, P. S. (2021). Investor sentiment, economic uncertainty, and monetary policy in Brazil. Revista Contabilidade & Finanças, 32(87), 528–540. [Google Scholar]
- Mateut, S. (2005). Trade credit and monetary policy transmission. Journal of Economic Surveys, 19(4), 655–670. [Google Scholar] [CrossRef]
- Maziarz, M. (2015). A review of the Granger-causality fallacy. The Journal of Philosophical Economics: Reflections on Economic and Social Issues, 8(2), 86–105. [Google Scholar] [CrossRef]
- Mbarek, L., Marfatia, H. A., & Juko, S. (2019). Time-varying response of treasury yields to monetary policy shocks: Evidence from the Tunisian bond market. Journal of Financial Regulation and Compliance, 27(4), 422–442. [Google Scholar] [CrossRef]
- Mignon, V., & Saadaoui, J. (2024). How do political tensions and geopolitical risks impact oil prices? Energy Economics, 129, 107219. [Google Scholar] [CrossRef]
- Mimoun, M. B., Boukhatem, J., & Raies, A. (2024). Aggregate demand and inflation response to monetary policy shocks in Tunisia. Journal of Policy Modeling, 46(3), 592–612. [Google Scholar] [CrossRef]
- Miranda-Agrippino, S., & Rey, H. (2020). US monetary policy and the global financial cycle. The Review of Economic Studies, 87(6), 2754–2776. [Google Scholar] [CrossRef]
- Monfort, A., Renne, J. P., Rüffer, R., & Vitale, G. (2003, November). Is economic activity in the G7 synchronized? Common shocks versus spillover effects. Common Shocks Versus Spillover Effects. CEPR. [Google Scholar]
- Montes, G. C., & Nicolay, R. T. F. (2017). Does clarity of central bank communication affect credibility? Evidences considering governor-specific effects. Applied Economics, 49(32), 3163–3180. [Google Scholar] [CrossRef]
- Morgan, D. P. (1998). The credit effects of monetary policy: Evidence using loan commitments. Journal of Money, Credit and Banking, 102–118. [Google Scholar] [CrossRef]
- Moussa, F. B., & Talbi, M. (2019). Stock market reaction to terrorist attacks and political uncertainty: Empirical evidence from the Tunisian stock exchange. International Journal of Economics and Financial Issues, 9(3), 48–64. [Google Scholar] [CrossRef]
- Murphy, E. (1999). Economic and political change in Tunisia. Palgrave Macmillan UK. [Google Scholar]
- Ostapenko, N. (2020). Central bank communication: Information and policy shocks. SSRN, 3607817. University Library of Munich. [Google Scholar]
- Perron, P., & Phillips, P. C. (1987). Does GNP have a unit root?: A re-evaluation. Economics Letters, 23(2), 139–145. [Google Scholar] [CrossRef]
- Phillips, P. C., Shi, S., & Yu, J. (2014). Specification sensitivity in right-tailed unit root testing for explosive behaviour. Oxford Bulletin of Economics and Statistics, 76(3), 315–333. [Google Scholar] [CrossRef]
- Phillips, P. C., Shi, S., & Yu, J. (2015a). Testing for multiple bubbles: Historical episodes of exuberance and collapse in the S&P 500. International Economic Review, 56(4), 1043–1078. [Google Scholar]
- Phillips, P. C., Shi, S., & Yu, J. (2015b). Testing for multiple bubbles: Limit theory of real-time detectors. International Economic Review, 56(4), 1079–1134. [Google Scholar] [CrossRef]
- Phillips, P. C., Wu, Y., & Yu, J. (2011). Explosive behavior in the 1990s Nasdaq: When did exuberance escalate asset values? International Economic Review, 52(1), 201–226. [Google Scholar] [CrossRef]
- Pinchetti, M. (2024). Geopolitical risk and inflation: The role of energy markets. No. 2431. London School of Economics and Political Science. [Google Scholar]
- Przystupa, J., & Wróbel, E. (2015). Modelling less developed emerging markets: The case of monetary transmission in Tunisia. Working Paper, 211. National Bank of Poland. [Google Scholar]
- Reid, M., & Siklos, P. L. (2020). Building credibility and influencing expectations: The evolution of central bank communication. Economic Research and Statistics Department, South African Reserve Bank. [Google Scholar]
- Ren, X., Li, J., He, F., & Lucey, B. (2023). Impact of climate policy uncertainty on traditional energy and green markets: Evidence from time-varying granger tests. Renewable and Sustainable Energy Reviews, 173, 113058. [Google Scholar] [CrossRef]
- Romer, C. D., & Romer, D. H. (1993). Credit channel or credit actions? An interpretation of the postwar transmission mechanism. Working Paper, no 4485. NBER. [Google Scholar]
- Salem, R., & Bouaziz, R. (2024). Natural Rate of Interest, Monetary Policy and Shocks in Tunisia. Monetary Policy and Shocks in Tunisia. SSRN Working Paper, 4990836. [Google Scholar]
- Shi, S., Hurn, S., & Phillips, P. C. (2020). Causal change detection in possibly integrated systems: Revisiting the money–income relationship. Journal of Financial Econometrics, 18(1), 158–180. [Google Scholar] [CrossRef]
- Shi, S., Phillips, P. C., & Hurn, S. (2018). Change detection and the causal impact of the yield curve. Journal of Time Series Analysis, 39(6), 966–987. [Google Scholar] [CrossRef]
- Swanson, N. R. (1998). Money and output viewed through a rolling window. Journal of monetary Economics, 41(3), 455–474. [Google Scholar] [CrossRef]
- Tayssir, O., & Feryel, O. (2018). Does central banking promote financial development? Borsa Istanbul Review, 18(1), 52–75. [Google Scholar] [CrossRef]
- Tenreyro, S., & Thwaites, G. (2016). Pushing on a string: US monetary policy is less powerful in recessions. American Economic Journal: Macroeconomics, 8(4), 43–74. [Google Scholar] [CrossRef]
- Thoma, M. A. (1994). Subsample instability and asymmetries in money-income causality. Journal of Econometrics, 64(1–2), 279–306. [Google Scholar] [CrossRef]
- Tissaoui, K., Hkiri, B., Talbi, M., Alghassab, W., & Alfreahat, K. I. (2021). Market volatility and illiquidity during the COVID-19 outbreak: Evidence from the Saudi stock exchange through the wavelet coherence approaches. The North American Journal of Economics and Finance, 58, 101521. [Google Scholar] [CrossRef]
