The Impact of Production Digitalization Investments on European Companies’ Financial Performance
Abstract
:1. Introduction
2. Literature Review and Hypothesis Development
Production Digitalization Investment’s Impact on Business Financial Performance: Evaluation of Region and Company Size Differences
3. Data and Methodology
4. Empirical Results
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Variables | Symbol | Definition | Measurement |
---|---|---|---|
Operating Revenue | or | The total revenue generated from a business primary operation. | In thousands of Euros |
Production digitalization investment | di | Investment in production digital assets, assessed through changes in Plant and Machinery values adjusted for depreciation. | Calculated as In thousands of Euros |
Number of Employees | noe | The total number of full-time employees at a company. | Count of employees |
Intangible Fixed Assets | intfass | Long-term, non-physical assets such as patents, trademarks, and copyrights held by the business. | In thousands of Euros, adjusted for the effects of amortization |
R&D Expenditures | rde | Funds spent on research and development activities to innovate and introduce new products or services. | In thousands of Euros |
Plant and Machinery Value | pm | The value of the physical assets used in the production of goods and services. | In thousands of Euros for current financial year |
Plant and Machinery Depreciation | pmd | The annual depreciation expense for Plant and Machinery, representing the cost of the asset consumed during the year. | In thousands of Euros for current financial year |
Cost of Employees | coste | The total expenses incurred by the company for its employees, including salaries, benefits, and related taxes. | In thousands of Euros |
Net Profit | netp | The total profit of the company after deducting all expenses, taxes, and costs from its total revenue. | In thousands of Euros |
Tangible Fixed Assets | tanfass | Physical, long-term assets such as buildings, machinery, and equipment owned by the business. | In thousands of Euros |
Variable | Coefficient | Std. Error | t-Value | P > |t| | 95% Conf. Interval | VIF |
---|---|---|---|---|---|---|
coste | 3.377658 | 0.137498 | 24.57 | 0 | 3.108111 to 3.647205 | 1.6 |
intfass | 0.134007 | 0.026352 | 5.09 | 0 | 0.0823463 to 0.1856668 | 1.08 |
tanfass | 0.087002 | 0.021427 | 4.06 | 0 | 0.0449969 to 0.1290075 | 1.83 |
rde | 0.107757 | 0.108679 | 0.99 | 0.321 | −0.1052944 to 0.3208084 | 1.24 |
netp | 0.815786 | 0.055757 | 14.63 | 0 | 0.7064813 to 0.925091 | 1.38 |
di | 0.35469 | 0.042531 | 8.34 | 0 | 0.2713133 to 0.4380662 | 2.05 |
_cons | 58.53096 | 8.196971 | 7.14 | 0 | 42.46178 to 74.60014 | N/A |
Number of obs | 5706 | |||||
F(6, 5699) | 294.60 | |||||
Prob > F | 0.0000 | |||||
R-squared | 0.2367 | |||||
Adj R-squared | 0.2359 | |||||
Root MSE | 400.03 | |||||
Mean VIF | 1.53 |
Variable | Fixed | Random | Difference | Std. Err. | Chi-Square | Prob > Chi-Square |
---|---|---|---|---|---|---|
coste | 3.481176 | 3.45774 | 0.0234357 | 0.0448005 | ||
intfass | 0.1186349 | 0.120141 | −0.0015061 | 0.0032903 | ||
tanfass | 0.0579912 | 0.0650502 | −0.007059 | 0.0112416 | ||
