Following the Crowd: Unveiling the Impact of Macroeconomic Shocks and Monetary Policy Shifts on Herding Dynamics in the Bangladesh Equity Market
Abstract
1. Introduction
2. Literature Review
2.1. General Herding Behavior
2.2. Herding and Macroeconomic Variables
2.3. Herding and Monetary Policy
3. Data and Methodology
3.1. Data
3.2. Methodology
4. Empirical Results
4.1. Asymmetric Herding Effects Under Different Market Conditions: Up and Down Markets
4.2. Asymmetric Herding Effects Under Different Market Conditions: High and Low Volatility
4.3. Nexus Between Herding Behavior and Macroeconomic Variables
4.4. Nexus Between Herding Behavior and the Effects of Monetary Policy
4.5. Robustness of Empirical Findings
5. Discussion of Results
5.1. Effects of Macroeconomic Shocks
5.2. Effects of Monetary Policy Tools
5.3. Comparison of the Results with Similar Studies
5.4. Interaction of Global Influences with the Bangladesh Market
6. Conclusions
6.1. Policy Implications
6.2. Limitations
6.3. Future Research Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ababio, K. A., & Mwamba, J. M. (2017). Test of herding behaviour in the Johannesburg stock exchange: Application of quantile regression model. Journal of Economic and Financial Sciences, 10(3), 457–474. [Google Scholar]
- Adebiyi, M. A., Adenuga, A. O., Abeng, M. O., & Omanukwue, P. N. (2009, July 8–10). Oil price shocks, exchange rate and stock market behaviour: Empirical evidence from Nigeria. 14th Annual Conference of the African Econometric Society, Ibadan, Nigeria. [Google Scholar]
- Agrawal, G., Srivastav, A. K., & Srivastava, A. (2010). A study of exchange rates movement and stock market volatility. International Journal of Business and Management, 5(12), 62. [Google Scholar] [CrossRef]
- Ah Mand, A., Janor, H., Abdul Rahim, R., & Sarmidi, T. (2023). Herding behavior and stock market conditions. PSU Research Review, 7(2), 105–116. [Google Scholar] [CrossRef]
- Alda, M., & Ferruz, L. (2016). Pension fund herding and the influence of management style. Journal of Behavioral Finance, 17(2), 144–156. [Google Scholar] [CrossRef]
- Amata, E., Muturi, W., & Mbewa, M. (2016). Relationship between macro-economic variables, investor herding behavior and stock market volatility in Kenya. International Journal of Economics, Commerce and Management, IV(8), 36–54. [Google Scholar]
- Balcilar, M., Demirer, R., & Hammoudeh, S. (2013). Investor herds and regime-switching: Evidence from Gulf Arab stock markets. Journal of International Financial Markets, Institutions and Money, 23, 295–321. [Google Scholar] [CrossRef]
- Ballester, L., Ferrer, R., & González, C. (2011). Linear and nonlinear interest rate sensitivity of Spanish banks. The Spanish Review of Financial Economics, 9(2), 35–48. [Google Scholar] [CrossRef]
- Bangalore Nagendra, R. P. (2022). An investigative study on herding behavior in the Irish stock market. National College of Ireland. [Google Scholar]
- Bernanke, B. S., & Kuttner, K. N. (2005). What explains the stock market’s reaction to Federal Reserve policy? Journal of Finance, 60(3), 1221–1257. [Google Scholar] [CrossRef]
- Bharti, & Kumar, A. (2022). Exploring herding behaviour in Indian equity market during COVID-19 pandemic: Impact of volatility and government response. Millennial Asia, 13(3), 513–531. [Google Scholar] [CrossRef]
- Bikhchandani, S., & Sharma, S. (2000). Herd behavior in financial markets. IMF Staff Papers, 47(3), 279–310. [Google Scholar] [CrossRef]
