Integrating Higher Education Strategies into Urban Cluster Development: Spatial Agglomeration Analysis of China’s Key Regions
Abstract
1. Introduction
2. Literature Review and Hypothesis Development
2.1. Higher Education Agglomeration in Urban Clusters
2.2. Spatial Agglomeration of Higher Education
2.3. Spatial Mechanisms of Higher Education Agglomeration Dynamic
3. Empirical Strategy
3.1. Background
3.2. Method
3.3. Variables
3.3.1. Dependent Variables
3.3.2. Independent Variables
3.3.3. Control Variables
3.4. Data
4. Estimating Results and Discussion
4.1. Regression Result of Benchmark Model
4.2. Robustness Test
4.3. Heterogeneity Analysis
5. Discussion and Conclusions
5.1. Discussion
5.2. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
1 | The data on enrolment in higher education have been derived from the “National Educational Statistics Bulletin” issued by the Ministry of Education of China. Related links: http://www.moe.gov.cn/jyb_sjzl/sjzl_fztjgb/202108/t20210827_555004.html, accessed on 10 March 2025. |
2 | The national-level urban clusters of the “Two Transverse and Three Lengthways” framework in China are hierarchically classified as follows: the first tier of “High-Quality Upgrading” Urban Clusters (Beijing–Tianjin–Hebei, the Yangtze River Delta, the Pearl River Delta, Chengdu–Chongqing, and the Middle Reaches of the Yangtze River), the second tier of “Vigorous Growth and Expansion” Urban Clusters (the Shandong Peninsula, the Coastal Area of Guangdong–Fujian–Zhejiang, the Central Plains, the Guanzhong Plain, and the Beibu Gulf), and the third tier of “Nurturing and Developing” Urban Clusters (Harbin–Changchun, Central and Southern Liaoning, Central Shanxi, Central Guizhou, Central Yunnan, Hohhot–Baotou–Yulin, Lanzhou–Xining, Ningxia along the Yellow River, and the northern slope of the Tianshan Mountains). |
3 | Given that the results of benchmark regression have validated the interchangeability of “number of higher education institutions per million people” as a metric for assessing the spatial agglomeration of higher education distribution, and have shown significant spatial spillover effects under both the geographical distance and economic distance spatial weight matrices, in Table 8 and Table 9, it is henceforth sufficient to use only “number of undergraduate students” as a proxy variable, based on the spatial weight matrix of geographical distance and the dynamic panel analysis, to examine the heterogeneity of the spatiotemporal effects of higher education agglomeration in urban clusters. The complete results are also available upon request. |
References
- Abu Alfoul, M. N., Bazhair, A. H., Khatatbeh, I. N., Arian, A. G., & Abu Al-Foul, M. N. (2024). The effect of education on economic growth in Sub-Saharan African countries: Do institutions matter? Economies, 12(11), 300. [Google Scholar] [CrossRef]
- Acs, Z. J., Anselin, L., & Varga, A. (2002). Patents and innovation counts as measures of regional production of new knowledge. Research Policy, 31(7), 1069–1085. [Google Scholar] [CrossRef]
- Adamakou, M., Kallioras, D., & Petrakos, G. (2021). Detecting convergence trends among EU universities. Economies, 9(2), 42. [Google Scholar] [CrossRef]
- Addie, J. P. D. (2017). From the urban university to universities in urban society. Regional Studies, 51(7), 1089–1099. [Google Scholar] [CrossRef]
- Addie, J. P. D., Keil, R., & Olds, K. (2015). Beyond town and gown: Universities, territoriality and the mobilization of new urban structures in Canada. Territory Politics Governance, 3(1), 27–50. [Google Scholar] [CrossRef]
- Alder, S., Shao, L., & Zilibotti, F. (2016). Economic reforms and industrial policy in a panel of Chinese cities. Journal of Economic Growth, 21(4), 305–349. [Google Scholar] [CrossRef]
- Aldieri, L., Kotsemir, M. N., & Vinci, C. P. (2018). Knowledge spillover effects: Empirical evidence from Russian regions. Quality & Quantity, 52(5), 2111–2132. [Google Scholar] [CrossRef]
- Al-Youbi, A. O., Zahed, A. H. M., Nahas, M. N., & Hegazy, A. A. (2021). The Roles of Universities in Development. In The leading world’s most innovative universities (pp. 1–8). Springer International Publishing. [Google Scholar] [CrossRef]
- Anselin, L. B., & Anil, K. (1998). Spatial dependence in linear regression models with an introduction to spatial econometrics. In A. Ullah (Ed.), Handbook of applied economic statistics. CRC Press. [Google Scholar] [CrossRef]