rde | 0.7324102 | 0.6062212 | 0.1261891 | 0.0393317 | ||
netp | 0.582682 | 0.6138948 | −0.0312128 | 0.0110532 | ||
di | 0.4412479 | 0.436537 | 0.0047109 | 0.0204835 | ||
Hausman Test | 16.63 | 0.0107 |
References
- Akatkin, Yury, and Elena Yasinovskaya. 2019. Data-centricity as the key enabler of digital government: Is Russia ready for digital transformation of public sector. In Electronic Governance and Open Society: Challenges in Eurasia: 5th International Conference, EGOSE 2018, St. Petersburg, Russia, November 14–16, 2018, Revised Selected Papers 5. Cham: Springer International Publishing, pp. 439–54. [Google Scholar]
- Akhtar, Pervaiz, Jędrzej George Frynas, Kamel Mellahi, and Subhan Ullah. 2019. Big data-savvy teams’ skills, big data-driven actions and business performance. British Journal of Management 30: 252–71. [Google Scholar] [CrossRef]
- Amankwah-Amoah, Joseph, Zaheer Khan, and Geoffrey Wood. 2021. COVID-19 and business failures: The paradoxes of experience, scale, and scope for theory and practice. European Management Journal 39: 179–84. [Google Scholar] [CrossRef]
- Becheikh, Nizar, Rejean Landry, and Nabil Amara. 2006. Lessons from innovation empirical studies in the manufacturing sector: A systematic review of the literature from 1993–2003. Technovation 26: 644–64. [Google Scholar] [CrossRef]
- Bharadwaj, Anandhi, Omar A. El Sawy, Paul A. Pavlou, and N. Venkatraman. 2013. Digital business strategy: Toward a next generation of insights. MIS Quarterly 37: 471–82. [Google Scholar] [CrossRef]
- Bleicher, Juergen, and Henriette Stanley. 2017. Digitization as a catalyst for business model innovation a three-step approach to facilitating economic success. Journal of Business Management 12: 62–72. [Google Scholar]
- Bokša, Michal, Stanislav Šaroch, and Jiřina Bokšová. 2020. Digitalization of SMEs. International Advances in Economic Research 26: 175–77. [Google Scholar] [CrossRef]
- Buer, Sven-Vegard, Jo Wessel Strandhagen, Marco Semini, and Jan Ola Strandhagen. 2021. The digitalization of manufacturing: Investigating the impact of production environment and company size. Journal of Manufacturing Technology Management 32: 621–45. [Google Scholar] [CrossRef]
- Cette, Gilbert, Sandra Nevoux, and Loriane Py. 2022. The impact of ICTs and digitalization on productivity and labor share: Evidence from French firms. Economics of Innovation and New Technology 31: 669–92. [Google Scholar] [CrossRef]
- Choi, Jaewon, Hong Joo Lee, Farhana Sajjad, and Habin Lee. 2014. The influence of national culture on the attitude towards mobile recommender systems. Technological Forecasting and Social Change 86: 65–79. [Google Scholar] [CrossRef]
- Dalenogare, Lucas Santos, Guilherme Brittes Benitez, Néstor Fabián Ayala, and Alejandro Germán Frank. 2018. The expected contribution of Industry 4.0 technologies for industrial performance. International Journal of Production Economics 204: 383–94. [Google Scholar] [CrossRef]
- Duman, Meral Calış, and Bunyamin Akdemir. 2021. A study to determine the effects of industry 4.0 technology components on organizational performance. Technological Forecasting and Social Change 167: 120615. [Google Scholar] [CrossRef]