- Bjørnland, H. C., & Leitemo, K. (2009). Identifying the interdependence between US monetary policy and the stock market. Journal of Monetary Economics, 56(2), 275–282. [Google Scholar] [CrossRef]
- Chang, B. H., & Rajput, S. K. O. (2018). Do the changes in macroeconomic variables have a symmetric or asymmetric effect on stock prices? Evidence from Pakistan. South Asian Journal of Business Studies, 7(3), 312–331. [Google Scholar] [CrossRef]
- Chang, E. C., Cheng, J. W., & Khorana, A. (2000). An examination of herd behavior in equity markets: An international perspective. Journal of Banking & Finance, 24(10), 1651–1679. [Google Scholar] [CrossRef]
- Chen, T. (2022). A cross-country study on informed herding. International Journal of Finance & Economics, 27(4), 4336–4349. [Google Scholar]
- Chiang, T. C., & Zheng, D. (2010). An empirical analysis of herd behavior in global stock markets. Journal of Banking & Finance, 34(8), 1911–1921. [Google Scholar] [CrossRef]
- Chinzara, Z. (2011). Macroeconomic uncertainty and conditional stock market volatility in South Africa. South African Journal of Economics, 79(1), 27–49. [Google Scholar] [CrossRef]
- Cho, J.-W., Choi, J. H., Kim, T., & Kim, W. (2016). Flight-to-quality and correlation between currency and stock returns. Journal of Banking & Finance, 62, 191–212. [Google Scholar]
- Christie, W. G., & Huang, R. D. (1995). Following the pied piper: Do individual returns herd around the market? Financial Analysts Journal, 51(4), 31–37. [Google Scholar] [CrossRef]
- Clements, A., Hurn, S., & Shi, S. (2017). An empirical investigation of herding in the US stock market. Economic Modelling, 67, 184–192. [Google Scholar] [CrossRef]
- Dasgupta, A., Prat, A., & Verardo, M. (2011). The price impact of institutional herding. The Review of Financial Studies, 24(3), 892–925. [Google Scholar] [CrossRef]
- Dornbusch, R. (1980). Exchange risk and the macroeconomics of exchange rate determination (NBER Working Paper No. 493). National Bureau of Economic Research. [CrossRef]
- Economou, F. (2020). Herding in frontier markets: Evidence from the Balkan region. Review of Behavioral Finance, 12(2), 119–135. [Google Scholar] [CrossRef]
- Ehrmann, M., & Fratzscher, M. (2007). Communication by central bank committee members: Different strategies, same effectiveness? Journal of Money, Credit and Banking, 39(2–3), 509–541. [Google Scholar] [CrossRef]
- Espinosa-Méndez, C., & Arias, J. (2021). COVID-19 effect on herding behaviour in European capital markets. Finance Research Letters, 38, 101787. [Google Scholar] [CrossRef]
- Ferrando, L., Ferrer, R., & Jareño, F. (2017). Interest rate sensitivity of Spanish industries: A quantile regression approach. The Manchester School, 85(2), 212–242. [Google Scholar] [CrossRef]
- Ferrer, R., Bolós, V. J., & Benítez, R. (2016). Interest rate changes and stock returns: A European multi-country study with wavelets. International Review of Economics & Finance, 44, 1–12. [Google Scholar] [CrossRef]
- Galariotis, E. C., Rong, W., & Spyrou, S. I. (2015). Herding on fundamental information: A comparative study. Journal of Banking & Finance, 50, 589–598. [Google Scholar] [CrossRef]
- Garg, A., & Jindal, K. (2014). Herding behavior in an emerging stock market: Empirical evidence from India. IUP Journal of Applied Finance, 20(2), 18. [Google Scholar]
- Gavin, M. (1989). The stock market and exchange rate dynamics. Journal of International Money and Finance, 8(2), 181–200. [Google Scholar] [CrossRef]