- Toda, H. Y., & Yamamoto, T. (1995). Statistical inference in vector autoregressions with possibly integrated processes. Journal of econometrics, 66(1–2), 225–250. [Google Scholar] [CrossRef]
- Torrence, C., & Compo, G. P. (1998). A practical guide to wavelet analysis. Bulletin of the American Meteorological Society, 79(1), 61–78. [Google Scholar] [CrossRef]
- Trabelsi, E. (2024a). COVID-19 and uncertainty effects on Tunisian stock market volatility: Insights from GJR-GARCH, wavelet coherence, and ARDL. Journal of Risk and Financial Management, 17(9), 403. [Google Scholar] [CrossRef]
- Trabelsi, E. (2024b). Welfare fragmented information effects: The cost-benefit analysis and Trade-offs. Journal of Information Economics, 2(1), 1–32. [Google Scholar] [CrossRef]
- Udeaja, E. A., Tule, J. M., Akadiri, S. S., Akanni, E. O., & Offum, P. F. (2024). Do economic policy uncertainty and geopolitical risk impede economic transformation? Evidence from resource rich country. Journal of Economics and Finance, 48, 1145–1165. [Google Scholar] [CrossRef]
- Wahyuningsih, N., & Fatmawati, P. N. (2024). Analysis of monetary policy in Muslim Majority Countries: Tunisia. Peradaban Journal of Economic and Business, 3(2), 104–117. [Google Scholar] [CrossRef]
- Wang, Q., Zhang, C., & Li, R. (2024). Impact of different geopolitical factors on the energy transition: The role of geopolitical threats, geopolitical acts, and geopolitical risks. Journal of Environmental Management, 352, 119962. [Google Scholar] [CrossRef]
- Wang, S., Chen, L., & Xiong, X. (2019). Asset bubbles, banking stability and economic growth. Economic Modelling, 78, 108–117. [Google Scholar] [CrossRef]
- Woodford, M. (2005). Central bank communication and policy effectiveness. Working Paper, No 11898. NBER. [Google Scholar]
- Yilmazkuday, H. (2025). Geopolitical Risks and Exchange Rates. Finance Research Letters, 74, 106769. [Google Scholar] [CrossRef]
- Zhao, Y. (2024). International economic policies for cross-border payments in digital money in the context of geopolitical risks. SSRN Working Paper, 4815891. [Google Scholar] [CrossRef]
- Zivot, E., & Andrews, D. W. K. (2002). Further evidence on the great crash, the oil-price shock, and the unit-root hypothesis. Journal of Business & Economic Statistics, 20(1), 25–44. [Google Scholar]
Variable | Acronym | Definition | Source |
---|---|---|---|
Economic activity | LNIPIT | Industrial production index, all items | National Institute of Statistics (NIS) |
LNIPIT | Industrial production index, manufacturing sector | NIS | |
LNIPIT | Industrial production index, mining sector | NIS | |
LNIPIT | Industrial production index, energy sector | NID | |
Inflation | LNCPI | Consumer price index, all items | NIS |
Monetary aggregate | LNM2TND | Money supply | Central Bank of Tunisia (CBT) |
Money market rate | TMM | Money market rate | CBT |
Real effective exchange rate | LNTCER | Real effective exchange rate, converted from monthly data. It is the Tunisian dinar against a basket of foreign currencies divided by price deflator. If TCER increases, it indicates an appreciation of local money. The latter has strengthened against foreign currencies. | International Financial Statistics (IFS) |
Global geopolitical risk | LNGPR | The geopolitical risk index encompassing political unrest, wars, changes in political regimes, crises, and pandemics | Caldara and Iacoviello (2022) |
Local geopolitical risk | LNGPR_TUN | The geopolitical risk index encompassing political unrest, terrorist attacks, and changes in political regimes in Tunisia | Caldara and Iacoviello (2022) |
Investor sentiment | IS1 | A composite index using PCA | Calculus, see details in Section 4.8 |
Statistic | LNIPIT | LNCPI | LNM2TND | TMM | LNTCER | LNGPR | LNGPR_TUN |
---|---|---|---|---|---|---|---|
Mean | 4.446015 | 4.593217 | 10.30021 | 6.078988 | 4.659839 | 4.537333 | 0.027788 |
Median | 4.487962 | 4.537422 | 10.38913 | 5.875000 | 4.635615 | 4.504679 | 0.015235 |
Maximum | 4.700480 | 5.363154 | 11.69712 | 10.87500 | 4.902993 | 6.239359 | 0.487371 |
Minimum | 4.035864 | 4.021130 | 8.774931 | 3.160000 | 4.295726 | 3.664731 | 0.000000 |
Std. Dev. | 0.146660 | 0.353207 | 0.862639 | 1.659809 | 0.174365 | 0.349188 | 0.049025 |
Skewness | −0.834555 | 0.408668 | −0.163912 | 0.801416 | −0.060023 | 0.987974 | 5.256426 |
Kurtosis | 2.696000 | 2.157325 | 1.799321 | 3.111859 | 1.685555 | 6.346506 | 40.17012 |
Jarque-Bera | 37.89823 | 21.41859 | 23.23649 | 40.76747 | 27.43930 | 239.1383 | 23.62552 |
Probability | 0.000000 | 0.000022 | 0.000009 | 0.000000 | 0.000001 | 0.000000 | 0.000000 |
Sum | 1404.941 | 1713.270 | 3708.075 | 2303.936 | 1761.419 | 1724.186 | 10.55950 |
Sum Sq. Dev. | 6.775425 | 46.40899 | 267.1487 | 1041.377 | 11.46198 | 46.21234 | 0.910891 |
Observations | 316 | 373 | 360 | 379 | 378 | 380 | 380 |
Balanced Sample (Listwise Missing Value Deletion) | |||||||
---|---|---|---|---|---|---|---|
Correlation | |||||||
Probability | LNIPIT | LNCPI | LNM2TND | TMM | LNTCER | LNGPR | LNGPR_TUN |
LNIPIT | 1.000000 | ||||||
----- | |||||||
LNCPI | 0.754771 | 1.000000 | |||||
0.0000 | ----- | ||||||
LNM2TND | 0.833658 | 0.983293 | 1.000000 | ||||
0.0000 | 0.0000 | ----- | |||||
TMM | −0.829327 | −0.610490 | −0.716659 | 1.000000 | |||
0.0000 | 0.0000 | 0.0000 | ----- | ||||
LNTCER | −0.710671 | −0.961660 | −0.951560 | 0.528138 | 1.000000 | ||
0.0000 | 0.0000 | 0.0000 | 0.0000 | ----- | |||
LNGPR | 0.162720 | 0.145025 | 0.169587 | −0.146319 | −0.122676 | 1.000000 | |
0.0044 | 0.0114 | 0.0030 | 0.0106 | 0.0325 | ----- | ||
LNGPR_TUN | 0.135246 | 0.220890 | 0.256108 | −0.259406 | −0.218045 | 0.174326 | 1.000000 |
0.0183 | 0.0001 | 0.0000 | 0.0000 | 0.0001 | 0.0023 | ----- |