- Dzarasov, Ruslan, and Viktoria Gritsenko. 2022. Post-Soviet Capitalism in Russia and Digital Revolution. Critical Sociology 48: 713–27. [Google Scholar] [CrossRef]
- Faff, Robert, Yew-Kee Ho, Weiling Lin, and Chee-Meng Yap. 2013. Diminishing marginal returns from R&D investment: Evidence from manufacturing firms. Applied Economics 45: 611–22. [Google Scholar]
- Gebauer, Heiko, Elgar Fleisch, Claudio Lamprecht, and Felix Wortmann. 2020. Growth paths for overcoming the digitalization paradox. Business Horizons 63: 313–23. [Google Scholar] [CrossRef]
- Ghosh, Swapan, Mat Hughes, Ian Hodgkinson, and Paul Hughes. 2022. Digital transformation of industrial businesses: A dynamic capability approach. Technovation 113: 102414. [Google Scholar] [CrossRef]
- Guo, Lei, and Luying Xu. 2021. The effects of digital transformation on firm performance: Evidence from China’s manufacturing sector. Sustainability 13: 12844. [Google Scholar] [CrossRef]
- Guo, Xiaochuan, Mengmeng Li, Yanlin Wang, and Abbas Mardani. 2023. Does digital transformation improve the firm’s performance? From the perspective of digitalization paradox and managerial myopia. Journal of Business Research 163: 113868. [Google Scholar] [CrossRef]
- Hartl, Eva, and Thomas Hess. 2017. The role of cultural values for digital transformation: Insights from a Delphi study. Paper presented at the Twenty-Third Americas Conference on Information Systems, Boston, MA, USA, August 10–12. [Google Scholar]
- Heredia, Jorge, Mauricio Castillo-Vergara, Cristian Geldes, Felix M. Carbajal Gamarra, Alejandro Flores, and Walter Heredia. 2022. How do digital capabilities affect firm performance? The mediating role of technological capabilities in the “new normal”. Journal of Innovation & Knowledge 7: 100171. [Google Scholar]
- Hess, Thomas, Christian Matt, Alexander Benlian, and Florian Wiesbock. 2016. Options for formulating a digital transformation strategy. MIS Quarterly Executive 15: 123–39. [Google Scholar]
- Horvat, Djerdj, Henning Kroll, and Angela Jäger. 2019. Researching the effects of automation and digitalization on manufacturing companies’ productivity in the early stage of industry 4.0. Procedia Manufacturing 39: 886–93. [Google Scholar] [CrossRef]
- Horvat, Djerdj, Thomas Stahlecker, Andrea Zenker, Christian Lerch, and Marko Mladineo. 2018. A conceptual approach to analysing manufacturing companies’ profiles concerning Industry 4.0 in emerging economies. Procedia Manufacturing 17: 419–26. [Google Scholar] [CrossRef]
- Horváth, Krisztina, and László Szerb. 2018. Managerial practices and the productivity of knowledge-intensive service businesses: An analysis of digital/IT and cash management practices. Strategic Change 27: 161–72. [Google Scholar] [CrossRef]
- Hossnofsky, Verena, and Sebastian Junge. 2019. Does the market reward digitalization efforts? Evidence from securities analysts’ investment recommendations. Journal of Business Economics 89: 965–94. [Google Scholar] [CrossRef]
- Hsu, Cheng, and James C. Spohrer. 2009. Improving service quality and productivity: Exploring the digital connections scaling model. International Journal of Services Technology and Management 11: 272–92. [Google Scholar] [CrossRef]