- Arbo, P., & Benneworth, P. (2007). Understanding the regional contribution of higher education institutions (OECD Education Working Papers, No. 9). OECD Publishing. [Google Scholar] [CrossRef]
- Aritenang, A. F., & Chandramidi, A. N. (2023). The spatial effects of fiscal decentralization on regional convergence: The case of regions in indonesia. GeoJournal, 88(2), 2011–2030. [Google Scholar] [CrossRef]
- Bayuo, B. B., Chaminade, C., & Göransson, B. (2020). Unpacking the role of universities in the emergence, development and impact of social innovations—A systematic review of the literature. Technological Forecasting and Social Change, 155, 120030. [Google Scholar] [CrossRef]
- Belderbos, R., Castellani, D., Du, H. S., & Lee, G. H. (2024). Internal versus external agglomeration advantages in investment location choice: The role of global cities’ international connectivity. Journal of International Business Studies, 55(6), 745–763. [Google Scholar] [CrossRef]
- Bevilacqua, C., Pizzimenti, P., & Ou, Y. (2023). Cities in transition and urban innovation ecosystems: Place and innovation dynamics in the case of Boston and Cambridge (USA). Sustainability, 15(18), 13346. [Google Scholar] [CrossRef]
- Billings, S. B., & Johnson, E. B. (2016). Agglomeration within an urban area. Journal of Urban Economics, 91, 13–25. [Google Scholar] [CrossRef]
- Borsi, M. T., Valerio Mendoza, O. M., & Comim, F. (2022). Measuring the provincial supply of higher education institutions in China. China Economic Review, 71, 101724. [Google Scholar] [CrossRef]
- Brennan, J., & Cochrane, A. (2019). Universities: In, of, and beyond their cities. Oxford Review of Education, 45(2), 188–203. [Google Scholar] [CrossRef]
- Breschi, S., & Lissoni, F. (2001). Knowledge spillovers and local innovation systems: A critical survey. Industrial and Corporate Change, 10(4), 975–1005. [Google Scholar] [CrossRef]
- Caniëls, M. C. J., & van den Bosch, H. (2011). The role of higher education institutions in building regional innovation systems. Papers in Regional Science, 90(2), 271–287. [Google Scholar] [CrossRef]
- Capone, F., Lazzeretti, L., & Innocenti, N. (2021). Innovation and diversity: The role of knowledge networks in the inventive capacity of cities. Small Business Economics, 56(2), 773–788. [Google Scholar] [CrossRef]
- Chandra, R. (2022). Paul Romer and modern endogenous growth theory. In R. Chandra (Ed.), Endogenous growth in historical perspective: From Adam Smith to Paul Romer (pp. 251–281). Springer International Publishing. [Google Scholar] [CrossRef]
- Chao, R. Y. (2014). Pathways to an East Asian higher education area: A comparative analysis of East Asian and European regionalization processes. Higher Education, 68(4), 559–575. [Google Scholar] [CrossRef]
- Chen, K., & Kenney, M. (2007). Universities/research institutes and regional innovation systems: The cases of Beijing and Shenzhen. World Development, 35(6), 1056–1074. [Google Scholar] [CrossRef]
- Chou, M. H., Erkkilä, T., & Mölsä, J. (2023). Crafting innovation hubs: Future cities and global challenges. The British Journal of Politics and International Relations, 26(3), 694–717. [Google Scholar] [CrossRef]
- Czaller, L. (2017). Increasing social returns to human capital: Evidence from Hungarian regions. Regional Studies, 51(3), 467–477. [Google Scholar] [CrossRef]
- De Falco, S. (2021). Spatial dynamics regarding geographical concentration of economic activities. Italian NUTS-3 analysis. Applied Spatial Analysis and Policy, 14(4), 795–825. [Google Scholar] [CrossRef]
- Drucker, J. (2016). Reconsidering the regional economic development impacts of higher education institutions in the United States. Regional Studies, 50(7), 1185–1202. [Google Scholar] [CrossRef]
- Duan, Y., Zhang, H., Wang, W., & Ao, X. (2022). The effects of China’s higher education expansion on urban and rural intergenerational mobility. China Economic Review, 73, 101793. [Google Scholar] [CrossRef]
- Ebersberger, B., Herstad, S. J., & Altmann, A. (2013). Higher education institutions and regional development. In A. Altmann, & B. Ebersberger (Eds.), Universities in change: Managing higher education institutions in the age of globalization (pp. 311–321). Springer New York. [Google Scholar] [CrossRef]
- Fang, C., & Yu, D. (2017). Urban agglomeration: An evolving concept of an emerging phenomenon. Landscape and Urban Planning, 162, 126–136. [Google Scholar] [CrossRef]
- Fang, C., & Yu, D. (2020). Overview of the fundamental connotation and strategic position of China’s urban agglomerations. In China’s urban agglomerations (pp. 1–63). Springer Singapore. [Google Scholar] [CrossRef]