Null Hypothesis: The Variable Is Nonstationary | With Intercept | With Trend and Intercept | ||||
---|---|---|---|---|---|---|
Variables | t-Statistic | Critical Values | t-Statistic | Critical Values | ||
LNIPIT | −0.259930 | 1% −2.572419 5% −1.941847 10% −1.616017 | NS | −1.748442 | 1% −3.471100 5% −2.907800 10% −2.601150 | NS |
LNCPI | 6.030500 | 1% −2.571261 5% −1.941687 10% −1.616122 | NS | 1.167709 | 1% −3.476800 5% −2.896400 10% −2.581200 | NS |
LNM2TND | 5.090570 | 1% −2.571492 5% −1.941719 10% −1.616101 | NS | −0.409436 | 1% −3.477400 5% −2.895200 10% −2.579100 | NS |
TMM | −0.402107 | 1% −2.571160 5% −1.941673 10% −1.616131 | NS | −0.409436 | 1% −3.477400 5% −2.895200 10% −2.579100 | NS |
LNTCER | 0.277960 | 1% −2.571176 5% −1.941675 10% −1.616130 | NS | −1.464461 | 1% −3.477300 5% −2.895400 10% −2.579450 | NS |
LNGPR | −3.003150 | 1% −2.571143 5% −1.941671 10% −1.616133 | S | −3.493809 | 1% −3.477500 5% −2.895000 10%−2.578750 | S |
LNGPR_TUN | −3.853404 | 1% −2.571143 5% −1.941671 10% −1.616133 | S | −4.164004 | 1% −3.477500 5% −2.895000 10% −2.578750 | S |
D(LNIPIT) | −3.198518 | 1% −2.572443 5% −1.941850 10% −1.616015 | S | −5.755603 | 1% −3.471000 5% −2.908000 10% −2.601500 | S |
D(LNCPI) | −6.770077 | 1% −2.571278 5% −1.941689 10% −1.616121 | S | −7.371329 | 1% −3.476700 5% −2.896600 10% −2.581550 | S |
D(LNM2TND) | −2.654795 | 1% −2.571511 5% −1.941721 10% −1.616099 | S | −4.366044 | 1% −3.475400 5% −2.899200 10% −2.586100 | S |
D(TMM) | −6.519736 | 1% −2.571176 5% −1.941675 10% −1.616130 | S | −7.870420 | 1% −3.477300 5% −2.895400 10% −2.579450 | S |
D(LNTCER) | −3.563881 | 1% −2.571193 5% −1.941678 10% −1.616128 | S | −5.817486 | 1% −3.477200 5% −2.895600 10% −2.579800 | S |
D(LNGPR) | −2.265248 | 1% −2.571160 5% −1.941673 10% −1.616131 | S | −4.245754 | 1% −3.477400 5% −2.895200 10% −2.579100 | S |
D(LNGPR_TUN) | −3.781700 | 1% −2.571160 5% −1.941673 10% −1.616131 | S | −6.698073 | 1% −3.477400 5% −2.895200 10% −2.579100 | S |
H0: LNIPIT Is Not Granger Caused by | Max_Wald_Forward | Max_Wald_Rolling | Max_Wald_Recursive |
---|---|---|---|
LNM2TND | 37.994 *** (9.416) {11.771} [17.284] | 38.721 *** (9.792) {11.959} [16.464] | 38.721 *** (10.179) {12.545} [17.292] |
TMM | 11.651 (11.825) {14.584} [24.417] | 58.561 *** (11.582) {15.072} [25.500] | 60.503 *** (12.273) {15.950} [26.670] |
LNTCER | 18.725 ** (8.791) {11.005} [19.500] | 21.233 *** (8.945) {13.048} [18.688] | 29.894 *** (9.683) {13.048} [19.500] |
LNGPR | 18.842 *** (7.367) {9.971} [14.834] | 21.027 *** (8.605) {10.188} [14.416] | 21.027 *** (8.742) {10.188} [14.834] |
H0: LNCPI Is Not Granger Caused by | Max_Wald_Forward | Max_Wald_Rolling | Max_Wald_Recursive |
---|---|---|---|
LNM2TND | 2.380 (8.630) {9.987} [14.680] | 25.064 *** (8.587) {10.235} [15.356] | 28.609 *** (8.779) {10.683} [15.356] |
TMM | 4.777 (9.826) {13.228} [16.462] | 28.326 *** (10.016) {12.855} [17.988] | 41.501 *** (10.725) {13.843} [18.065] |
LNTCER | 1.947 (8.486) {10.634} [17.786] | 24.095 *** (8.422) {11.255} [19.514] | 24.677 *** (8.854) {11.342} [19.774] |
LNGPR | 2.664 (8.928) {11.853} [16.944] | 22.489 *** (9.327) {12.081} [17.509] | 22.489 *** (10.158) {12.486} [17.699] |
H0: LNIPIT Is Not Granger Caused by | Max_Wald_Forward | Max_Wald_Rolling | Max_Wald_Recursive |
---|---|---|---|
LNM2TND | 44.504 *** (10.541) {12.448} [17.448] | 63.263 *** (9.919) {12.630} [18.483] | 63.263 *** (10.621) {12.954} [18.483] |
TMM | 17.114 * (16.165) {20.906} [25.081] | 44.276 *** (15.907) {20.853} [25.081] | 47.147 *** (16.644) {21.815} [25.081] |
LNTCER | 16.315 ** (8.962) {10.757} [16.337] | 41.112 *** (9.005) {10.427} [16.998] | 41.112 *** (9.976) {10.900} [17.983] |
LNGPR_TUN | 14.265 *** (7.452) {9.544} [13.106] | 24.817 *** (7.897) {9.730} [15.312] | 31.494 *** (7.900) {9.730} [15.312] |
H0: LNCPI Is Not Granger Caused by | Max_Wald_Forward | Max_Wald_Rolling | Max_Wald_Recursive |
---|---|---|---|
LNM2TND | 2.687 (8.282) {10.195} [18.213] | 19.467 *** (8.868) {10.457} [17.071] | 20.870 *** (9.339) {11.393} [18.213] |
TMM | 5.575 (8.168) {11.976} [16.569] | 31.147 *** (8.619) {11.678} [15.151] | 37.258 *** (8.639) {13.249} [16.569] |
LNTCER | 2.734 (8.038) {9.850} [19.548] | 14.186 ** (8.839) {11.054} [19.030] | 14.384 ** (8.839) {11.272} [19.651] |
LNGPR_TUN | 12.120 ** (8.592) {10.844} [13.630] | 34.833 *** (8.990) {11.483} [13.271] | 36.392 *** (9.421) {11.483} [13.630] |
Hypothesis | Lag | Granger Causality Index | F-Statistic | p-Value | Critical Value at 5% |
---|---|---|---|---|---|
TMMDIFF does not nonlinear Granger IPITLOGDIFF | 1 | 0.148394 | 2.74771 | 0.000296473 | 1.726 |
IPITLOGDIFF does not nonlinear Granger TMMDIFF | 1 | 0.0111333 | −0.326908 | 1 | 1.887 |
TMMDIFF does not nonlinear Granger CPILOGDIFF | 1 | 0.0407535 | 12.3122 | 0.00051994 | 3.936 |
CPILOGDIFF does not nonlinear Granger TMMDIFF | 1 | 0.0102464 | 3.04853 | 0.0818479 | 3.936 |
TMMDIFF does not nonlinear Granger IPITLOGDIFF | 2 | 0.0578437 | 2.05445 | 0.0404601 | 2.032 |
IPITLOGDIFF does not nonlinear Granger TMMDIFF | 2 | 0.0971258 | 3.51897 | 0.000680803 | 2.032 |
TMMDIFF does not nonlinear Granger CPILOGDIFF | 2 | 0.00414994 | 0.143471 | 0.997042 | 2.032 |
CPILOGDIFF does not nonlinear Granger TMMDIFF | 2 | 0.0718114 | 2.56862 | 0.0102102 | 2.032 |
TMMDIFF does not nonlinear Granger IPITLOGDIFF | 3 | 0.272944 | 3.965635 | 2.82646 × 10−8 | 1.676 |
IPITLOGDIFF does not nonlinear Granger TMMDIFF | 3 | 0.065883 | 2.16412 | 0.0245948 | 1.975 |
TMMDIFF does not nonlinear Granger CPILOGDIFF | 3 | 0.0692321 | 0.967746 | 0.50189 | 1.676 |
CPILOGDIFF does not nonlinear Granger TMMDIFF | 3 | 0.0740412 | 2.05402 | 0.0236247 | 1.886 |
TMMDIFF does not nonlinear Granger IPITLOGDIFF | 4 | 0.409182 | 10.4367 | 4.77043 × 10−19 | 1.792 |
IPITLOGDIFF does not nonlinear Granger TMMDIFF | 4 | 0.0981474 | 1.7338 | 0.0406097 | 1.746 |