- Huang, Cheng-Kui, Tawei Wang, and Tzu-Yen Huang. 2020. Initial evidence on the impact of big data implementation on firm performance. Information Systems Frontiers 22: 475–87. [Google Scholar] [CrossRef]
- Jacobs, Brian W., Richard Kraude, and Sriram Narayanan. 2016. Operational productivity, corporate social performance, financial performance, and risk in manufacturing firms. Production and Operations Management 25: 2065–85. [Google Scholar] [CrossRef]
- Jardak, Maha Khemakhem, and Salah Ben Hamad. 2022. The effect of digital transformation on firm performance: Evidence from Swedish listed companies. The Journal of Risk Finance 23: 329–48. [Google Scholar] [CrossRef]
- Jovanović, Milica, Jasmina Dlačić, and Milan Okanović. 2018. Digitalization and society’s sustainable development–Measures and implications. Zbornik radova Ekonomskog fakulteta u Rijeci: Časopis za ekonomsku teoriju i praksu 36: 905–28. [Google Scholar]
- Kim, Seunghyun, Byungchul Choi, and Yong Kyu Lew. 2021. Where is the age of digitalization heading? The meaning, characteristics, and implications of contemporary digital transformation. Sustainability 13: 8909. [Google Scholar] [CrossRef]
- Ladeira, Maria J. M., Fernando A. F. Ferreira, João J. M. Ferreira, Wenchang Fang, Pedro F. Falcão, and Álvaro A. Rosa. 2019. Exploring the determinants of digital entrepreneurship using fuzzy cognitive maps. International Entrepreneurship and Management Journal 15: 1077–101. [Google Scholar] [CrossRef]
- Li, Larry, Adela McMurray, Xiaomeng Li, Yuning Gao, and Jinjun Xue. 2021. The diminishing marginal effect of R&D input and carbon emission mitigation. Journal of Cleaner Production 282: 124423. [Google Scholar]
- Lichtenthaler, Ulrich. 2021. Digitainability: The combined effects of the megatrends digitalization and sustainability. Journal of Innovation Management 9: 64–80. [Google Scholar] [CrossRef]
- Liu, Yang, Jiuyu Dong, Liang Mei, and Rui Shen. 2023. Digital innovation and performance of manufacturing firms: An affordance perspective. Technovation 119: 102458. [Google Scholar] [CrossRef]
- Malekifar, Shaghayegh, Seyedeh Khadijeh Taghizadeh, Syed Abidur Rahman, and Saif Ur Rehman Khan. 2014. Organizational culture, IT Competence, and supply chain agility in Small and Medium-Size Enterprises. Global Business and Organizational Excellence 33: 69–75. [Google Scholar] [CrossRef]
- Martín-Peña, María-Luz, José-María Sánchez-López, and Eloísa Díaz-Garrido. 2019. Servitization and digitalization in manufacturing: The influence on firm performance. Journal of Business & Industrial Marketing 35: 564–74. [Google Scholar]
- Müller, Julian Marius, Daniel Kiel, and Kai-Ingo Voigt. 2018. What drives the implementation of Industry 4.0? The role of opportunities and challenges in the context of sustainability. Sustainability 10: 247. [Google Scholar] [CrossRef]
- Nasiri, Mina, Juhani Ukko, Minna Saunila, and Tero Rantala. 2020. Managing the digital supply chain: The role of smart technologies. Technovation 96: 102121. [Google Scholar] [CrossRef]