- Feng, L. (2021). Influence of spatiotemporal difference and input of higher education on regional economy. Discrete Dynamics in Nature and Society, 2021(1), 9515285. [Google Scholar] [CrossRef]
- Florida, R., & Adler, P. (2020). Economic geography. In A. Kobayashi (Ed.), International encyclopedia of human geography (2nd ed., pp. 25–28). Elsevier. [Google Scholar] [CrossRef]
- Fujita, M. (2008). Formation and growth of economic agglomerations and industrial clusters: A theoretical framework from the viewpoint of spatial economics. In A. Kuchiki, & M. Tsuji (Eds.), The flowchart approach to industrial cluster policy (pp. 18–37). Palgrave Macmillan UK. [Google Scholar] [CrossRef]
- Fujita, M., & Krugman, P. (2003). The new economic geography: Past, present and the future. Papers in Regional Science, 83(1), 139–164. [Google Scholar] [CrossRef]
- Fujita, M., & Mori, T. (1996). The role of ports in the making of major cities: Self-agglomeration and hub-effect. Journal of Development Economics, 49(1), 93–120. [Google Scholar] [CrossRef]
- Gaspar, J. M. (2020). New economic geography: Economic integration and spatial imbalances. In S. Colombo (Ed.), Spatial economics volume I: Theory (pp. 79–110). Springer International Publishing. [Google Scholar] [CrossRef]
- Glaeser, E. L., Kallal, H. D., Scheinkman, J. A., & Shleifer, A. (1992). Growth in cities. Journal of Political Economy, 100(6), 1126–1152. [Google Scholar] [CrossRef]
- Gordon, P., & Kourtit, K. (2020). Agglomeration and clusters near and far for regional development: A critical assessment. Regional Science Policy & Practice, 12(3), 387–396. [Google Scholar] [CrossRef]
- Gu, H., Meng, X., Shen, T., & Wen, L. (2020). China’s highly educated talents in 2015: Patterns, determinants and spatial spillover effects. Applied Spatial Analysis and Policy, 13(3), 631–648. [Google Scholar] [CrossRef]
- Gu, J. F. (2012a). Harmonious expansion of China’s higher education: A new growth pattern. Higher Education, 63(4), 513–528. [Google Scholar] [CrossRef]
- Gu, J. F. (2012b). Spatial recruiting competition in Chinese higher education system. Higher Education, 63(2), 165–185. [Google Scholar] [CrossRef]
- Harrison, J., Smith, D. P., & Kinton, C. (2017). Relational regions “in the making”: Institutionalizing new regional geographies of higher education. Regional Studies, 51(7), 1020–1034. [Google Scholar] [CrossRef]
- Huffman, D., & Quigley, J. M. (2002). The role of the university in attracting high tech entrepreneurship: A Silicon Valley tale. Annals of Regional Science, 36(3), 403–419. [Google Scholar] [CrossRef]
- Ji, M., Jiao, Y. W., & Cheng, N. (2023). An Innovative decision-making scheme for the high-quality economy development driven by higher education. Journal of Innovation & Knowledge, 8(2), 100345. [Google Scholar] [CrossRef]
- Jongbloed, B., Enders, J., & Salerno, C. (2008). Higher education and its communities: Interconnections, interdependencies and a research agenda. Higher Education, 56(3), 303–324. [Google Scholar] [CrossRef]
- Kim, Y. J., & Lee, C.-I. (2024). Space and technology in catching-up economies: “The city as a laboratory for innovation”. The Annals of Regional Science, 73(1), 205–239. [Google Scholar] [CrossRef]
- Konzelmann, S. J., Pitelis, C. N., & Tomlinson, P. R. (2025). Is it all in Marshall, still? An appreciation of Marshall’s contribution to modern economics. Cambridge Journal of Economics, 49(3), 385–404. [Google Scholar] [CrossRef]
- Krugman, P. (1991). Increasing returns and economic geography. Journal of Political Economy, 99(3), 483–499. [Google Scholar] [CrossRef]
- Lao, X., Gu, H., Yu, H., & Xiao, F. (2021). Exploring the spatially-varying effects of human capital on urban innovation in China. Applied Spatial Analysis and Policy, 14(4), 827–848. [Google Scholar] [CrossRef]
- Lee, J. T. (2014). Education hubs and talent development: Policymaking and implementation challenges. Higher Education, 68(6), 807–823. [Google Scholar] [CrossRef]
- Lendel, I., & Qian, H. F. (2017). Inside the great recession: University products and regional economic development. Growth and Change, 48(1), 153–173. [Google Scholar] [CrossRef]
- Li, X. Y., Li, J. L., & Wu, X. J. (2020). University spillovers, spatial distance, and firm innovation: Evidence at Chinese listed firms. Emerging Markets Finance and Trade, 56(7), 1504–1519. [Google Scholar] [CrossRef]