- Gong, P., & Dai, J. (2017). Monetary policy, exchange rate fluctuation, and herding behavior in the stock market. Journal of Business Research, 76, 34–43. [Google Scholar] [CrossRef]
- Hachicha, N., Amirat, A., & Bouri, A. (2010). Herding does not exist or just a measurement problem? A meta-analysis. In Handbook on business information systems (pp. 817–852). World Scientific. [Google Scholar]
- Hassan, M. T. U., & Jamil, S. H. (2021). Investigative study of investor’s herding behavior during bullish and bearish market: A case of Pakistan stock exchange. European Journal of Business and Management Research, 6(3), 17–25. [Google Scholar] [CrossRef]
- Hau, H., & Rey, H. (2006). Exchange rates, equity prices, and capital flows. The Review of Financial Studies, 19(1), 273–317. [Google Scholar] [CrossRef]
- Homma, T., Tsutsui, Y., & Benzion, U. (2005). Exchange rate and stock prices in Japan. Applied Financial Economics, 15(7), 469–478. [Google Scholar] [CrossRef]
- Hwang, S., Kim, Y.-I., & Shin, J. (2018). An analysis of herding in the Korean stock market using Network Theory. Korean Journal of Financial Studies, 47(3), 505–542. [Google Scholar] [CrossRef]
- Hwang, S., & Salmon, M. (2004). Market stress and herding. Journal of Empirical Finance, 11(4), 585–616. [Google Scholar] [CrossRef]
- Indārs, E. R., Savin, A., & Lublóy, Á. (2019). Herding behaviour in an emerging market: Evidence from the Moscow exchange. Emerging Markets Review, 38, 468–487. [Google Scholar] [CrossRef]
- Jabeen, S., Farhan, M., & Rizavi, S. S. (2023). An investigation of herding prospects in the Pakistan stock exchange. International Journal of Business and Economic Affairs, 8(1), 26–40. [Google Scholar] [CrossRef]
- Jabeen, S., Rizavi, S. S., & Farhan, M. (2022). Herd behaviour, fundamental, and macroeconomic variables—The driving forces of stock returns: A panel-based pooled mean group approach. Frontiers in Psychology, 13, 758364. [Google Scholar] [CrossRef]
- Jammazi, R., Ferrer, R., Jareño, F., & Hammoudeh, S. M. (2017). Main driving factors of the interest rate-stock market Granger causality. International Review of Financial Analysis, 52, 260–280. [Google Scholar] [CrossRef]
- Jareño, F., Ferrer, R., & Miroslavova, S. (2016). US stock market sensitivity to interest and inflation rates: A quantile regression approach. Applied Economics, 48(26), 2469–2481. [Google Scholar] [CrossRef]
- Javaira, Z., & Hassan, A. (2015). An examination of herding behavior in Pakistani stock market. International Journal of Emerging Markets, 10(3), 474–490. [Google Scholar] [CrossRef]
- Jirasakuldech, B., & Emekter, R. (2021). Empirical analysis of investors’ herding behaviours during the market structural changes and crisis events: Evidence from Thailand. Global Economic Review, 50(2), 139–168. [Google Scholar] [CrossRef]
- Kapusuzoglu, A. (2011). Herding in the Istanbul Stock Exchange (ISE): A case of behavioral finance. African Journal of Business Management, 5(27), 11210. [Google Scholar] [CrossRef]
- Khan, F. A., & Imam, M. O. (2023). Herding behavior in stock market of Bangladesh: A Case of behavioural finance. Journal of Financial Markets and Governance, 2(1), 1–13. [Google Scholar] [CrossRef]
- Khoshsirat, M., & Salari, M. (2011). A study on behavioral finance in Tehran stock exchange: Examination of herd formation. European Journal of Economics, Finance and Administrative Sciences, 32(1), 168–183. [Google Scholar]