TMMDIFF does not nonlinear Granger CPILOGDIFF | 4 | 0.475511 | 12.5681 | 6.62375 × 10−23 | 1.792 |
CPILOGDIFF does not nonlinear Granger TMMDIFF | 4 | 0.0775703 | 1.66501 | 0.0622821 | 1.792 |
TMMDIFF does not nonlinear Granger IPITLOGDIFF | 5 | 0.34492 | 1.88287 | 0.00108747 | 1.676 |
IPITLOGDIFF does not nonlinear Granger TMMDIFF | 5 | 0.0411807 | 2.6065 | 0.0363633 | 2.463 |
TMMDIFF does not nonlinear Granger CPILOGDIFF | 5 | 0.159057 | 3.88695 | 3.37301 × 10−5 | 1.886 |
CPILOGDIFF does not nonlinear Granger TMMDIFF | 5 | 0.0252201 | 0.575829 | 0.847764 | 1.886 |
TMMDIFF does not nonlinear Granger IPITLOGDIFF | 6 | 0.619567 | 3.28024 | 3.61857 × 10−11 | 1.676 |
IPITLOGDIFF does not nonlinear Granger TMMDIFF | 6 | 0.0677974 | 2.77086 | 0.0127077 | 2.191 |
TMMDIFF does not nonlinear Granger CPILOGDIFF | 6 | 0.199855 | 0.599153 | 0.993474 | 1.676 |
CPILOGDIFF does not nonlinear Granger TMMDIFF | 6 | 0.095414 | 0.382695 | 0.99999 | 1.676 |
Model | (1) | (2) | (3) | (4.1) | (4.2) | (4.3) | (4.4) |
---|---|---|---|---|---|---|---|
Sector | Aggregate | Manufacturing | Mines | Energy | Energy | Energy | Energy |
Assumption | Intercept (no trend) in CE and VAR | Intercept (no trend) in CE and VAR | Intercept (no trend) in CE and VAR | No Intercept (no trend) in CE, no intercept in VAR in CE or VAR | Intercept (no trend) in CE and VAR | Intercept and trend in CE, (no trend) in VAR | Intercept and trend in CE, linear trend in VAR |
Cointegrating Eq: | CointEq1 | CointEq1 | CointEq1 | CointEq1 | CointEq1 | CointEq1 | CointEq1 |
LNIPIT(−1) | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
LNM2TND(−1) | −0.139080 | −0.048256 | 0.016906 | −0.176541 | 0.219828 | 1.202578 | 1.202381 |
(0.07549) | (0.03569) | (0.39386) | (0.13619) | (0.05968) | (0.42672) | (0.42757) | |
[−1.84240] * | [−1.35191] | [0.04292] | [−1.29630] | [3.68359] *** | [2.81821] *** | [2.81215] *** | |
TMM(−1) | 0.687007 | 0.662645 | −2.947754 | 0.601768 | 2.194548 | 3.011706 | 3.012804 |
(0.19380) | (0.18271) | (1.92353) | (0.68731) | (0.26546) | (0.35757) | (0.35828) | |
[3.54490] *** | [3.62671] *** | [−1.53247] | [0.87554] | [8.26681] *** | [8.42271] *** | [8.40906] *** | |
LNTCER(−1) | −0.166795 | 0.397270 | −0.926807 | −0.849423 | 0.327828 | 0.614311 | 0.615774 |
(0.28689) | (0.15236) | (1.68017) | (0.60917) | (0.25454) | (0.31231) | (0.31293) | |
[−0.58138] | [2.60744] *** | [−0.55161] | [−1.39440] | [1.28793] | [1.96702] ** | [1.96779] ** | |
LNGPR(−1) | 0.775811 | 0.785330 | −5.311770 | 0.351307 | 2.847313 | 3.916134 | 3.917429 |
(0.26151) | (0.23646) | (2.48708) | (0.89728) | (0.34349) | (0.46128) | (0.46220) | |
[2.96668] *** | [3.32125] *** | [−2.13574] ** | [0.39152] | [8.28932] *** | [8.48970] *** | [8.47566] **** | |
TMM_GPR(−1) | −0.147131 | −0.140071 | 0.663731 | −0.108839 | −0.470951 | −0.645655 | −0.645905 |
(0.04342) | (0.04041) | (0.42482) | (0.15067) | (0.05853) | (0.07776) | (0.07791) | |
[−3.38864] *** | [−3.46663] *** | [1.56239] | [−0.72237] | [−8.04693] *** | [−8.30358] *** | [−8.29031] *** | |
@TREND(93M01) | −21.53170 | −0.007256 | −0.007200 | ||||
(0.00331) | |||||||
[−2.18909] ** | |||||||
C | −5.917379 | −9.563199 | 23.79726 | −36.60262 | −36.62569 | ||
Error Correction: | D(LNIPIT) | D(LNIPIT) | D(LNIPIT) | D(LNIPIT) | D(LNIPIT) | D(LNIPIT) | D(LNIPIT) |
CointEq1 | −0.119696 | −0.523844 | −0.074028 | −0.015315 | −0.202163 | −0.137137 | −0.137027 |
(0.04849) | (0.08097) | (0.03282) | (0.00677) | (0.03772) | (0.03065) | (0.03070) | |
[−2.46850] ** | [−6.46972] *** | [−2.25529] ** | [−2.26256] ** | [−5.36008] *** | [−4.47387] *** | [−4.46315] | |
D(LNIPIT(−1)) | −0.540895 | −0.047386 | −0.125126 | −0.216884 | −0.079574 | −0.114177 | −0.114335 |
(0.07175) | (0.08163) | (0.05884) | (0.05927) | (0.06286) | (0.06261) | (0.06272) | |
[−7.53845] *** | [−0.58051] | [−2.12644] ** | [−3.65922] *** | [−1.26582] | [−1.82374] * | [−1.82304] * | |
D(LNIPIT(−2)) | −0.275815 | −0.138224 | −0.288186 | ||||
(0.07143) | (0.06854) | (0.05799) | |||||
[−3.86160] *** | [−2.01671] ** | [−4.96959] *** | |||||
D(LNIPIT(−3)) | 0.052799 | 0.099777 | |||||
(0.05725) | (0.05809) | ||||||
[0.92219] | [1.71762] * | ||||||
D(LNM2TND(−1)) | −0.736189 | −0.480065 | −0.634285 | 1.159464 | 0.930394 | 0.974995 | 0.971238 |
(0.20089) | (0.41475) | (1.89729) | (0.46158) | (0.43912) | (0.44556) | (0.44673) | |
[−3.66469] *** | [−1.15748] | [−0.33431] | [2.51193] ** | [2.11876] ** | [2.18823] ** | [2.17410] ** | |
D(LNM2TND(−2)) | −0.843190 | −0.086415 | −4.632534 | ||||
(0.20680) | (0.42324) | (1.86743) | |||||
[−4.07733] *** | [−0.20417] | [−2.48070] ** | |||||
D(LNM2TND(−3)) | 0.378443 | 1.411576 | |||||
(0.20974) | (0.41150) | ||||||
[1.80435] * | [3.43033] *** | ||||||
D(TMM(−1)) | 0.075635 | 0.249764 | 0.199425 | 0.273808 | 0.467566 | 0.458733 | 0.459059 |
(0.06115) | (0.09770) | (0.41505) | (0.09340) | (0.09654) | (0.09977) | (0.09996) | |
[1.23692] | [2.55650] ** | [0.48049] | [2.93144] *** | [4.84300] *** | [4.59811] *** | [4.59255] *** | |
D(TMM(−2)) | 0.018123 | 0.157388 | 0.630794 | ||||
(0.05963) | (0.10214) | (0.41527) | |||||
[0.30392] | [1.54084] | [1.51899] | |||||
D(TMM(−3)) | 0.060180 | 0.464475 | |||||
(0.05561) | (0.10090) | ||||||
[1.08218] | [4.60332] *** | ||||||
D(LNTCER(−1)) | 0.072316 | −0.110070 | −1.374431 | −0.330005 | −0.271923 | −0.230172 | −0.219582 |
(0.26655) | (0.38558) | (1.76869) | (0.43291) | (0.41552) | (0.42189) | (0.42597) | |
[0.27130] | [−0.28546] | [−0.77709] | [−0.76230] | [−0.65442] | [−0.54558] | [−0.51549] | |
D(LNTCER(−2)) | 0.038912 | 0.164198 | 0.058016 | ||||
(0.26749) | (0.39053) | (0.52582) | |||||
[0.14547] | [0.42045] | [0.11033] | |||||
D(LNTCER(−3)) | 0.193727 | −0.092339 | |||||
(0.26547) | (0.38292) | ||||||
[0.72974] | [−0.24115] | ||||||
D(LNGPR(−1)) | 0.135994 | 0.249884 | 0.058016 | 0.362575 | 0.645630 | 0.635707 | 0.634930 |