- Li, Y., Zhang, J. N., Yang, X. D., Wang, W. L., Wu, H. T., Ran, Q. Y., & Luo, R. D. (2021). The impact of innovative city construction on ecological efficiency: A quasi-natural experiment from China. Sustainable Production and Consumption, 28, 1724–1735. [Google Scholar] [CrossRef]
- Liang, W., Wang, D., Gao, L., & Li, C. (2025). Study on the impact of China’s urban agglomerations’ tiered spatial structure on regional economic resilience. PLoS ONE, 20(3), e0314538. [Google Scholar] [CrossRef]
- Liu, H., Wang, L., Wang, J., Ming, H., Wu, X., Xu, G., & Zhang, S. (2024). Multidimensional spatial inequality in China and its relationship with economic growth. Humanities and Social Sciences Communications, 11(1), 1415. [Google Scholar] [CrossRef]
- Liu, X., Wu, X., & Zhang, W. (2024). A new DEA model and its application in performance evaluation of scientific research activities in the universities of China’s double first-class initiative. Socio-Economic Planning Sciences, 92, 101839. [Google Scholar] [CrossRef]
- Lucas, R. E. (1988). On the mechanics of economic development. Journal of Monetary Economics, 22(1), 3–42. [Google Scholar] [CrossRef]
- Lyu, L., Sun, F., & Huang, R. (2019). Innovation-based urbanization: Evidence from 270 cities at the prefecture level or above in China. Journal of Geographical Sciences, 29(8), 1283–1299. [Google Scholar] [CrossRef]
- Ma, C. Y., Wu, H. C., & Li, X. H. (2023). Spatial spillover of local general higher education expenditures on sustainable regional economic growth: A spatial econometric analysis. PLoS ONE, 18(11), e0292781. [Google Scholar] [CrossRef]
- Maggioni, M. A., & Uberti, T. E. (2009). Knowledge networks across Europe: Which distance matters? The Annals of Regional Science, 43(3), 691–720. [Google Scholar] [CrossRef]
- Marshall, A. (2013). The growth of wealth. In A. Marshall (Ed.), Principles of economics (pp. 183–199). Palgrave Macmillan UK. [Google Scholar] [CrossRef]
- Martin, R. (2011). Regional economic resilience, hysteresis and recessionary shocks. Journal of Economic Geography, 12(1), 1–32. [Google Scholar] [CrossRef]
- Mitze, T., & Makkonen, T. (2020). When interaction matters: The contingent effects of spatial knowledge spillovers and internal R&I on firm productivity. The Journal of Technology Transfer, 45(4), 1088–1120. [Google Scholar] [CrossRef]
- Mohanty, B., & Bhanumurthy, N. R. (2018). Regional growth policy experience in India: The spatial dimension. Asia-Pacific Journal of Regional Science, 2(2), 479–505. [Google Scholar] [CrossRef]
- Mok, K. H., & Marginson, S. (2021). Massification, diversification and internationalisation of higher education in China: Critical reflections of developments in the last two decades. International Journal of Educational Development, 84, 102405. [Google Scholar] [CrossRef]
- Motoyama, Y. (2008). What was new about the cluster theory?: What could it answer and what could it not answer? Economic Development Quarterly, 22(4), 353–363. [Google Scholar] [CrossRef]
- Munnich, L., & Iacono, M. (2016). Competitive industry clusters and transportation in Minnesota. Competitiveness Review, 26, 25–40. [Google Scholar] [CrossRef]
- Ottaviano, G., & Thisse, J. F. (2004). Agglomeration and economic geography. In J. V. Henderson, & J. F. Thisse (Eds.), Handbook of regional and urban economics (Vol. 4, pp. 2563–2608). Elsevier. [Google Scholar] [CrossRef]
- Pablo-Martí, F., & Arauzo-Carod, J.-M. (2020). Spatial distribution of economic activities: A network approach. Journal of Economic Interaction and Coordination, 15(2), 441–470. [Google Scholar] [CrossRef]
- Peng, C., & Xu, H. (2024). Universities and cities: The impact of higher education on urban innovation, entrepreneurship, and economic growth. Asian Economic Papers, 23(2), 33–56. [Google Scholar] [CrossRef]
- Pink-Harper, S. A. (2015). Educational attainment: An examination of its impact on regional economic growth. Economic Development Quarterly, 29(2), 167–179. [Google Scholar] [CrossRef]
- Porter, M. E. (2000). Location, competition, and economic development: Local clusters in a global economy. Economic Development Quarterly, 14(1), 15–34. [Google Scholar] [CrossRef]
- Rodríguez-Pose, A. (2001). Is R&D investment in lagging areas of Europe worthwhile? Theory and empirical evidence. Papers in Regional Science, 80(3), 275–295. [Google Scholar] [CrossRef]
- Romer, P. M. (1986). Increasing returns and long-run growth. Journal of Political Economy, 94(5), 1002–1037. [Google Scholar] [CrossRef]