- Lakonishok, J., Shleifer, A., & Vishny, R. W. (1992). The impact of institutional trading on stock prices. Journal of Financial Economics, 32(1), 23–43. [Google Scholar] [CrossRef]
- Lao, P., & Singh, H. (2011). Herding behaviour in the Chinese and Indian stock markets. Journal of Asian Economics, 22(6), 495–506. [Google Scholar] [CrossRef]
- Lawal, A. I., Somoye, R. O., & Babajide, A. A. (2016). Impact of oil price shocks and exchange rate volatility on stock market behavior in Nigeria. Binus Business Review, 7(2), 171–177. [Google Scholar] [CrossRef]
- Li, H., Liu, Y., & Park, S. Y. (2018). Time-varying investor herding in Chinese stock markets. International Review of Finance, 18(4), 717–726. [Google Scholar] [CrossRef]
- Lin, J.-B., & Fu, S.-H. (2016). Investigating the dynamic relationships between equity markets and currency markets. Journal of Business Research, 69(6), 2193–2198. [Google Scholar] [CrossRef]
- Loang, O. K., & Ahmad, Z. (2022). Herding and market overreaction: Evidence from shariah-compliant stocks in Malaysia. Global Business & Management Research, 14(3s), 1–14. [Google Scholar]
- Morley, B. (2007). The monetary model of the exchange rate and equities: An ARDL bounds testing approach. Applied Financial Economics, 17(5), 391–397. [Google Scholar] [CrossRef]
- Moya-Martínez, P., Ferrer-Lapena, R., & Escribano-Sotos, F. (2015). Interest rate changes and stock returns in Spain: A wavelet analysis. BRQ Business Research Quarterly, 18(2), 95–110. [Google Scholar] [CrossRef]
- Nguyen, Y. V. B., & Vo, A. H. K. (2024). Herding behavior before and after COVID-19 pandemic: Evidence from the Vietnam stock market. Journal of Economic Studies, 51(2), 357–374. [Google Scholar] [CrossRef]
- Nofsinger, J. R., & Sias, R. W. (1999). Herding and feedback trading by institutional and individual investors. The Journal of Finance, 54(6), 2263–2295. [Google Scholar] [CrossRef]
- Osoolian, M., & Asiayi, M. R. (2024). Relationship monetary policies and changes in exchange rate with herding behavior. Financial Management Perspective/Chashm/&āz-I Mudīriyyat-i Mālī, 14(45), 59–83. [Google Scholar]
- Prosad, J. M., Kapoor, S., & Sengupta, J. (2012, April 20–22). An examination of herd behavior: An empirical study on Indian Equity Market. International Conference on Economics and Finance Research, Chennai, India. [Google Scholar]
- Rahman, M. A., Chowdhury, S. S. H., & Sadique, M. S. (2015). Herding where retail investors dominate trading: The case of Saudi Arabia. The Quarterly Review of Economics and Finance, 57, 46–60. [Google Scholar] [CrossRef]
- Rinanda, T., Harsono, S., Yusri, Y., Chairina, C., & Pangeran, P. (2024). Monetary policy and herding behavior: Empirical evidence in the Indonesian stock market before and after COVID-19. In Seminar Nasional Manajemen dan Akuntansi (pp. 129–141). LPPM Universitas Katolik Santo Thomas. [Google Scholar]
- Ross, S. (1976). The arbitrage pricing theory. Journal of Economic Theory, 13(3), 341–360. [Google Scholar] [CrossRef]
- Scharfstein, D. S., & Stein, J. C. (1990). Herd behavior and investment. The American Economic Review, 80(3), 465–479. [Google Scholar]
- Sibande, X. (2024). Herding behaviour and monetary policy: Evidence from the ZAR market. Journal of Behavioral and Experimental Finance, 42, 100920. [Google Scholar] [CrossRef]
- Suriani, S., Kumar, M. D., Jamil, F., & Muneer, S. (2015). Impact of exchange rate on stock market. International Journal of Economics and Financial Issues, 5(1), 385–388. [Google Scholar]