- Nelson, Gil, and Shari Ellis. 2019. The history and impact of digitization and digital data mobilization on biodiversity research. Philosophical Transactions of the Royal Society B 374: 20170391. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, ThuyUyen H. 2009. Information technology adoption in SMEs: An integrated framework. International Journal of Entrepreneurial Behavior & Research 15: 162–86. [Google Scholar]
- Peng, Yongzhang, and Changqi Tao. 2022. Can digital transformation promote enterprise performance?—From the perspective of public policy and innovation. Journal of Innovation & Knowledge 7: 100198. [Google Scholar]
- Pinzaru, Florina, Alexandra Zbuchea, and Lucian Anghel. 2020. The Impact of the COVID-19 Pandemic on Business. A preliminary overview. Paper presented at the Strategica 2020, Preparing for Tomorrow, Today, Bucharest, Romania, October 15–16; pp. 721–30. [Google Scholar]
- Reichert, Fernanda Maciel, and Paulo Antônio Zawislak. 2014. Technological capability and firm performance. Journal of Technology Management & Innovation 9: 20–35. [Google Scholar]
- Ribeiro-Navarrete, Samuel, Dolores Botella-Carrubi, Daniel Palacios-Marqués, and Maria Orero-Blat. 2021. The effect of digitalization on business performance: An applied study of KIBS. Journal of Business Research 126: 319–26. [Google Scholar] [CrossRef]
- Sanchez-Riofrio, Angelica M., Nathaniel C. Lupton, and John Gabriel Rodríguez-Vásquez. 2022. Does market digitalization always benefit firms? The Latin American case. Management Decision 60: 1905–21. [Google Scholar] [CrossRef]
- Schwartz, Shalom H., and Anat Bardi. 1997. Influences of adaptation to communist rule on value priorities in Eastern Europe. Political Psychology 18: 385–410. [Google Scholar] [CrossRef]
- Scott, Susan V., John Van Reenen, and Markos Zachariadis. 2017. The long-term effect of digital innovation on bank performance: An empirical study of SWIFT adoption in financial services. Research Policy 46: 984–1004. [Google Scholar] [CrossRef]
- Sostero, Matteo, Santo Milasi, John Hurley, Enrique Fernandez-Macias, and Martina Bisello. 2020. Teleworkability and the COVID-19 Crisis: A New Digital Divide? No. 2020/05. JRC Working Papers Series on Labour, Education and Technology; Seville: European Commission. [Google Scholar]
- Telukdarie, Arnesh, Thabile Dube, Pretty Matjuta, and Simon Philbin. 2023. The opportunities and challenges of digitalization for SME’s. Procedia Computer Science 217: 689–98. [Google Scholar] [CrossRef]
- Thrassou, Alkis, Demetris Vrontis, Yaakov Weber, S. M. Riad Shams, and Evangelos Tsoukatos. 2020. Digitalization of SMEs: A review of opportunities and challenges. In The Changing Role of SMEs in Global Business: Volume II: Contextual Evolution Across Markets, Disciplines and Sectors. Cham: Palgrave Macmillan, pp. 179–200. [Google Scholar]
- Verhoef, Peter C., Thijs Broekhuizen, Yakov Bart, Abhi Bhattacharya, John Qi Dong, Nicolai Fabian, and Michael Haenlein. 2021. Digital transformation: A multidisciplinary reflection and research agenda. Journal of Business Research 122: 889–901. [Google Scholar] [CrossRef]
- Viete, Steffen, and Daniel Erdsiek. 2020. Mobile information technologies and firm performance: The role of employee autonomy. Information Economics and Policy 51: 100863. [Google Scholar] [CrossRef]