- Rosenfeld, M. T. W., Franz, P., & Heimpold, G. (2007). Economic ‘clusters’ in East Germany: Evidence on the location and characteristics of spatially concentrated industries. Post-Communist Economies, 19(1), 73–92. [Google Scholar] [CrossRef]
- Santoalha, A., Biscaia, R., & Teixeira, P. (2018). Higher education and its contribution to a diverse regional supply of human capital: Does the binary/unitary divide matters? Higher Education, 75(2), 209–230. [Google Scholar] [CrossRef]
- Slavova, S., Rubalcaba, L., & Franco-Riquelme, J. N. (2025). Understanding imbalanced transmission from R&D inputs into innovation outputs and impacts: Evidence from Kazakhstan. Economies, 13(2), 25. [Google Scholar] [CrossRef]
- Sun, Y. M., Lu, Y. L., Wang, T. Y., Ma, H., & He, G. Z. (2008). Pattern of patent-based environmental technology innovation in China. Technological Forecasting and Social Change, 75(7), 1032–1042. [Google Scholar] [CrossRef]
- Tleppayev, A., Zeinolla, S., Tyulyubayeva, D., & Aben, A. (2025). Education, institutions, and investment as determinants of economic growth in Central Asia and the Caucasus: A panel data analysis. Economies, 13(3), 78. [Google Scholar] [CrossRef]
- Tridico, P. (2011). Explaining economic development: Old and new theories. In Institutions, human development and economic growth in transition economies (pp. 181–194). Palgrave Macmillan UK. [Google Scholar] [CrossRef]
- Tripathi, S. (2021). Do macroeconomic factors promote urbanization? Evidence from BRICS countries. Asia-Pacific Journal of Regional Science, 5(2), 397–426. [Google Scholar] [CrossRef]
- Tsvetkova, E., & Lomer, S. (2019). Academic excellence as “competitiveness enhancement” in Russian higher education. International Journal of Comparative Education and Development, 21(2), 127–144. [Google Scholar] [CrossRef]
- Valero, A., & Van Reenen, J. (2019). The economic impact of universities: Evidence from across the globe. Economics of Education Review, 68, 53–67. [Google Scholar] [CrossRef]
- Vaz, E. (2024). Spatial spillovers and knowledge structures. In Regional knowledge economies: Exploring the intersection of technology, geography, and innovation in the digital era (pp. 7–21). Springer Nature Switzerland. [Google Scholar] [CrossRef]
- Verspagen, B. (2010). The spatial hierarchy of technological change and economic development in Europe. The Annals of Regional Science, 45(1), 109–132. [Google Scholar] [CrossRef]
- Wang, C., Wang, L., Xue, Y., & Li, R. (2022). Revealing spatial spillover effect in high-tech industry Agglomeration from a high-skilled labor flow network perspective. Journal of Systems Science and Complexity, 35(3), 839–859. [Google Scholar] [CrossRef]
- Wilck, J. H. (2020). Introduction to the special issue on engineering economy education. The Engineering Economist, 65(3), 177–178. [Google Scholar] [CrossRef]
- Woldegiorgis, E., Jonck, P., & Goujon, A. (2015). Regional higher education reform initiatives in Africa: A comparative analysis with the Bologna Process. International Journal of Higher Education, 4, 241–253. [Google Scholar] [CrossRef]
- Wu, W. W., & Zhu, J. D. (2021). Are there demonstration effects of fiscal expenditures on higher education in China? An empirical investigation. International Journal of Educational Development, 81, 102345. [Google Scholar] [CrossRef]
- Xiong, W., Yang, J., & Shen, W. (2022). Higher education reform in China: A comprehensive review of policymaking, implementation, and outcomes since 1978. China Economic Review, 72, 101752. [Google Scholar] [CrossRef]
- Yang, H., Ma, G., & Tan, B. (2025). The impact of higher education revitalisation on regional innovation capability. Finance Research Letters, 75, 106908. [Google Scholar] [CrossRef]
- Yang, Z. (2023). Human capital space: A spatial perspective of the dynamics of people and economic relationships. Humanities and Social Sciences Communications, 10(1), 145. [Google Scholar] [CrossRef]
- Yang, Z., Hao, P., & Cai, J. (2015). Economic clusters: A bridge between economic and spatial policies in the case of Beijing. Cities, 42, 171–185. [Google Scholar] [CrossRef]
- Yin, X. S., Hussain, J., & Kui, Z. (2022). The spatial distribution pattern and formation mechanism of the spatial agglomeration of Chinese higher education population: A cross-province comparison. Applied Spatial Analysis and Policy, 15(2), 315–338. [Google Scholar] [CrossRef]
- Yu, J., Hu, W., & Deng, T. (2024). Towards more resilient economy—Analyzing the impact of new-type urbanization on urban economic resilience: Mechanisms and spatial spillover boundaries. Economic Change and Restructuring, 57(5), 158. [Google Scholar] [CrossRef]