- Tan, L., Chiang, T. C., Mason, J. R., & Nelling, E. (2008). Herding behavior in Chinese stock markets: An examination of A and B shares. Pacific-Basin Finance Journal, 16(1–2), 61–77. [Google Scholar] [CrossRef]
- Thorbecke, W. (1997). On stock market returns and monetary policy. The Journal of Finance, 52(2), 635–654. [Google Scholar] [CrossRef]
- Tronzano, M. (2021). Financial crises, macroeconomic variables, and long-run risk: An econometric analysis of stock returns correlations (2000 to 2019). Journal of Risk and Financial Management, 14(3), 127. [Google Scholar] [CrossRef]
- Vieira, E. S., & Pereira, M. S. V. (2015). Herding behaviour and sentiment: Evidence in a small European market: Comportamiento gregario y sentimiento: La evidencia sobre un pequeño mercado europeo. Revista de Contabilidad-Spanish Accounting Review, 18(1), 78–86. [Google Scholar] [CrossRef]
- Wicaksono, R. P. K., & Falianty, T. A. (2022). Monetary policy and herding behavior: Empirical evidence from Indonesia stock market. Indonesian Capital Market Review, 14(1), 5. [Google Scholar] [CrossRef]
- Yadav, M. P., Khera, A., & Mishra, N. (2022). Empirical relationship between macroeconomic variables and stock market: Evidence from India. Management and Labour Studies, 47(1), 119–129. [Google Scholar] [CrossRef]
- Yazdani Varzi, A., Memarian, E., & Nabavi Chashmi, S. A. (2022). Pattern explanation of micro and macro variables on return of stock trading strategies. Advances in Mathematical Finance and Applications, 7(4), 997–1011. [Google Scholar]
| Author | Country | Methodology | Findings |
|---|---|---|---|
| Impact of Macroeconomic Variables on Herding | |||
| E. C. Chang et al. (2000) | CSAD | Herding behavior is influenced by market volatility but not macroeconomic fundamentals. | |
| Javaira and Hassan (2015) | Pakistan | CSSD/CSAD | Macroeconomic variables do not have any influence on herding. |
| Amata et al. (2016) | Kenya | CSSD | Inflation, exchange rate, and inflation affect volatility, but an association with herding behavior was not found. |
| Osoolian and Asiayi (2024) | Tehran | CSAD | Exchange rates have a significant impact on herding behavior. |
| Jabeen et al. (2022) | Pakistan | Pooled Mean Group (PMG) | Herding and macro variables can drive stock market returns. |
| Impact of Monetary Policy Tools on Herding | |||
| Gong and Dai (2017) | China | CSAD | Depreciation of Chinese currency and increased interest rates affect herding, particularly in a down market. |
| Wicaksono and Falianty (2022) | Indonesia | VERM, IRFs | US monetary policy has a more dominant effect on herding behavior than domestic policy. |
| Rinanda et al. (2024) | Indonesia | CSAD | US and domestic monetary policies lead to herding behavior in the Indonesia equity market before and after COVID-19 periods. |
| Sibande (2024) | South African ZAR Market | Quantile Regression | Restrictive monetary policies, especially during extreme market periods, induce herding behavior in the ZAR market. |
| Market State | Quantile Levels | α | γ1 | γ2 |
|---|---|---|---|---|
| Overall Market | 0.25 | 1.93 *** | 0.529 | −0.005 *** |
| 0.50 | 1.002 *** | 0.295 | −0.006 *** | |
| 0.75 | 0.294 *** | 0.157 *** | −0.005 *** | |
| Bearish Market | 0.25 | 1.944 *** | 0.559 *** | −0.005 *** |
| 0.50 | 0.848 *** | 0.275 *** | −0.007 *** | |
| 0.75 | 0.280 *** | 0.394 *** | −0.005 *** | |