- Yu, Wantao, Mark A. Jacobs, Roberto Chavez, and Mengying Feng. 2019. Data-driven supply chain orientation and financial performance: The moderating effect of innovation-focused complementary assets. British Journal of Management 30: 299–314. [Google Scholar] [CrossRef]
- Zeng, Huixiang, Hangxin Ran, Qiong Zhou, Youliang Jin, and Xu Cheng. 2022. The financial effect of firm digitalization: Evidence from China. Technological Forecasting and Social Change 183: 121951. [Google Scholar] [CrossRef]
Reg. | Variable | Abbr. | Obs | Mean | Median | Std. Dev. | Min | Max | Skew | Kurt |
---|---|---|---|---|---|---|---|---|---|---|
Europe | Operating Revenue th Eur | or | 5706 | 285 | 206 | 457 | 1 | 13,520 | 13.191 | 267.638 |
Cost of employees th Eur | coste | 5706 | 54 | 52 | 48 | 4.1 × 10−2 | 2766 | 32.026 | 1708.202 | |
Intangible Fixed Assets th Eur | intfass | 5706 | 64 | 21 | 209 | 0 | 9783 | 25.744 | 1010.584 | |
Tangible Fixed Assets th Eur | tanfass | 5706 | 104 | 43 | 334 | 7.2 × 10−2 | 9098 | 14.464 | 277.361 | |
R&D expenses th Eur | rde | 5706 | 9 | 0 | 54 | 0 | 1760 | 15.841 | 351.778 | |
Net profit th Eur | netp | 5706 | −4 | 6 | 111 | −1983 | 614 | −7.538 | 92.328 | |
Digital Investment th Eur | di | 5706 | 77 | 35 | 178 | 0.006 | 6942 | 16.694 | 486.138 | |
Eastern Europe | Operating Revenue th Eur | or | 729 | 159 | 93 | 241 | 1 | 3127 | 5.621 | 52.191 |
Cost of employees th Eur | coste | 729 | 23 | 17 | 30 | 4.1 × 10−2 | 346 | 6.996 | 63.414 | |
Intangible Fixed Assets th Eur | intfass | 729 | 11 | 1 | 32 | 0 | 447 | 6.391 | 62.022 | |
Tangible Fixed Assets th Eur | tanfass | 729 | 162 | 38 | 609 | 1 | 7740 | 8.211 | 82.96 | |
R&D expenses th Eur | rde | 729 | 4.94 × 10−1 | 0 | 5 | 0 | 97 | 13.079 | 187.372 | |
Net profit th Eur | netp | 729 | −8.81 × 10−1 | 2 | 111 | −1802 | 614 | −8.806 | 135.945 | |
Digital Investment th Eur | di | 729 | 39 | 17 | 62 | 4.23 × 10−1 | 481 | 3.398 | 16.447 | |
Western Europe | Operating Revenue th Eur | or | 4977 | 303 | 219 | 478 | 2 | 13,520 | 13.044 | 254.399 |
Cost of employees th Eur | coste | 4977 | 59 | 55 | 49 | 2.81 × 10−1 | 2766 | 35.18 | 1862.314 | |
Intangible Fixed Assets th Eur | intfass | 4977 | 71 | 26 | 222 | 0 | 9783 | 24.393 | 900.239 | |
Tangible Fixed Assets th Eur | tanfass | 4977 | 96 | 44 | 270 | 7.2 × 10−2 | 9098 | 17.17 | 419.003 | |
R&D expenses th Eur | rde | 4977 | 10 | 43 | 58 | 0 | 1760 | 14.848 | 308.862 | |
Net profit th Eur | netp | 4977 | -4 | 7 | 111 | −1983 | 551 | −7.357 | 86.121 | |
Digital Investment th Eur | di | 4977 | 82 | 39 | 188 | 6E-3 | 6942 | 16.032 | 441.683 |
Co. Size | Variable | Abbr. | Obs | Mean | Median | Std. Dev. | Min | Max | Skew | Kurt |
---|---|---|---|---|---|---|---|---|---|---|
Very small | Operating Revenue th Eur | or | 104 | 540.726 | 200.683 | 1471.996 | 19.178 | 10,603.875 | 5.743 | 37.9 |
Cost of employees th Eur | coste | 104 | 87.786 | 74.88 | 46.921 | 34.225 | 288.1 | 2.137 | 8.294 | |
Intangible Fixed Assets th Eur | intfass | 104 | 187.541 | 8.952 | 723.612 | 0 | 6526.046 | 7.096 | 59.275 | |
Tangible Fixed Assets th Eur | tanfass | 104 | 50.78 | 4.818 | 203.704 | 1.746 | 1578.5 | 6.348 | 44.35 | |