- Zhang, C., Tian, L., & Fang, G. (2024). Analysis of sustainable transformation development patterns and heterogeneity of Chinese cities based on spatial general equilibrium model. Environment, Development and Sustainability, 26(10), 25689–25715. [Google Scholar] [CrossRef]
- Zhang, Q. (2023). Urban–rural gap and regional inequality of local household income in Jiangsu Province, China. GeoJournal, 88(6), 6589–6601. [Google Scholar] [CrossRef]
- Zhang, T., Lei, Y., & Zhang, Q. (2023). The contribution of enterprises, universities, and research institutes to regional innovation efficiency in China. Technology Analysis & Strategic Management, 1–12. [Google Scholar] [CrossRef]
- Zhao, J., Chen, N., & Jin, Z. (2025). The more centralized the spatial structure is, the greater the economic growth? Evidence from urban agglomerations in western China. Humanities and Social Sciences Communications, 12(1), 483. [Google Scholar] [CrossRef]
- Ziberi, B. F., Rexha, D., Ibraimi, X., & Avdiaj, B. (2022). Empirical analysis of the impact of education on economic growth. Economies, 10(4), 89. [Google Scholar] [CrossRef]
- Ziemnowicz, C. (2020). Joseph A. Schumpeter and innovation. In E. G. Carayannis (Ed.), Encyclopedia of creativity, invention, innovation and entrepreneurship (pp. 1517–1522). Springer International Publishing. [Google Scholar] [CrossRef]
Variable | Symbol | Implication | Mean | S.D. |
---|---|---|---|---|
Dependent Variables | PAT | Number of patent grants/items | 7.217 | 1.796 |
IND | Proportion of secondary and tertiary industries/percentage | 4.487 | 0.088 | |
SAL | Regional average wage/CNY | 10.657 | 0.525 | |
HC | Level of human capital/percentage | 0.178 | 1.041 | |
Independent Variables | STU | Number of undergraduate students/population | 10.804 | 1.361 |
UNI | Number of higher education institutions per million people/institutions | 1.941 | 1.988 | |
Control Variables | Talent | Number of R&D personnel/population | 9.218 | 1.471 |
Expenditure | Internal expenditure on R&D/10,000 CNY | 12.236 | 1.766 | |
Teacher | Average number of full-time teachers per institution/population | 6.271 | 0.422 | |
Education | General budgetary educational expenditure/10,000 CNY | 12.912 | 0.951 | |
Finance | Fiscal autonomy/ratio | 0.519 | 0.232 | |
Asset | Total societal fixed asset investment/10,000 CNY | 16.251 | 1.110 | |
Investment | Total foreign direct investment/10,000 CNY | 10.170 | 1.887 | |
Population | Number of permanent residents/population | 5.992 | 0.662 | |
Employment | Number of employees per unit/population | 3.729 | 0.868 |
Variables | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) |
---|---|---|---|---|---|---|---|---|
PAT | HC | IND | SAL | |||||
STU | 0.069 *** | 0.063 *** | 0.055 *** | 0.045 *** | ||||
(0.020) | (0.012) | (0.009) | (0.010) | |||||
L.STU | 0.081 *** | 0.046 *** | 0.055 *** | 0.037 *** | ||||
(0.020) | (0.012) | (0.009) | (0.010) | |||||
UNI | 0.160 *** | 0.615 *** | 0.040 *** | 0.033 ** | ||||
(0.043) | (0.018) | (0.015) | (0.015) | |||||
L.UNI | 0.109 *** | 0.022 | 0.037 *** | 0.029 ** | ||||
(0.041) | (0.017) | (0.014) | (0.014) | |||||
Talent | −0.008 | −0.008 | 0.017 | 0.021 ** | −0.005 | −0.006 | −0.028 *** | −0.004 |
(0.018) | (0.020) | (0.011) | (0.008) | (0.006) | (0.007) | (0.006) | (0.007) | |
Expenditure | 0.022 * | 0.026 * | 0.011 | 0.008 | 0.001 | 0.016 *** | 0.022 *** | 0.013 *** |
(0.013) | (0.014) | (0.008) | (0.006) | (0.004) | (0.005) | (0.005) | (0.005) | |
Teacher | 0.023 | 0.210 *** | 0.258 *** | 0.531 *** | −0.023 *** | −0.021 | 0.014 * | 0.028 * |
(0.024) | (0.048) | (0.014) | (0.020) | (0.006) | (0.016) | (0.007) | (0.017) | |
Education | 0.484 *** | 0.941 *** | −0.003 | 0.031 ** | 0.273 *** | 0.068 *** | 0.827 *** | 0.563 *** |
(0.057) | (0.037) | (0.034) | (0.015) | (0.012) | (0.013) | (0.014) | (0.013) | |
Finance | 0.039 | −0.207 *** | 0.007 | −0.058 *** | 0.038 *** | −0.156 *** | 0.225 *** | −0.147 *** |
(0.046) | (0.046) | (0.027) | (0.019) | (0.012) | (0.016) | (0.014) | (0.016) | |
Asset | 0.193 *** | 0.437 *** | 0.031 ** | 0.081 *** | 0.014 | 0.085 *** | 0.184 *** | 0.174 *** |
(0.026) | (0.025) | (0.016) | (0.010) | (0.009) | (0.009) | (0.010) | (0.009) | |
Investment | 0.033 *** | −0.014 | 0.009 | −0.011 *** | −0.010 *** | −0.015 *** | −0.039 *** | −0.030 *** |
(0.010) | (0.011) | (0.006) | (0.004) | (0.004) | (0.004) | (0.004) | (0.004) | |