(0.07623) | (0.12195) | (0.52582) | (0.11700) | (0.12348) | (0.12847) | (0.12876) | |
[1.78390] * | [2.04903] ** | [0.11033] | [3.09894] *** | [5.22866] *** | [4.94813] *** | [4.93111] *** | |
D(LNGPR(−2)) | 0.036086 | 0.210534 | 0.566309 | ||||
(0.07504) | (0.12771) | (0.52834) | |||||
[0.48086] | [1.64859]* | [1.07187] | |||||
D(LNGPR(−3)) | 0.052291 | 0.610319 | |||||
(0.07042) | (0.12574) | ||||||
[0.74255] | [4.85397] *** | ||||||
D(TMM_GPR(−1)) | −0.020789 | −0.042908 | −0.020253 | −0.058809 | −0.106666 | −0.104567 | −0.104439 |
(0.01309) | (0.02083) | (0.08839) | (0.01983) | (0.02096) | (0.02177) | (0.02181) | |
[−1.58783] | [−2.05965] ** | [−0.22912] | [−2.96500] *** | [−5.08930] *** | [−4.8042 7]*** | [−4.78777] *** | |
D(TMM_GPR(−2)) | −0.006963 | −0.036268 | −0.097004 | ||||
(0.01267) | (0.02178) | (0.08943) | |||||
[−0.54952] | [−1.66516] * | [−1.08467] | |||||
D(TMM_GPR(−3)) | −0.009701 | −0.111571 | |||||
(0.01189) | (0.02171) | ||||||
[−0.81603] | [−5.13952] *** | ||||||
C | 0.012483 | −0.005028 | 0.037538 | −0.008248 | −0.008611 | −0.007730 | |
(0.00444) | (0.00774) | (0.02947) | (0.00557) | (0.00565) | (0.01379) | ||
[2.81442] *** | [−0.65000] | [1.27367] | [−1.47967] | [−1.52286] | [−0.56053] | ||
@TREND(93M01) | −3.70 × 10−6 | ||||||
(5.4 × 10−5) | |||||||
[−0.06813] | |||||||
R-squared | 0.442153 | 0.455397 | 0.178527 | 0.093404 | 0.170169 | 0.145902 | 0.145995 |
Adj. R-squared | 0.404299 | 0.416202 | 0.139120 | 0.073908 | 0.149274 | 0.124396 | 0.121331 |
Sum sq. resids | 0.586395 | 1.139237 | 25.20230 | 1.624630 | 1.487067 | 1.530554 | 1.530387 |
S.E. equation | 0.045763 | 0.065691 | 0.304955 | 0.076309 | 0.073138 | 0.074200 | 0.074329 |
F-statistic | 11.68050 | 11.61877 | 4.530397 | 4.790779 | 8.143989 | 6.784223 | 5.919267 |
Log likelihood | 509.9499 | 380.6649 | −58.75603 | 333.5953 | 346.2472 | 342.1254 | 342.1410 |
Akaike AIC | −3.266333 | −2.539893 | 0.510569 | −2.283884 | −2.365365 | −2.336541 | −2.329657 |
Schwarz SC | −3.019414 | −2.282923 | 0.689989 | −2.194401 | −2.263099 | −2.234276 | −2.214609 |
Mean dependent | 0.000976 | 0.001075 | −0.002806 | −0.001039 | −0.001039 | −0.001039 | −0.001039 |
S.D. dependent | 0.059293 | 0.085975 | 0.328673 | 0.079295 | 0.079295 | 0.079295 | 0.079295 |
Model | (1) | (2) |
---|---|---|
Assumption | Intercept and trend in CE, (no trend) in VAR | Intercept and trend in CE, linear trend in VAR |
Cointegrating Eq: | CointEq1 | CointEq1 |
LNCPI(−1) | 1.000000 | 1.000000 |
LNM2TND(−1) | 3.941814 | 1.071441 |
(0.83458) | (0.18278) | |
[4.72311] *** | [5.86192] *** | |
TMM(−1) | 6.497262 | 1.530112 |
(0.75540) | (0.16544) | |
[8.60105] *** | [9.24876] *** | |
LNTCER(−1) | 2.107225 | 0.089692 |
(0.67091) | (0.14694) | |
[3.14083] *** | [0.61041] | |
LNGPR(−1) | 8.364861 | 2.032107 |
(0.97052) | (0.21255) | |
[8.61896] *** | [9.56052] *** | |
TMM_GPR(−1) | −1.423292 | −0.339291 |
(0.16450) | (0.03603) | |
[−8.65215] *** | [−9.41763] *** | |
@TREND(93M01) | −0.032303 | −0.011586 |
(0.00653) | ||
[−4.94647] *** | ||
C | −86.99894 | −23.01158 |
Error Correction: | D(LNCPI) | D(LNCPI) |
CointEq1 | −0.002614 | −0.004810 |
(0.00058) | (0.00265) | |
[−4.53760] *** | [−1.81743] * | |
D(LNCPI(−1)) | 0.225689 | 0.142239 |
(0.05707) | (0.05799) | |
[3.95439] *** | [2.45290] ** | |
D(LNM2TND(−1)) | 0.014511 | 0.019536 |
(0.01539) | (0.01492) | |
[0.94262] | [1.30916] | |
D(TMM(−1)) | 0.013645 | 0.008224 |
(0.00398) | (0.00400) | |
[3.42578] *** | [2.05790] ** | |
D(LNTCER(−1)) | 0.011035 | 0.003668 |
(0.01672) | (0.01619) | |
[0.65997] | [0.22652] | |
D(LNGPR(−1)) | 0.018019 | 0.011168 |
(0.00520) | (0.00523) | |
[3.46304] *** | [2.13714] ** | |
D(TMM_GPR(−1)) | −0.003173 | −0.001991 |
(0.00088) | (0.00088) | |
[−3.59293] *** | [−2.25568] ** | |
C | 0.002740 | −9.27 × 10−5 |
(0.00029) | (0.00049) | |
[9.28797] *** | [−0.18803] | |
@TREND(93M01) | 1.39 × 10−5 | |
(2.1 × 10−6) | ||
[6.49749] *** | ||
R-squared | 0.156242 | 0.216031 |
Adj. R-squared | 0.136015 | 0.194479 |
Sum sq. resids | 0.002577 | 0.002395 |
S.E. equation | 0.002971 | 0.002869 |
F-statistic | 7.724405 | 10.02353 |
Log likelihood | 1324.041 | 1335.066 |
Akaike AIC | −8.773609 | −8.840439 |
Schwarz SC | −8.674841 | −8.729325 |
Mean dependent | 0.003646 | 0.003646 |
S.D. dependent | 0.003196 | 0.003196 |
Model | (1) | (2.1) | (2.2) | (3.1) | (3.2) | (3.3) | (4.1) | (4.2) |
---|---|---|---|---|---|---|---|---|
Sector | Aggregate | Manufacturing | Manufacturing | Mines | Mines | Mines | Energy | Energy |
Assumption | Intercept (no trend) in CE and VAR | Intercept and trend in CE, (no trend) in VAR | Intercept and trend in CE, linear trend in VAR | Intercept (no trend) in CE and VAR | Intercept and trend in CE, (no trend) in VAR | Intercept and trend in CE, linear trend in VAR | Intercept and trend in CE, (no trend) in VAR | Intercept and trend in CE, linear trend in VAR |
Cointegrating Eq: | CointEq1 | CointEq1 | CointEq1 | CointEq1 | CointEq1 | CointEq1 | CointEq1 | CointEq1 |
LNIPIT(−1) | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
LNM2TND(−1) | 5.592435 | −0.816816 | −0.814408 | 0.801463 | 2.452646 | 2.461214 | −1.008804 | −1.016252 |
(3.15297) | (0.38807) | (0.38749) | (0.55941) | (2.87935) | (2.89134) | (0.57848) | (0.57354) | |
[1.77370] * | [−2.10482] ** | [−2.10173] ** | [1.43270] | [0.85180] | [0.85124] | [−1.74390] * | [−1.77188] * | |
TMM(−1) | 0.865420 | 0.082057 | 0.081880 | 0.476446 | 0.527383 | 0.528989 | −0.022265 | −0.020489 |
(0.67898) | (0.02436) | (0.02433) | (0.17129) | (0.18276) | (0.18352) | (0.03511) | (0.03481) | |
[1.27460] | [3.36784] *** | [3.36557] *** | [2.78149] *** | [2.88567] *** | [2.88246] *** | [−0.63411] | [−0.58852] | |
LNTCER(−1) | 17.12189 | 0.591158 | 0.588566 | 2.434791 | 2.404176 | 2.410380 | −1.126862 | −1.116535 |
(11.9448) | (0.31751) | (0.31704) | (2.43823) | (2.41215) | (2.42219) | (0.46480) | (0.46084) | |
