Asymmetry in Distributions of Accumulated Gains and Losses in Stock Returns
Abstract
:1. Introduction
2. Empirical Results
2.1. Initial Analysis of Returns
2.2. Distributions of Gains and Losses
2.3. Full Distributions of Returns and Their Statistical Measures
3. Theoretical Framework
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Albuquerque, R. (2012). Skewness in stock returns: Reconciling the evidence on firm versus aggregate returns. The Review of Financial Studies, 25(5), 1630–1673. [Google Scholar] [CrossRef]
- Bekaert, G., & Wu, G. (2000). Asymmetric volatility and risk in equity markets. The Review of Financial Studies, 13(1), 1–42. [Google Scholar] [CrossRef]
- Braun, P. A., Nelson, D. B., & Sunier, A. M. (1995). Good news, bad news, volatility, and betas. The Journal of Finance, 50(5), 1575–1603. [Google Scholar] [CrossRef]
- Campbell, J. Y., & Hentschel, L. (1992). An asymmetric model of changing volatility in stock returns. Journal of Financial Economics, 31, 281–318. [Google Scholar] [CrossRef]
- Chakraborti, A., Toke, I. M., Patriarca, M., & Abergel, F. (2011). Econophysics review: I. Empirical facts. Quantitative Finance, 11(7), 991–1012. [Google Scholar] [CrossRef]
- Cont, R. (2001). Empirical properties of asset returns: Stylized facts and statistical issues. Quantitative Finance, 1, 223–236. [Google Scholar] [CrossRef]
- Cox, J., Ingersoll, J., & Ross, S. (1985). A theory of the term structure of interest rates. Econometrica, 3(2), 385–408. [Google Scholar] [CrossRef]
- Dashti Moghaddam, M., Liu, Z., & Serota, R. A. (2021). Distributions of historic market data: Relaxation and correlations. The European Physical Journal B, 94, 83. [Google Scholar] [CrossRef]
- Dashti Moghaddam, M., & Serota, R. A. (2021). Combined mutiplicative-heston model for stochastic volatility. Physica A: Statistical Mechanics and Its Applications, 561, 125263. [Google Scholar] [CrossRef]
- Drǎgulescu, A. A., & Yakovenko, V. M. (2002). Probability distribution of returns in the Heston model with stochastic volatility. Quantitative Finance, 2(6), 443–453. [Google Scholar] [CrossRef]
- Duffee, G. R. (1995). Stock returns and volatility A firm-level analysis. Journal of Financial Economics, 37, 399–420. [Google Scholar] [CrossRef]
- French, K. R., Schwert, G. W., & Stambaugh, R. F. (1987). Expcted stock returns and volatility. Journal of Financial Economics, 19, 3–29. [Google Scholar] [CrossRef]
- Fuentes, M. A., Gerig, A., & Vicente, J. (2009). Universal behavior of extreme price movements in stock markets. PLoS ONE, 4(12), e8243. [Google Scholar] [CrossRef] [PubMed]
- Glosten, L. R., Jagannathan, R., & Runkle, D. E. (1993). On the relation between the expected value and the volatility of the nominal excess return on stocks. The Journl of Fiinance, XLVIII(5), 1779–1801. [Google Scholar] [CrossRef]
- Heston, S. L. (1993). A closed-form solution for options with stochastic volatility with applications to bond and currency options. The Review of Financial Studies, 6(2), 327–343. [Google Scholar] [CrossRef]
- Hong, H., & Stein, J. C. (2003). Differences of opinion, short-sales constraints, and market crashes. The Review of Financial Studies, 16(2), 487–525. [Google Scholar] [CrossRef]
- Janczura, J., & Weron, R. (2012). Black swans or dragon-kings? A simple test for deviations from the power law. European Physical Journal Special Topics, 205, 79–93. [Google Scholar] [CrossRef]
- Lee, C. W., & Kang, K. H. (2023). Estimating and testing skewness in a stochastic volatility model. Journal of Empirical Finance, 72, 445–467. [Google Scholar] [CrossRef]
- Liu, J., Dashti Moghaddam, M., & Serota, R. A. (2024). Are there dragon kings in the stock market? Foundations, 4(1), 91–113. [Google Scholar] [CrossRef]
- Liu, J., & Serota, R. A. (2023). Rethinking generalized Beta family of distributions. The European Physical Journal B, 96(2), 24. [Google Scholar] [CrossRef]
- Liu, Z., Dashti Moghaddam, M., & Serota, R. A. (2019). Distributions of historic market data—Stock returns. The European Physical Journal B, 92, 60. [Google Scholar] [CrossRef]
- Ma, T., & Serota, R. (2014). A model for stock returns and volatility. Physica A: Statistical Mechanics and its Applications, 398, 89–115. [Google Scholar] [CrossRef]
- Nelson, D. (1990). Arch models as diffusion approximations. Journal of Econometrics, 45, 7. [Google Scholar] [CrossRef]
- Neuberger, A., & Payne, R. (2021). The skewness of the stock market over long horizons. The Review of Financial Studies, 34(3), 1572–1616. [Google Scholar] [CrossRef]
- NIST Digital Library of Mathematical Functions. (n.d.). Available online: https://dlmf.nist.gov (accessed on 12 June 2025).