Population | −0.423 *** | −0.647 *** | −1.201 *** | −1.100 *** | 0.002 | −0.056 | −0.385 *** | −0.323 *** |
(0.102) | (0.112) | (0.061) | (0.046) | (0.014) | (0.039) | (0.016) | (0.039) | |
Employment | 0.117 *** | 0.144 *** | 0.083 *** | 0.027 | −0.132 *** | −0.038 *** | −0.453 *** | −0.067 *** |
(0.038) | (0.040) | (0.023) | (0.017) | (0.010) | (0.014) | (0.011) | (0.014) | |
City FE | YES | YES | YES | YES | YES | YES | YES | YES |
Year FE | YES | YES | YES | YES | YES | YES | YES | YES |
R-squared | 0.966 | 0.988 | 0.962 | 0.979 | 0.870 | 0.998 | 0.960 | 0.909 |
Variables | Spatial Weight Matrix in Geographical Distance | Spatial Weight Matrix in Economic Distance | ||||||
---|---|---|---|---|---|---|---|---|
PAT | HC | IND | SAL | PAT | HC | IND | SAL | |
2006 | 0.124 *** | 0.014 | 0.006 | 0.075 *** | 0.325 *** | 0.266 *** | 0.188 *** | 0.230 *** |
2007 | 0.128 *** | 0.016 | 0.006 | 0.111 *** | 0.329 *** | 0.265 *** | 0.154 *** | 0.404 *** |
2008 | 0.128 *** | 0.013 | 0.012 * | 0.119 *** | 0.329 *** | 0.270 *** | 0.161 *** | 0.363 *** |
2009 | 0.135 *** | 0.017 | 0.039 *** | 0.123 *** | 0.337 *** | 0.256 *** | 0.177 *** | 0.341 *** |
2010 | 0.143 *** | 0.016 | 0.043 *** | 0.119 *** | 0.328 *** | 0.241 *** | 0.183 *** | 0.356 *** |
2011 | 0.155 *** | 0.022 | 0.056 *** | 0.108 *** | 0.329 *** | 0.260 *** | 0.198 *** | 0.358 *** |
2012 | 0.155 *** | 0.024 * | 0.061 *** | 0.107 *** | 0.318 *** | 0.264 *** | 0.192 *** | 0.360 *** |
2013 | 0.153 *** | 0.025 ** | 0.064 *** | 0.106 *** | 0.322 *** | 0.264 *** | 0.169 *** | 0.342 *** |
2014 | 0.151 *** | 0.025 ** | 0.061 *** | 0.114 *** | 0.322 *** | 0.257 *** | 0.191 *** | 0.380 *** |
2015 | 0.148 *** | 0.024 ** | 0.068 *** | 0.064 *** | 0.315 *** | 0.265 *** | 0.202 *** | 0.190 *** |
2016 | 0.142 *** | 0.023 ** | 0.062 *** | 0.118 *** | 0.309 *** | 0.262 *** | 0.202 *** | 0.310 *** |
2017 | 0.139 *** | 0.021 *** | 0.010 | 0.104 *** | 0.309 *** | 0.271 *** | 0.067 * | 0.265 *** |
2018 | 0.142 *** | 0.020 *** | 0.018 ** | 0.093 *** | 0.286 *** | 0.256 *** | 0.112 *** | 0.278 *** |
2019 | 0.142 *** | 0.021 ** | 0.002 * | 0.104 *** | 0.259 *** | 0.264 *** | 0.042 | 0.335 *** |
2020 | 0.143 *** | 0.016 *** | 0.006 * | 0.060 *** | 0.254 *** | 0.244 *** | 0.084 ** | 0.251 *** |
Variables | Spatial Weight Matrix in Geographical Distance | Spatial Weight Matrix in Economic Distance | ||||||
---|---|---|---|---|---|---|---|---|
(1) PAT | (2) HC | (3) IND | (4) SAL | (5) PAT | (6) HC | (7) IND | (8) SAL | |
ρ (STU) | 0.873 *** (0.029) | 0.279 *** (0.093) | 0.887 *** (0.025) | 0.711 *** (0.048) | 0.294 *** (0.029) | 0.101 *** (0.032) | 0.560 *** (0.021) | 0.437 *** (0.025) |
W × STU | 0.143 (0.142) | 0.300 *** (0.097) | 0.032 ** (0.045) | 0.032 ** (0.045) | 0.106 ** (0.047) | 0.148 *** (0.040) | 0.005 * (0.014) | 0.005 * (0.014) |
Controls | YES | YES | YES | YES | YES | YES | YES | YES |
W * Controls | YES | YES | YES | YES | YES | YES | YES | YES |
City FE | YES | YES | YES | YES | YES | YES | YES | YES |
Year FE | YES | YES | YES | YES | YES | YES | YES | YES |
R-squared | 0.823 | 0.217 | 0.336 | 0.908 | 0.830 | 0.277 | 0.409 | 0.898 |
ρ (UNI) | 0.522 *** (0.053) | 0.273 *** (0.086) | 0.831 *** (0.023) | 0.666 *** (0.038) | 0.235 *** (0.033) | 0.120 *** (0.035) | 0.128 *** (0.034) | 0.466 *** (0.027) |
W * UNI | 0.463 * (0.267) | 0.541 *** (0.194) | 0.038 *** (0.019) | 0.181 ** (0.087) | 0.161 (0.140) | 0.216 *** (0.084) | 0.002 (0.010) | 0.094 ** (0.046) |
Controls | YES | YES | YES | YES | YES | YES | YES | YES |
W * Controls | YES | YES | YES | YES | YES | YES | YES | YES |
City FE | YES | YES | YES | YES | YES | YES | YES | YES |
Year FE | YES | YES | YES | YES | YES | YES | YES | YES |
R-squared | 0.617 | 0.506 | 0.343 | 0.948 | 0.805 | 0.579 | 0.386 | 0.859 |
Kernel Matching | (1) | (2) | (3) | (4) |
---|---|---|---|---|
PAT | ||||
Treated | Controls | ATT | S.E. | |
STU | 7.847 | 7.649 | 0.197 * | 0.109 |
UNI | 7.911 | 7.689 | 0.222 ** | 0.101 |
HC | ||||
STU | 0.872 | −0.165 | 1.037 *** | 0.047 |
UNI | 0.885 | −0.122 | 1.001 *** | 0.043 |
IND | ||||
STU | 3.739 | 3.604 | 0.135 *** | 0.017 |
UNI | 3.762 | 3.649 | 0.114 *** | 0.016 |
SAL | ||||
STU | 10.753 | 10.698 | 0.055 * | 0.016 |
UNI | 10.799 | 10.745 | 0.054 * | 0.035 |
First-Stage | Second-Stage | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Variables | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
School | PAT | HC | IND | SAL | ||||||
STU | 0.234 *** (0.046) | 0.517 ** (0.243) | 2.621 *** (0.560) | 0.099 ** (0.078) | 0.038 (0.085) | |||||