R&D expenses th Eur | rde | 104 | 19.181 | 0 | 113.441 | 0 | 915.2 | 6.566 | 47.152 | |
Net profit th Eur | netp | 104 | −223.487 | −112.654 | 361.832 | −1983.432 | 136.571 | −2.313 | 9.021 | |
Digital Investment th Eur | di | 104 | 31.929 | 14.021 | 48.542 | 2.8 | 227.167 | 2.818 | 10.572 | |
Small | Operating Revenue th Eur | or | 348 | 314.722 | 127.898 | 922.057 | 3.995 | 13,520.756 | 10.765 | 138.122 |
Cost of employees th Eur | coste | 348 | 87.45 | 68.434 | 158.149 | 7.356 | 2766.082 | 14.309 | 238.993 | |
Intangible Fixed Assets th Eur | intfass | 348 | 76.631 | 11.581 | 243.399 | 0 | 3652.747 | 10.08 | 137.953 | |
Tangible Fixed Assets th Eur | tanfass | 348 | 289.242 | 17.322 | 987.749 | 0.541 | 9098.005 | 5.79 | 41.514 | |
R&D expenses th Eur | rde | 348 | 46.309 | 0 | 178.767 | 0 | 1760.364 | 5.674 | 41.27 | |
Net profit th Eur | netp | 348 | −133.481 | −27.041 | 299.459 | −1802.269 | 545.385 | −2.644 | 12.245 | |
Digital Investment th Eur | di | 348 | 96.312 | 28.683 | 389.373 | 0.7 | 6942.003 | 15.755 | 276.221 | |
Medium | Operating Revenue th Eur | or | 841 | 247.058 | 153.24 | 413.349 | 1.789 | 4222.104 | 6.052 | 46.749 |
Cost of employees th Eur | coste | 841 | 54.117 | 54.58 | 33.46 | 4.408 | 198.817 | 0.741 | 3.722 | |
Intangible Fixed Assets th Eur | intfass | 841 | 44.882 | 8.174 | 117.329 | 0 | 1306.818 | 5.649 | 45.138 | |
Tangible Fixed Assets th Eur | tanfass | 841 | 62.001 | 38.274 | 71.493 | 0.171 | 654.233 | 2.587 | 13.991 | |
R&D expenses th Eur | rde | 841 | 16.469 | 0 | 61.349 | 0 | 523.569 | 4.73 | 27.481 | |
Net profit th Eur | netp | 841 | −21.187 | 0.711 | 101.873 | −778.623 | 551.303 | −1.962 | 16.495 | |
Digital Investment th Eur | di | 841 | 58.449 | 31.528 | 66.11 | 0.206 | 487.805 | 1.802 | 7.267 | |
Large | Operating Revenue th Eur | or | 4412 | 284.109 | 216.773 | 344.929 | 8.326 | 8388.141 | 6.052 | 46.749 |
Cost of employees th Eur | coste | 4412 | 51.144 | 50.847 | 26.621 | 0.041 | 751.503 | 0.741 | 3.722 | |
Intangible Fixed Assets th Eur | intfass | 4412 | 63.983 | 25.387 | 191.42 | 0 | 9783.27 | 5.649 | 45.138 | |
Tangible Fixed Assets th Eur | tanfass | 4412 | 99.475 | 46.426 | 250.623 | 0.072 | 5492.634 | 2.587 | 13.991 | |
R&D expenses th Eur | rde | 4412 | 5.162 | 0.603 | 12.362 | 0 | 164.93 | 4.73 | 27.481 | |
Net profit th Eur | netp | 4412 | 14.261 | 8.332 | 34.369 | −385.943 | 614.25 | −1.962 | 16.495 | |
Digital Investment th Eur | di | 4412 | 80.6 | 36.884 | 167.499 | 0.006 | 3272.066 | 1.802 | 7.267 |
No. | Variables | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|---|
1 | or | 1 | ||||||
2 | coste | 0.941 *** | 1 | |||||
3 | intfass | 0.782 *** | 0.776 *** | 1 | ||||
4 | tanfass | 0.852 *** | 0.804 *** | 0.689 *** | 1 | |||
5 | rde | 0.745 *** | 0.780 * | 0.643 *** | 0.607 *** | 1 | ||
6 | netp | 0.814 *** | 0.783 *** | 0.736 *** | 0.736 *** | 0.730 *** | 1 | |
7 | di | 0.789 *** | 0.768 *** | 0.630 *** | 0.844 *** | 0.671 *** | 0.677 *** | 1 |
Variables | Main Model (Fixed-Effect) (Coeff./Std. Error) | Eastern Europe (Coeff./Std. Error) | Western Region (Coeff./Std. Error) | Very Small Companies (Coeff./Std. Error) | Small Companies (Coeff./Std. Error) | Medium size Companies (Coeff./Std. Error) | Large Companies (Coeff./Std. Error) |