- Palomar, D. (2018, June 10–13). Financial engineering playground: Signal processing, robust estimation, kalman, HMM, optimization, etc. IEEE SSP 2018, Freiburg, Germany. Available online: https://rc.signalprocessingsociety.org/workshops/spsvid00262 (accessed on 12 June 2025).
- Perello, J., & Masoliver, J. (2002). Stochastic volatility and leverage effect. arXiv, arXiv:0202203. [Google Scholar]
- Pisarenko, V. F., & Sornette, D. (2012). Robust statistical tests of Dragon-Kings beyond power law distribution. The European Physical Journal Special Topics, 205, 95–115. [Google Scholar] [CrossRef]
- Praetz, P. D. (1972). The distribution of share price changes. Journal of Business, 45, 49–55. [Google Scholar] [CrossRef]
- Sándor, B., Simonsen, I., Nagy, B. Z., & Néda, Z. (2016). Time-scale effects on the gain-loss asymmetry in stock indices. Physical Review E, 94(2), 022311-1–022311-9. [Google Scholar] [CrossRef]
- Sive, J. V., & Lins, J. T. (2009). Temporal structure and gain-loss asymmetry for real and artificial stock indices. Physical Review E, 80(5), 057102-1–057102-4. [Google Scholar]
- Sornette, D., & Ouillon, G. (2012). Dragon-kings: Mechanisms, statistical methods and empirical evidence. The European Physical Journal Special Topics, 205, 1–26. [Google Scholar] [CrossRef]
- Taleb, N. (2007). The black swan: The impact of the highly improbable. Random House. [Google Scholar]
- Watorek, M., Kwapien, J., & Drozdz, S. (2021). Financial return distributions: Past, present, and COVID-19. Entropy, 23(7), 884. [Google Scholar] [CrossRef] [PubMed]
- Wu, G. (2001). The determinants of asymmetric volatility. The Review of Financial Studies, 14(3), 837–859. [Google Scholar] [CrossRef]
- Załuska-Kotur, M., Karpio, K., & Orłowski, A. (2006). Comparison of Gain–loss asymmetry behavior for stocks and indexes. Acta Physica Polonica B, 37, 3187–3192. [Google Scholar]
Total Points | Losses | Gains | |
---|---|---|---|
1 | 11,259 | 5455 | 5804 |
5 | 11,255 | 5167 | 6088 |
10 | 11,250 | 5063 | 6187 |
20 | 11,240 | 4871 | 6369 |
Slope of Losses | Slope of Gains | |
---|---|---|
1 | −2.971 | −3.234 |
5 | −3.003 | −4.228 |
10 | −2.623 | −3.673 |
20 | −2.494 | −3.647 |
1 | −1.093 | −0.0078 | −0.0609 | ||||
10 | −1.357 | −0.1791 | −0.2617 | ||||
20 | −1.331 | −0.2569 | −0.3309 | ||||
30 | −1.316 | −0.3334 | −0.2869 | ||||
40 | −1.360 | −0.1269 | −0.2925 | ||||
50 | −1.247 | −0.1416 | −0.3017 | ||||
60 | −1.144 | −0.1385 | −0.3221 | ||||
70 | −1.097 | −0.2268 | −0.3192 | ||||
80 | −1.087 | −0.1961 | −0.2911 | ||||
90 | −1.069 | −0.1277 | −0.2586 | ||||
100 | −1.072 | −0.0778 | −0.2287 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farahani, H.; Serota, R.A. Asymmetry in Distributions of Accumulated Gains and Losses in Stock Returns. Economies 2025, 13, 176. https://doi.org/10.3390/economies13060176
Farahani H, Serota RA. Asymmetry in Distributions of Accumulated Gains and Losses in Stock Returns. Economies. 2025; 13(6):176. https://doi.org/10.3390/economies13060176
Chicago/Turabian StyleFarahani, Hamed, and Rostislav A. Serota. 2025. "Asymmetry in Distributions of Accumulated Gains and Losses in Stock Returns" Economies 13, no. 6: 176. https://doi.org/10.3390/economies13060176
APA StyleFarahani, H., & Serota, R. A. (2025). Asymmetry in Distributions of Accumulated Gains and Losses in Stock Returns. Economies, 13(6), 176. https://doi.org/10.3390/economies13060176