[1.43341] | [1.86184] * | [1.85644] * | [0.99859] | [0.99669] | [0.99512] | [−2.42441] ** | [−2.42285] ** | |
LNGPR_TUN(−1) | −118.6439 | 21.07070 | 20.99459 | 141.7786 | 137.7863 | 138.0817 | −20.50281 | −20.12543 |
(65.9266) | (3.28230) | (3.27742) | (25.3876) | (25.6171) | (25.7238) | (4.30066) | (4.26399) | |
[−1.79964] * | [6.41950] *** | [6.40582] *** | [5.58455] *** | [5.37869] *** | [5.36786] *** | [−4.76737] *** | [−4.71986] *** | |
TMM_GPR_TUN(−1) | 33.48959 | −5.205360 | −5.186588 | −35.37184 | −34.48290 | −34.55821 | 5.280939 | 5.194523 |
(14.6256) | (0.73391) | (0.73282) | (5.76443) | (5.79286) | (5.81698) | (0.94612) | (0.93806) | |
[2.28979] ** | [−7.09265] *** | [−7.07758] *** | [−6.13623] *** | [−5.95266] *** | [−5.94092] *** | [5.58166] *** | [5.53754] *** | |
@TREND(93M01) | 0.006205 | 0.006283 | −25.36561 | −0.013228 | −0.011821 | 0.007272 | 0.007052 | |
(0.00304) | (0.02263) | (0.00453) | ||||||
[2.03826] ** | [−0.58447] | [1.60361] | ||||||
C | −154.3927 | −0.313255 | −0.344582 | −40.01662 | −40.47216 | 9.711737 | 9.785498 | |
(89.8930) | ||||||||
[−1.71752] * | ||||||||
Error Correction: | D(LNIPIT) | D(LNIPIT_MAN) | D(LNIPIT_MAN) | D(LNIPIT_MINES) | D(LNIPIT_MINES) | D(LNIPIT_MINES) | D(LNIPIT_ENERGY) | D(LNIPIT_ENERGY) |
CointEq1 | −0.003196 | −0.063459 | −0.063866 | −0.057149 | −0.059172 | −0.059071 | −0.046114 | −0.045151 |
(0.00073) | (0.03402) | (0.03421) | (0.02200) | (0.02218) | (0.02216) | (0.02483) | (0.02524) | |
[−4.36633] *** | [−1.86539] * | [−1.86684] * | [−2.59820] *** | [−2.66830] *** | [−2.66540] *** | [−1.85750] * | [−1.78861] * | |
D(LNIPIT(−1)) | −0.673339 | −0.393131 | −0.392669 | −0.180298 | −0.179055 | −0.181573 | −0.169829 | −0.171990 |
(0.06030) | (0.06840) | (0.06869) | (0.06840) | (0.06837) | (0.06858) | (0.06542) | (0.06569) | |
[−11.1668] *** | [−5.74757] *** | [−5.71682] *** | [−2.63582] *** | [−2.61887] *** | [−2.64751] *** | [−2.59609] *** | [−2.61811] *** | |
D(LNIPIT(−2)) | −0.407830 | −0.506470 | −0.506129 | −0.375314 | −0.374019 | −0.376853 | −0.129280 | −0.129378 |
(0.07414) | (0.06972) | (0.06993) | (0.07015) | (0.07012) | (0.07037) | (0.06494) | (0.06506) | |
[−5.50076] *** | [−7.26454] *** | [−7.23763] *** | [−5.34992] *** | [−5.33404] *** | [−5.35563] *** | [−1.99075] ** | [−1.98865] ** | |
D(LNIPIT(−3)) | −0.002443 | −0.245876 | −0.245519 | −0.189422 | −0.188664 | −0.192075 | −0.071136 | −0.071609 |
(0.07438) | (0.07311) | (0.07345) | (0.07587) | (0.07579) | (0.07610) | (0.06241) | (0.06251) | |
[−0.03285] | [−3.36320] *** | [−3.34269] *** | [−2.49674] ** | [−2.48941] ** | [−2.52400] ** | [−1.13987] | [−1.14562] | |
D(LNIPIT(−4)) | −0.023402 | −0.271150 | −0.270892 | −0.075498 | −0.074468 | −0.078230 | ||
(0.06112) | (0.06510) | (0.06540) | (0.07563) | (0.07556) | (0.07593) | |||
[−0.38292] | [−4.16506] **** | [−4.14238] *** | [−0.99822] | [−0.98550] | [−1.03033] | |||
D(LNIPIT(−5)) | −0.132041 | −0.131876 | −0.117432 | −0.117103 | −0.118976 | |||
(0.05924) | (0.05945) | (0.06894) | (0.06886) | (0.06903) | ||||
[−2.22882] ** | [−2.21812] ** | [−1.70351] * | [−1.70052] * | [−1.72360] * | ||||
D(LNIPIT(−6)) | −0.036881 | −0.037017 | −0.038279 | |||||
(0.06804) | (0.06791) | (0.06803) | ||||||
[−0.54202] | [−0.54509] | [−0.56264] | ||||||
D(LNM2TND(−1)) | −0.889011 | −0.801031 | −0.799429 | 0.155446 | 0.257888 | 0.189886 | 0.647782 | 0.627381 |
(0.21182) | (0.45055) | (0.45327) | (2.10269) | (2.10656) | (2.11261) | (0.46812) | (0.46955) | |
[−4.19707] *** | [−1.77789] * | [−1.76370] * | [0.07393] | [0.12242] | [0.08988] | [1.38379] | [1.33612] | |
D(LNM2TND(−2)) | −1.157868 | 0.055628 | 0.058143 | −4.543110 | −4.415880 | −4.523567 | −1.877026 | −1.903570 |
(0.21175) | (0.46483) | (0.47017) | (2.10918) | (2.11594) | (2.12673) | (0.47605) | (0.47818) | |
[−5.46816] *** | [0.11967] | [0.12366] | [−2.15396] ** | [−2.08696] ** | [−2.12701] ** | [−3.94295] *** | [−3.98090] *** | |
D(LNM2TND(−3)) | 0.012005 | 1.670630 | 1.673733 | 4.423332 | 4.557170 | 4.407132 | −0.106943 | −0.135873 |
(0.21601) | (0.47060) | (0.47767) | (2.25133) | (2.25970) | (2.27713) | (0.48164) | (0.48409) | |
[0.05558] | [3.55001] *** | [3.50394] *** | [1.96477] ** | [2.01671] ** | [1.93539] * | [−0.22204] | [−0.28068] | |
D(LNM2TND(−4)) | −0.361306 | −1.330777 | −1.327939 | 0.896910 | 1.032695 | 0.849276 | ||
(0.20963) | (0.46553) | (0.47164) | (2.26537) | (2.27462) | (2.29897) | |||
[−1.72358] * | [−2.85865] *** | [−2.81560] *** | [0.39592] | [0.45401] | [0.36942] | |||
D(LNM2TND(−5)) | 1.158574 | 1.161258 | −1.437275 | −1.334334 | −1.513895 | |||
(0.46453) | (0.47110) | (2.16808) | (2.17299) | (2.19734) | ||||
[2.49407]** | [2.46500] ** | [−0.66293] | [−0.61405] | [−0.68897] | ||||
D(LNM2TND(−6)) | 1.771506 | 1.850714 | 1.691980 | |||||
(2.07592) | (2.07835) | (2.09877) | ||||||
[0.85336] | [0.89047] | [0.80618] | ||||||
D(TMM(−1)) | −0.010894 | 0.056869 | 0.056755 | 0.170666 | 0.170474 | 0.179438 | 0.025876 | 0.028799 |
(0.02102) | (0.03410) | (0.03452) | (0.14674) | (0.14657) | (0.14759) | (0.03402) | (0.03437) | |
[−0.51816] | [1.66752] * | [1.64428] | [1.16305] | [1.16306] | [1.21582] | [0.76053] | [0.83801] | |
D(TMM(−2)) | −0.013124 | −0.017750 | −0.017827 | 0.204064 | 0.204629 | 0.212865 | 0.036076 | 0.037876 |
(0.02256) | (0.03430) | (0.03454) | (0.14948) | (0.14937) | (0.15024) | (0.03476) | (0.03491) | |
[−0.58170] | [−0.51748] | [−0.51615] | [1.36515] | [1.36995] | [1.41681] | [1.03794] | [1.08506] | |
D(TMM(−3)) | 0.022146 | −0.020194 | −0.020263 | 0.081169 | 0.083641 | 0.092574 | −0.062092 | −0.060249 |
(0.02256) | (0.03412) | (0.03431) | (0.14865) | (0.14856) | (0.14956) | (0.03362) | (0.03378) | |
[0.98152] | [−0.59190] | [−0.59054] | [0.54602] | [0.56300] | [0.61899] | [−1.84669] * | [−1.78346] * | |
D(TMM(−4)) | −0.015564 | 0.017562 | 0.017502 | 0.120873 | 0.122630 | 0.129485 | ||