---|---|---|---|---|---|---|---|
coste | 3.481/0.124 (***) | 8.751/0.419 | 3.440/0.134 | 1.616/5.498 | 0.181/0.172 | 2.719/0.334 | 2.068/0.127 |
intfass | 0.119/0.018 (***) | −0.502/0.234 | 0.129/0.019 | 0.025/0.254 | 0.176/0.083 | 0.130/0.067 | 0.259/0.013 |
tanfass | 0.058/0.027 (**) | −0.173/0.017 | 0.195/0.059 | 0.520/6.021 | 0.065/0.018 | 0.225/0.103 | 0.116/0.029 |
rde | 0.732/0.113 (***) | −0.190/0.864 | 0.773/0.119 | −0.218/2.785 | 0.918/0.089 | 0.720/0.152 | 1.247/0.471 |
netp | 0.583/0.045 (***) | 0.187/0.033 | 0.758/0.057 | 0.103/1.086 | 0.295/0.035 | 1.035/0.058 | 0.852/0.062 |
di | 0.441/0.052 (***) | 0.572/0.173 | 0.297/0.079 | 2.902/12.290 | −0.054/0.204 | 0.417/0.171 | 0.054/0.038 |
Constant | 43.218/5.109 (***) | −34.083/9.765 | 43.030/6.033 | 302.354/581.036 | 268.607/24.670 | 65.792/19.943 | 127.258/6.210 |
Model Summary | |||||||
Observations | 5706 | 729 | 4977 | 104 | 348 | 841 | 4412 |
R-squared | 0.464 | 0.463 | 0.472 | 0.003 | 0.451 | 0.386 | 0.382 |
RESET Test | |||||||
SS | 288,316,237 | 12,450,849 | 267,895,723 | 9,116,545.9 | 181,144,486 | 29,459,103 | 102,152,830 |
df | 7 | 7 | 7 | 7 | 7 | 7 | 7 |
MS | 41,188,033 | 1,778,692 | 38,270,817 | 1,302,363 | 25,877,783 | 420,8443. | 14,593,261 |
F | 258.88 | 42.69 | 218.26 | 0.58 | 77.27 | 30.73 | 152.06 |
Prob>F | 0.00 | 0.00 | 0.00 | 0.7674 | 0.00 | 0.00 | 0.00 |
R-squared | 0.241 | 0.2930 | 0.2352 | 0.0408 | 0.6140 | 0.2053 | 0.1947 |
Adj R-squared | 0.240 | 0.2862 | 0.2341 | −0.0291 | 0.6061 | 0.1986 | 0.1934 |
Root MSE | 398.87 | 418.75 | 1493.3 | 578.72 | 370.04 | 309.79 |
Variables | Main Model (Fixed-Effect) (Coeff./Std. Error) Q1 | t Q1 | P > |t| Q1 | Main Model (Fixed-Effect) (Coeff./Std. Error) Q3 | t Q3 | P > |t| Q3 |
---|---|---|---|---|---|---|
coste | 2.797/0.244 | 11.44 | 0.000 | 4.543/0.161 | 28.05 | 0.000 |
intfass | 0.020/0.0565 | 0.36 | 0.720 | 0.073/0.096 | 0.77 | 0.443 |
tanfass | −0.087/0.101 | −0.87 | 0.385 | 0.069/0.059 | 1.16 | 0.245 |
rde | 0.543/0.142 | 3.80 | 0.000 | 0.171/0.515 | 0.33 | 0.740 |
netp | 0.934/0.064 | 14.59 | 0.000 | 0.588/0.114 | 5.14 | 0.000 |
di | 0.752/0.516 | 1.46 | 0.145 | 0.098/0.074 | 1.31 | 0.190 |
Constant | 69.295/16.808 | 4.12 | 0.000 | 81.514/10.504 | 7.76 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lastauskaite, A.; Krusinskas, R. The Impact of Production Digitalization Investments on European Companies’ Financial Performance. Economies 2024, 12, 138. https://doi.org/10.3390/economies12060138
Lastauskaite A, Krusinskas R. The Impact of Production Digitalization Investments on European Companies’ Financial Performance. Economies. 2024; 12(6):138. https://doi.org/10.3390/economies12060138
Chicago/Turabian StyleLastauskaite, Aiste, and Rytis Krusinskas. 2024. "The Impact of Production Digitalization Investments on European Companies’ Financial Performance" Economies 12, no. 6: 138. https://doi.org/10.3390/economies12060138
APA StyleLastauskaite, A., & Krusinskas, R. (2024). The Impact of Production Digitalization Investments on European Companies’ Financial Performance. Economies, 12(6), 138. https://doi.org/10.3390/economies12060138