| Bullish Market | 0.25 | 1.822 *** | 0.677 *** | 0.185 *** |
| 0.50 | 1.20 *** | 0.248 *** | 0.032 | |
| 0.75 | 0.617 *** | −0.301 *** | 0.302 *** | |
| Crisis Market | 0.25 | 2.48 *** | 1.41 *** | 0.195 |
| 0.50 | 2.977 *** | −0.137 | 0.343 *** | |
| 0.75 | 1.241 *** | −0.103 | 0.179 *** | |
| Extended Crisis Market | 0.25 | 2.21 *** | 0.396 *** | −0.008 *** |
| 0.50 | 2.142 *** | 0.554 *** | −0.007 *** | |
| 0.75 | 0.735 *** | 0.335 *** | −0.002 *** | |
| COVID-19 Market | 0.25 | 2.47 *** | 0.281 | 0.832 *** |
| 0.50 | 1.187 *** | −0.606 | 1.293 *** | |
| 0.75 | 0.610 *** | −0.016 | −0.012 |
| Quantile Regression Results from Positive Market Return | Quantile Regression Results from Negative Market Return | |||||||
|---|---|---|---|---|---|---|---|---|
| Quantile Levels | α | γ1 | γ2 | Quantile Levels | α | γ1 | γ2 | |
| Overall Market | 0.25 | 2.07 *** | 0.630 *** | −0.011 | 0.25 | 1.97 | 0.504 | −0.003 *** |
| 0.50 | 1.28 *** | 0.041 *** | 0.022 | 0.50 | 1.31 *** | 0.418 *** | −0.007 *** | |
| 0.75 | 0.512 *** | 0.007 | 0.051 | 0.75 | 1.97 *** | 0.882 *** | −0.017 *** | |
| Bearish Market | 0.25 | 2.12 *** | 0.765 *** | −0.029 | 0.25 | 1.60 *** | 0.572 *** | −0.009 *** |
| 0.50 | 1.37 *** | 0.280 *** | 0.030 | 0.50 | 2.002 *** | 0.522 *** | −0.004 *** | |
| 0.75 | 0.792 *** | 0.102 *** | 0.041 | 0.75 | 0.418 *** | 0.444 *** | −0.004 *** | |
| Bullish Market | 0.25 | 1.85 *** | 0.542 *** | −0.153 | 0.25 | 1.88 *** | 0.454 *** | 0.057 |
| 0.50 | 1.34 *** | 0.224 | 0.095 | 0.50 | 1.28 *** | 0.139 | 0.088 | |
| 0.75 | 0.908 *** | −0.597 ** | 0.484 | 0.75 | 0.664 *** | −0.920 ** | 1.21 *** | |
| Crisis Market | 0.25 | 2.72 *** | −0.142 | 0.145 | 0.25 | 2.690 *** | 0.068 | 0.102 |
| 0.50 | 2.74 *** | 0.072 | 0.096 | 0.50 | 3.15 *** | −0.329 | 0.379 *** | |
| 0.75 | 1.37 *** | 0.331 | −0.023 | 0.75 | 1.34 *** | −0.268 | 0.278 | |
| Extended Crisis Market | 0.25 | 2.44 *** | −0.071 | 0.140 *** | 0.25 | 2.26 *** | 0.536 *** | −0.004 *** |
| 0.50 | 2.72 *** | −0.136 | 0.160 *** | 0.50 | 2.17 *** | 0.908 | −0.015 *** | |
| 0.75 | 1.62 *** | −0.357 | 0.142 | 0.75 | 0.564 *** | 0.500 | −0.006 *** | |
| COVID-19 Market | 0.25 | 2.89 *** | 0.574 | 0.407 | 0.25 | 2.74 *** | −0.741 | 1.564 *** |
| 0.50 | 3.04 *** | −1.14 | 2.03 *** | 0.50 | 1.90 *** | −0.901 | 1.08 *** | |
| 0.75 | 1.03 *** | −0.37 | 0.192 | 0.75 | 0.899 *** | −0.829 | 0.762 | |
| Quantile Regression Results for High Volatility State | Quantile Regression Results for Low Volatility State | |||||||
|---|---|---|---|---|---|---|---|---|
| Quantile Levels | α | γ1 | γ2 | Quantile Levels | α | γ1 | γ2 | |
| Overall Market | 0.25 | 1.87 *** | 0.669 | −0.007 *** | 0.25 | 1.99 *** | 0.524 *** | 0.130 *** |
| 0.50 | 1.58 *** | 0.728 *** | −0.013 *** | 0.50 | 1.21 *** | 0.114 | 0.155 *** | |
| 0.75 | 0.284 *** | 0.528 *** | −0.008 | 0.75 | 0.383 *** | −0.211 | 0.172 *** | |
| Bearish Market | 0.25 | 1.94 *** | 0.700 *** | −0.008 *** | 0.25 | 2.01 *** | 0.442 *** | 0.140 *** |
| 0.50 | 1.89 *** | 0.892 *** | −0.014 *** | 0.50 | 1.04 *** | 0.043 | 0.161 *** | |
| 0.75 | 1.26 | 0.938 *** | −0.013 | 0.75 | 0.313 *** | −0.157 | 0.166 *** | |
| Bullish Market | 0.25 | 1.84 *** | 0.637 *** | 0.017 | 0.25 | 1.82 *** | 1.04 *** | −0.328 |
| 0.50 | 1.16 *** | 0.615 | 0.008 | 0.50 | 1.36 *** | 1.07 *** | −0.711 | |
| 0.75 | 1.81 *** | −1.77 | 1.70 *** | 0.75 | 0.598 | −0.684 | 0.936 | |
| Crisis Market | 0.25 | 2.13 *** | 0.587 | −0.026 | 0.25 | 1.54 *** | 0.958 ** | 0.002 |