(0.02164) | (0.03463) | (0.03476) | (0.14985) | (0.14970) | (0.15037) | |||
[−0.71907] | [0.50714] | [0.50344] | [0.80663] | [0.81918] | [0.86113] | |||
D(TMM(−5)) | −0.045169 | −0.045198 | −0.213600 | −0.210881 | −0.203837 | |||
(0.03347) | (0.03360) | (0.14926) | (0.14909) | (0.14978) | ||||
[−1.34972] | [−1.34530] | [−1.43110] | [−1.41446] | [−1.36087] | ||||
D(TMM(−6)) | −0.122108 | −0.117916 | −0.110595 | |||||
(0.14807) | (0.14794) | (0.14868) | ||||||
[−0.82469] | [−0.79703] | [−0.74384] | ||||||
D(LNTCER(−1)) | 0.113522 | −0.125154 | −0.127073 | 2.988385 | 3.035592 | 3.167244 | −0.242772 | −0.212459 |
(0.27020) | (0.41766) | (0.42201) | (1.88892) | (1.88460) | (1.90047) | (0.44179) | (0.44470) | |
[0.42014] | [−0.29965] | [−0.30111] | [1.58206] | [1.61073] | [1.66655] * | [−0.54952] | [−0.47776] | |
D(LNTCER(−2)) | 0.032241 | −0.127148 | −0.128552 | −3.624865 | −3.580331 | −3.454281 | 0.766407 | 0.792989 |
(0.26843) | (0.43191) | (0.43436) | (1.92917) | (1.92711) | (1.94181) | (0.45455) | (0.45693) | |
[0.12011] | [−0.29438] | [−0.29596] | [−1.87897] * | [−1.85787] * | [−1.77890] * | [1.68608] * | [1.73548] * | |
D(LNTCER(−3)) | 0.317163 | −0.231284 | −0.232660 | 1.000763 | 1.034081 | 1.146813 | −0.588274 | −0.554907 |
(0.26841) | (0.42830) | (0.43152) | (1.92975) | (1.92739) | (1.93965) | (0.45187) | (0.45540) | |
[1.18166] | [−0.54001] | [−0.53916] | [0.51860] | [0.53652] | [0.59125] | [−1.30185] | [−1.21851] | |
D(LNTCER(−4)) | −0.373921 | 0.315719 | 0.314732 | −0.252943 | −0.218716 | −0.105568 | ||
(0.27221) | (0.43358) | (0.43564) | (1.93811) | (1.93693) | (1.94931) | |||
[−1.37367] | [0.72817] | [0.72245] | [−0.13051] | [−0.11292] | [−0.05416] | |||
D(LNTCER(−5)) | −0.432216 | −0.433253 | 1.828832 | 1.883035 | 1.967458 | |||
(0.43067) | (0.43306) | (1.94552) | (1.94415) | (1.95223) | ||||
[−1.00358] | [−1.00045] | [0.94002] | [0.96856] | [1.00780] | ||||
D(LNTCER(−6)) | 2.249810 | 2.337698 | 2.432006 | |||||
(1.93160) | (1.93283) | (1.94230) | ||||||
[1.16474] | [1.20947] | [1.25213] | ||||||
D(LNGPR_TUN(−1)) | −0.073326 | 0.915014 | 0.918048 | 5.904403 | 5.896209 | 5.833285 | 0.521730 | 0.545428 |
(0.40427) | (0.75988) | (0.76134) | (3.33405) | (3.29483) | (3.30112) | (0.62511) | (0.62498) | |
[−0.18138] | [1.20416] | [1.20583] | [1.77094] * | [1.78954] * | [1.76706] * | [0.83463] | [0.87272] | |
D(LNGPR_TUN(−2)) | 0.045567 | 0.784876 | 0.787129 | 6.896289 | 6.861036 | 6.796510 | 0.131827 | 0.151291 |
(0.47983) | (0.75745) | (0.75896) | (3.43571) | (3.41393) | (3.42045) | (0.61156) | (0.61207) | |
[0.09496] | [1.03621] | [1.03712] | [2.00724] ** | [2.00972] ** | [1.98702] ** | [0.21556] | [0.24718] | |
D(LNGPR_TUN(−3)) | −0.166697 | 0.695274 | 0.696802 | 0.216236 | 0.156156 | 0.110585 | −0.171479 | −0.169950 |
(0.46621) | (0.75016) | (0.75165) | (3.58590) | (3.57220) | (3.57803) | (0.56112) | (0.56146) | |
[−0.35756] | [0.92683] | [0.92703] | [0.06030] | [0.04371] | [0.03091] | [−0.30560] | [−0.30269] | |
D(LNGPR_TUN(−4)) | −0.183783 | 0.835350 | 0.835907 | 3.395157 | 3.309369 | 3.297881 | ||
(0.37694) | (0.66918) | (0.67055) | (3.58022) | (3.57554) | (3.58064) | |||
[−0.48756] | [1.24833] | [1.24660] | [0.94831] | [0.92556] | [0.92103] | |||
D(LNGPR_TUN(−5)) | 1.169134 | 1.169145 | 1.174979 | 1.114881 | 1.149140 | |||
(0.57544) | (0.57661) | (3.25322) | (3.25176) | (3.25689) | ||||
[2.03172] ** | [2.02763] ** | [0.36117] | [0.34286] | [0.35283] | ||||
D(LNGPR_TUN(−6)) | −0.745227 | −0.775132 | −0.760292 | |||||
(2.65782) | (2.65628) | (2.66016) | ||||||
[−0.28039] | [−0.29181] | [−0.28581] | ||||||
D(TMM_GPR_TUN(−1)) | 0.026808 | −0.262980 | −0.263740 | −1.707027 | −1.709679 | −1.698611 | −0.057881 | −0.063615 |
(0.08860) | (0.17717) | (0.17751) | (0.77396) | (0.76381) | (0.76513) | (0.14132) | (0.14133) | |
[0.30258] | [−1.48438] | [−1.48581] | [−2.20556] ** | [−2.23836] ** | [−2.22003] ** | [−0.40957] | [−0.45010] | |
D(TMM_GPR_TUN(−2)) | 0.049527 | −0.167405 | −0.167995 | −1.786492 | −1.783644 | −1.772201 | 0.009650 | 0.005527 |
(0.10478) | (0.17164) | (0.17199) | (0.76593) | (0.75966) | (0.76098) | (0.13345) | (0.13353) | |
[0.47268] | [−0.97531] | [−0.97678] | [−2.33245] ** | [−2.34797] ** | [−2.32884] ** | [0.07231] | [0.04139] | |
D(TMM_GPR_TUN(−3)) | 0.089322 | −0.152972 | −0.153419 | −0.564044 | −0.554843 | −0.548281 | 0.057940 | 0.057640 |
(0.10108) | (0.16427) | (0.16459) | (0.77559) | (0.77140) | (0.77257) | (0.12126) | (0.12131) | |
[0.88367] | [−0.93124] | [−0.93211] | [−0.72725] | [−0.71927] | [−0.70969] | [0.47782] | [0.47513] | |
D(TMM_GPR_TUN(−4)) | 0.086691 | −0.179598 | −0.179809 | −0.955703 | −0.939649 | −0.939773 | ||
(0.08183) | (0.14575) | (0.14604) | (0.75946) | (0.75756) | (0.75863) | |||
[1.05937] | [−1.23227] | [−1.23122] | [−1.25839] | [−1.24037] | [−1.23878] | |||
D(TMM_GPR_TUN(−5)) | −0.276489 | −0.276538 | −0.541191 | −0.529185 | −0.539418 | |||
(0.12310) | (0.12336) | (0.68560) | (0.68494) | (0.68614) | ||||
[−2.24602] ** | [−2.24175] ** | [−0.78937] | [−0.77260] | [−0.78616] | ||||
D(TMM_GPR_TUN(−6)) | 0.104012 | 0.109391 | 0.104060 | |||||
(0.56265) | (0.56224) | (0.56311) | ||||||
[0.18486] | [0.19456] | [0.18479] | ||||||
C | −0.004008 | −0.006034 | −0.010384 | −0.015309 | 0.005845 | 0.009081 | 0.021045 | |
(0.01117) | (0.01926) | (0.06051) | (0.06098) | (0.09612) | (0.00880) | (0.01658) | ||
[−0.35893] | [−0.31334] | [−0.17160] | [−0.25103] | [0.06081] | [1.03183] | [1.26959] | ||
@TREND(93M01) | 8.31 × 10−6 | −6.04 × 10−5 | −4.92 × 10−5 | |||||
(5.6 × 10−5) | (0.00025) | (5.6 × 10−5) | ||||||
[0.14960] | [−0.23720] | [−0.87587] | ||||||
R-squared | 0.475361 | 0.443073 | 0.443126 | 0.303078 | 0.304132 | 0.305105 | 0.190371 | 0.191801 |
Adj. R-squared | 0.429407 | 0.373736 | 0.371271 | 0.194275 | 0.195494 | 0.193215 | 0.132102 | 0.130341 |