Kleibergen–Paap rk LM = 17.110 *** Cragg–Donald Wald F = 90.292, Kleibergen–Paap rk Wald F = 26.238 | ||||||||||
UNI | 0.015 *** (0.001) | 7.890 * (4.091) | 39.977 *** (4.494) | 1.503 ** (1.134) | 0576 (1.275) | |||||
Kleibergen–Paap rk LM = 25.852 *** Cragg–Donald Wald F = 1663.86, Kleibergen–Paap rk Wald F = 109.46 | ||||||||||
Controls | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES |
TWFE | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES |
Variables | Spatial Weight Matrix in Geographical Distance | Spatial Weight Matrix in Economic Distance | ||||||
---|---|---|---|---|---|---|---|---|
(1) PAT | (2) HC | (3) IND | (4) SAL | (5) PAT | (6) HC | (7) IND | (8) SAL | |
ρ | 0.877 *** (0.002) | 0.942 * (0.025) | 0.900 *** (0.023) | 0.710 *** (0.049) | 0.293 *** (0.029) | 0.700 ** (0.033) | 0.571 *** (0.020) | 0.436 *** (0.025) |
W × STU2 | 0.027 ** (0.0.014) | 0.079 *** (0.010) | 0.007 * (0.010) | 0.006 * (0.042) | 0.013 *** (0.005) | 0.002 *** (0.003) | 0.001 * (0.001) | 0.001 * (0.001) |
Controls | YES | YES | YES | YES | YES | YES | YES | YES |
W × Controls | YES | YES | YES | YES | YES | YES | YES | YES |
TWFE | YES | YES | YES | YES | YES | YES | YES | YES |
Variables | “High-Quality Upgrading” Urban Clusters | “Vigorous Growth and Expansion” Urban Clusters | “Nurturing and Developing” Urban Clusters | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | (11) | (12) | |
PAT | HC | IND | SAL | PAT | HC | IND | SAL | PAT | HC | IND | SAL | |
ρ (STU) | 0.306 *** (0.109) | 2.141 *** (0.439) | 0.282 *** (0.102) | 0.267 * (0.136) | 0.058 (0.156) | 0.544 ** (0.268) | 0.271 ** (0.110) | 0.347 (0.220) | −0.058 (0.167) | −0.456 * (0.265) | −0.099 (0.178) | 0.284 ** (0.133) |
W * STU | −0.124 (0.585) | 0.778 * (0.398) | 0.200 ** (0.146) | −0.086 (0.125) | −0.270 (0.279) | 0.216 * (0.176) | 0.032 (0.082) | 0.095 (0.108) | 1.614 ** (0.777) | 1.204 ** (0.548) | 0.325 * (0.253) | 0.157 * (0.268) |
Controls | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES |
W * Controls | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES |
TWFE | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES |
Variables | Spatial Weight Matrix in Geographical Distance | Spatial Weight Matrix in Economic Distance | ||||||
---|---|---|---|---|---|---|---|---|
(1) PAT | (2) HC | (3) IND | (4) SAL | (5) PAT | (6) HC | (7) IND | (8) SAL | |
ρ (STU) | 0.212 *** (0.057) | −0.042 (0.076) | 0.257 *** (0.054) | 0.236 *** (0.055) | 0.304 *** (0.064) | 0.023 (0.141) | 0.796 *** (0.025) | 0.377 *** (0.139) |
W * LAG1 | −0.439 *** (0.031) | −0.157 (0.169) | −0.303 *** (0.023) | −0.148 *** (0.037) | −0.427 *** (0.028) | −0.656 *** (0.118) | −0.363 *** (0.026) | −0.225 *** (0.045) |
W * LAG2 | −0.061 ** (0.024) | 0.572 *** (0.152) | −0.002 (0.019) | −0.017 (0.014) | −0.091 *** (0.027) | 0.080 (0.150) | 0.016 (0.027) | −0.052 *** (0.014) |
W * LAG3 | 0.156 *** (0.024) | −0.143 (0.169) | 0.081 *** (0.025) | 0.013 (0.010) | 0.084 *** (0.021) | 0.012 (0.109) | 0.083 *** (0.027) | −0.007 (0.015) |
W * LAG4 | 0.093 *** (0.015) | 0.004 (0.060) | −0.008 (0.017) | 0.052 *** (0.009) | 0.082 *** (0.015) | −0.199 *** (0.067) | −0.007 (0.018) | 0.039 *** (0.010) |
W * LAG5 | 0.060 *** (0.016) | 0.081 (0.110) | 0.101 *** (0.034) | 0.092 *** (0.015) | 0.078 *** (0.019) | −0.081 (0.071) | 0.074 * (0.039) | 0.062 *** (0.016) |
Controls | YES | YES | YES | YES | YES | YES | YES | YES |
W * Controls | YES | YES | YES | YES | YES | YES | YES | YES |
TWFE | YES | YES | YES | YES | YES | YES | YES | YES |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Y.; Yang, C.; Ma, J. Integrating Higher Education Strategies into Urban Cluster Development: Spatial Agglomeration Analysis of China’s Key Regions. Economies 2025, 13, 167. https://doi.org/10.3390/economies13060167
Hu Y, Yang C, Ma J. Integrating Higher Education Strategies into Urban Cluster Development: Spatial Agglomeration Analysis of China’s Key Regions. Economies. 2025; 13(6):167. https://doi.org/10.3390/economies13060167
Chicago/Turabian StyleHu, Yangguang, Chuang Yang, and Junfeng Ma. 2025. "Integrating Higher Education Strategies into Urban Cluster Development: Spatial Agglomeration Analysis of China’s Key Regions" Economies 13, no. 6: 167. https://doi.org/10.3390/economies13060167
APA StyleHu, Y., Yang, C., & Ma, J. (2025). Integrating Higher Education Strategies into Urban Cluster Development: Spatial Agglomeration Analysis of China’s Key Regions. Economies, 13(6), 167. https://doi.org/10.3390/economies13060167