| 0.50 | 1.89 | 0.170 | 0.114 | 0.50 | 1.30 *** | 0.875 | 0.031 | |
| 0.75 | 0.417 | −0.176 | 0.165 | 0.75 | 0.987 *** | 1.01 ** | 0.024 | |
| Extended Crisis Market | 0.25 | 1.71 *** | 0.812 *** | −0.010 *** | 0.25 | 2.43 *** | 0.021 | 0.185 *** |
| 0.50 | 1.79 *** | 1.21 *** | −0.022 *** | 0.50 | 2.66 *** | −0.234 | 0.203 * | |
| 0.75 | −0.55 *** | 1.43 *** | −0.041 *** | 0.75 | 1.31 *** | −0.674 * | 0.225 * | |
| COVID-19 Market | 0.25 | 2.49 *** | 1.23 | 0.126 | 0.25 | 2.85 *** | 0.556 | 1.96 |
| 0.50 | 1.43 *** | 1.35 *** | 0.170 | 0.50 | 2.19 *** | −0.977 | 3.30 | |
| 0.75 | 0.347 | 0.601 | 0.081 | 0.75 | 0.835 *** | −1.32 | 3.03 | |
| Panel A: Effects of change in exchange rates | Equation | |||||
| Adjusted R2 | ||||||
| Overall Market | 0.748 *** | −0.012 ** | −0.066 *** | 0.22 | 8 | |
| 0.748 *** | 0.053 *** | 0.064 *** | 0.22 | 9 | ||
| Bearish Market | 0.830 *** | −0.014 *** | −0.056 *** | 0.23 | 8 | |
| 0.831 | 0.041 | 0.052 *** | 0.24 | 9 | ||
| Crisis Market | 0.552 *** | −0.017 *** | 0.062 | 0.18 | 8 | |
| 1.69 | −0.227 | −0.089 | 0.19 | 9 | ||
| Extended Crisis Market | 0.987 *** | 0.001 *** | −0.005 *** | 0.79 | 8 | |
| 0.988 | 0.044 | −0.063 *** | 0.83 | 9 | ||
| Pane B: Effects of change in interest rates | ||||||
| Adjusted R2 | ||||||
| Overall Market | 0.880 *** | −0.306 *** | 0.290 | 0.78 | 10 | |
| 0.925 | −0.186 | −0.085 *** | 0.82 | 11 | ||
| Bearish Market | 0.381 *** | 0.013 *** | −0.169 *** | 0.76 | 10 | |
| 0.378 | −0.017 | −0.170 *** | 0.88 | 11 | ||
| Overall Market | 0.375 *** | 0.023 ** | −0.164 | ||||
| 0.783 *** | −0.013 *** | 0.165 | |||||
| 0.728 *** | 0.103 * | −0.116 ** | |||||
| 0.402 *** | 0.013 *** | −0.023 *** | |||||
| 0.403 *** | 0.012 *** | −0.046 *** | |||||
| Bearish Market | 0.934 *** | −0.415 | 0.398 | ||||
| 0.381 *** | 0.013 *** | −0.172 *** | |||||
| 0.386 *** | 0.013 *** | −0.029 *** | |||||
| 0.819 *** | 0.085 * | −0.099 ** | |||||
| 0.395 *** | 0.013 *** | −0.048 *** | |||||
| Crisis Market | 0.506 *** | 0.056 | −0.112 | ||||
| 0.506 *** | −0.04 ** | 0.114 | |||||
| 0.550 *** | −0.060 ** | −0.004 | |||||
| 1.63 *** | −0.245 | −0.009 | |||||
| 0.542 *** | −0.057 *** | −0.006 | |||||
| Extended Crisis Market | 1.00 *** | 0.352 ** | −0.370 ** | ||||
| 0.448 *** | 0.012 *** | 0.032 | |||||
| 0.491 *** | 0.011 *** | −0.034 *** | |||||
| 0.498 *** | −0.028 *** | 0.038 *** | |||||
| 0.505 *** | 0.010 *** | −0.059 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haque, M.E.; Imam, M.O. Following the Crowd: Unveiling the Impact of Macroeconomic Shocks and Monetary Policy Shifts on Herding Dynamics in the Bangladesh Equity Market. Economies 2025, 13, 306. https://doi.org/10.3390/economies13110306
Haque ME, Imam MO. Following the Crowd: Unveiling the Impact of Macroeconomic Shocks and Monetary Policy Shifts on Herding Dynamics in the Bangladesh Equity Market. Economies. 2025; 13(11):306. https://doi.org/10.3390/economies13110306
Chicago/Turabian StyleHaque, Muhammad Enamul, and Mahmood Osman Imam. 2025. "Following the Crowd: Unveiling the Impact of Macroeconomic Shocks and Monetary Policy Shifts on Herding Dynamics in the Bangladesh Equity Market" Economies 13, no. 11: 306. https://doi.org/10.3390/economies13110306
APA StyleHaque, M. E., & Imam, M. O. (2025). Following the Crowd: Unveiling the Impact of Macroeconomic Shocks and Monetary Policy Shifts on Herding Dynamics in the Bangladesh Equity Market. Economies, 13(11), 306. https://doi.org/10.3390/economies13110306