Sum sq. resids | 0.551347 | 1.163108 | 1.162997 | 21.35113 | 21.31884 | 21.28902 | 1.434947 | 1.432412 |
S.E. equation | 0.044858 | 0.068346 | 0.068480 | 0.300149 | 0.299921 | 0.300346 | 0.073725 | 0.073800 |
F-statistic | 10.34433 | 6.390191 | 6.166966 | 2.785582 | 2.799503 | 2.726832 | 3.267121 | 3.120749 |
Log likelihood | 516.9645 | 372.2382 | 372.2516 | −38.80395 | −38.59584 | −38.40337 | 347.8957 | 348.1467 |
Akaike AIC | −3.290732 | −2.421624 | −2.414602 | 0.558574 | 0.557061 | 0.562934 | −2.309124 | −2.303850 |
Schwarz SC | −2.981331 | −2.007292 | −1.987322 | 1.058346 | 1.056833 | 1.075857 | −2.052154 | −2.034032 |
Mean dependent | 0.001031 | 0.000907 | 0.000907 | −0.003196 | −0.003196 | −0.003196 | −0.000791 | −0.000791 |
S.D. dependent | 0.059385 | 0.086364 | 0.086364 | 0.334382 | 0.334382 | 0.334382 | 0.079137 | 0.079137 |
Model | (1) |
---|---|
Assumption | Intercept and trend in CE, (no trend) in VAR |
Cointegrating Eq: | CointEq1 |
LNCPI(−1) | 1.000000 |
LNM2TND(−1) | −1.838852 |
(1.25620) | |
[−1.46382] | |
TMM(−1) | 0.376102 |
(0.35593) | |
[1.05667] | |
LNTCER(−1) | 1.626655 |
(5.22719) | |
[0.31119] | |
LNGPR_TUN(−1) | 212.6330 |
(50.1796) | |
[4.23744] *** | |
TMM_GPR_TUN(−1) | −54.34083 |
(11.1719) | |
[−4.86407] *** | |
C | 6.806815 |
Error Correction: | D(LNCPI) |
CointEq1 | −0.000311 |
(9.0 × 10−5) | |
[−3.46473] *** | |
D(LNCPI(−1)) | 0.260058 |
(0.06020) | |
[4.31971] *** | |
D(LNCPI(−2)) | −0.098718 |
(0.05990) | |
[−1.64800] * | |
D(LNCPI(−3)) | 0.227855 |
(0.06002) | |
[3.79617] *** | |
D(LNCPI(−4)) | −0.105617 |
(0.05970) | |
[−1.76904] * | |
D(LNM2TND(−1)) | 0.014519 |
(0.01592) | |
[0.91217] | |
D(LNM2TND(−2)) | 0.002582 |
(0.01645) | |
[0.15694] | |
D(LNM2TND(−3)) | 0.023600 |
(0.01648) | |
[1.43172] | |
D(LNM2TND(−4)) | 0.023508 |
(0.01619) | |
[1.45219] | |
D(TMM(−1)) | −4.68 × 10−5 |
(0.00130) | |
[−0.03591] | |
D(TMM(−2)) | 0.000957 |
(0.00133) | |
[0.71789] | |
D(TMM(−3)) | 0.002958 |
(0.00133) | |
[2.21989] ** | |
D(TMM(−4)) | 0.000619 |
(0.00130) | |
[0.47449] | |
D(LNTCER(−1)) | 0.001442 |
(0.01768) | |
[0.08156] | |
D(LNTCER(−2)) | 0.005424 |
(0.01786) | |
[0.30368] | |
D(LNTCER(−3)) | −0.007315 |
(0.01784) | |
[−0.41005] | |
D(LNTCER(−4)) | −0.008215 |
(0.01769) | |
[−0.46444] | |
D(LNGPR_TUN(−1)) | 0.050314 |
(0.02559) | |
[1.96629] ** | |
D(LNGPR_TUN(−2)) | 0.070708 |
(0.02652) | |
[2.66582] *** | |
D(LNGPR_TUN(−3)) | 0.046155 |
(0.02576) | |
[1.79177] * | |
D(LNGPR_TUN(−4)) | 0.016653 |
(0.02251) | |
[0.73976] | |
D(TMM_GPR_TUN(−1)) | −0.014463 |
(0.00579) | |
[−2.49694] ** | |
D(TMM_GPR_TUN(−2)) | −0.017414 |
(0.00581) | |
[−2.99739] *** | |
D(TMM_GPR_TUN(−3)) | −0.012506 |
(0.00557) | |
[−2.24723] ** | |
D(TMM_GPR_TUN(−4)) | −0.005134 |
(0.00486) | |
[−1.05572] | |
C | 0.002088 |
(0.00050) | |
[4.21679] *** | |
R-squared | 0.242049 |
Adj. R-squared | 0.172893 |
Sum sq. resids | 0.002315 |
S.E. equation | 0.002907 |
F-statistic | 3.500033 |
Log likelihood | 1340.128 |
Akaike AIC | −8.760855 |
Schwarz SC | −8.439861 |
Mean dependent | 0.003646 |
S.D. dependent | 0.003196 |
Model | (1) |
---|---|
Assumption | No intercept or trend in CE or VAR |
Cointegrating Eq: | CointEq1 |
IS1(−1) | 1.000000 |
TMM(−1) | −6.514690 |
(1.08392) | |
[−6.01031] *** | |
LNGPR_TUN(−1) | −0.672064 |
(0.26701) | |
[−2.51698] ** | |
TMM_GPR_TUN(−1) | 1.558309 |
(0.23433) | |
[6.65002] *** | |
Error Correction: | D(IS1) |
CointEq1 | −0.034268 |
(0.01732) | |
[−1.97813] ** | |
D(IS1(−1)) | −0.123440 |
(0.07343) | |
[−1.68104] * | |
D(TMM(−1)) | −0.212340 |
(0.58932) | |
[−0.36032] | |
D(LNGPR_TUN(−1)) | −0.273958 |
(0.73332) | |
[−0.37359] | |
D(TMM_GPR_TUN(−1)) | 0.078589 |
(0.12776) | |
[0.61513] | |
R-squared | 0.037559 |
Adj. R-squared | 0.016861 |
Sum sq. resids | 31.67702 |
S.E. equation | 0.412682 |
F-statistic | 1.814633 |
Log likelihood | −99.43415 |
Akaike AIC | 1.093551 |
Schwarz SC | 1.178689 |
Mean dependent | −0.010673 |
S.D. dependent | 0.416206 |
Aspect | IRFs (Local Projections) | VECM |
---|---|---|
Primary Focus | Focuses on short-to-medium-term dynamic responses | Focuses on long-run relationships and adjustment |
Flexibility | Capable of modeling nonlinear and state-dependent effects | Assumes linear relationships and requires cointegration |
Long-Run Analysis | Not intended for analyzing long-run equilibrium | Explicitly designed to capture long-run equilibrium |
Cointegration | Does not require a cointegration assumption | Requires the presence of cointegration |
Applicability | Suitable for analyzing transient, state-dependent shocks | Best suited for studying long-term structural relationships |
Ease of Use | Easier to implement with fewer assumptions | Involves a more complex setup and requires extensive testing |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trabelsi, E. Monetary Policy Transmission Under Global Versus Local Geopolitical Risk: Exploring Time-Varying Granger Causality, Frequency Domain, and Nonlinear Territory in Tunisia. Economies 2025, 13, 185. https://doi.org/10.3390/economies13070185
Trabelsi E. Monetary Policy Transmission Under Global Versus Local Geopolitical Risk: Exploring Time-Varying Granger Causality, Frequency Domain, and Nonlinear Territory in Tunisia. Economies. 2025; 13(7):185. https://doi.org/10.3390/economies13070185
Chicago/Turabian StyleTrabelsi, Emna. 2025. "Monetary Policy Transmission Under Global Versus Local Geopolitical Risk: Exploring Time-Varying Granger Causality, Frequency Domain, and Nonlinear Territory in Tunisia" Economies 13, no. 7: 185. https://doi.org/10.3390/economies13070185
APA StyleTrabelsi, E. (2025). Monetary Policy Transmission Under Global Versus Local Geopolitical Risk: Exploring Time-Varying Granger Causality, Frequency Domain, and Nonlinear Territory in Tunisia. Economies, 13(7), 185. https://doi.org/10.3390/economies13070185