Tourism Demand Elasticities by Income and Prices of International Market Regions: Evidence Using Vietnam’s Data
Abstract
:1. Introduction
2. Literature Review
3. Methodology and Data
3.1. Tourism Demand Model
3.2. Sample and Data
3.3. Specification Estimation Model
4. Results and Discussion
4.1. Results
4.1.1. Coefficient Estimation
4.1.2. Diagnostic Test and Robustness Check
4.2. Discussion and Implications
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Panel Cointegration Analysis
Overall Sample | Asia Sample | Intercontinental Sample | |||||
---|---|---|---|---|---|---|---|
Method | Statistic | Individual Intercept | Trend and Intercept | Individual Intercept | Trend and Intercept | Individual Intercept | Trend and Intercept |
Pedroni test | Panel v-Statistic | 1.8675 ** | 6.6942 *** | 1.4166 * | 3.8283 *** | 1.1384 | 3.9529 *** |
Panel rho-Statistic | −0.2130 | −1.6997 | 0.1954 | 0.2600 | −0.2277 | −0.7345 | |
Panel PP-statistic | −1.3908 * | −10.068 *** | −0.7757 | −4.4510 *** | −1.0207 | −4.7290 *** | |
Panel ADF-Statistic | 0.6889 | −12.056 *** | −0.7911 | −4.4454 *** | −1.3405 * | −4.7699 *** | |
Group rho-Statistic | 1.1931 | 1.1429 | 1.2366 | 1.2418 | 0.4545 | 0.3585 | |
Group PP-Statistic | −1.6327 * | −6.1120 *** | −1.0454 | −4.4685 *** | −1.2560 | −4.2059 ** | |
Group ADF-Statistic | −0.6521 | −7.9811 *** | −0.1151 | −4.3079 *** | −1.3730 * | −5.3533 ** | |
Kao test | t-Statistic | −2.2516 ** | −1.9520 ** | −2.4680 *** |
Appendix A.2. FMOLS Estimation
Variable | Overall Sample | Asia Sample | Intercontinental Sample | |||
---|---|---|---|---|---|---|
Coefficient | t-Statistic | Coefficient | t-Statistic | Coefficient | t-Statistic | |
LnIT | 0.9988 | 8.09 *** | 1.2133 | 4.57 *** | 1.132575 | 6.06 *** |
LnTP | −0.3729 | −5.03 *** | −0.0239 | −0.11 | −0.345838 | −4.97 *** |
LnSP | 0.0179 | 1.05 | 0.3138 | 6.02 *** | 0.030072 | 2.47 ** |
X | −0.0608 | −2.76 *** | −0.0181 | −0.23 | −0.088757 | −3.90 *** |
References
- Álvarez-Diaz, Marcos, Manuel González-Gómez, and Maria Soledad Otero-Giráldez. 2015. Research note: Estimating price and income demand elasticities for Spain separately by the major source markets. Tourism Economics 21: 1103–10. [Google Scholar] [CrossRef]
- Araña, Jorge E., and Carmelo J. León. 2008. The impact of terrorism on tourism demand. Annals of Tourism Research 35: 299–315. [Google Scholar] [CrossRef]
- Banerjee, Anindya, Juan J. Dolado, John W. Galbraith, and David Hendry. 1994. Co-Integration, Error Correction, and the Econometric Analysis of Non-Stationary Data. New York: Oxford University Press. [Google Scholar]
- Blackburne, Edward F., III, and Mark W. Frank. 2007. Estimation of Nonstationary Heterogeneous Panels. The Stata Journal: Promoting Communications on Statistics and Stata 7: 197–208. [Google Scholar] [CrossRef]
- Chaiboonsri, Chukiat, Jittaporn Sriboonjit, Thanes Sriwichailamphan, Prasert Chaitip, and Songsak Sriboonchitta. 2010. A panel cointegration analysis: An application to international tourism demand of Thailand. Annals of the University of Petrosani Economics 10: 69–86. [Google Scholar]
- Cheng, Ka Ming. 2012. Tourism demand in Hong Kong: Income, prices, and visa restrictions. Current Issues in Tourism 15: 167–81. [Google Scholar] [CrossRef]
- Croes, Robertico R., and Manuel Vanegas Sr. 2005. An econometric study of tourist arrivals in Aruba and its implications. Tourism Management 26: 879–90. [Google Scholar] [CrossRef]
- Crouch, Geoffrey I. 1992. Effect of income and price on International tourism. Annals of Tourism Research 19: 643–64. [Google Scholar] [CrossRef]
- Crouch, Geoffrey I. 1996. Demand elasticities in international marketing: A metaanalytical application to tourism. Journal of Business Research 36: 117–36. [Google Scholar] [CrossRef]
- Dogru, Tarik, and Ercan Sirakaya-Turk. 2018. Modeling Turkish outbound tourism demand using a dynamic panel data approach. Tourism and Hospitality Research 18: 411–14. [Google Scholar] [CrossRef]
- Dogru, Tarik, Ercan Sirakaya-Turk, and Geoffrey I. Crouch. 2017. Remodeling international tourism demand: Old theory and new evidence. Tourism Management 60: 47–55. [Google Scholar] [CrossRef]
- Dritsakis, Nikolaos. 2004. Cointegration analysis of German and British tourism demand for Greece. Tourism Management 25: 111–19. [Google Scholar] [CrossRef]
- Enders, Walter. 2004. Applied Econometric Time Series, 2nd ed. New York: John & Wiley. [Google Scholar]
- Gatta, William, and Joseph Falzon. 2014. British tourism demand elasticities in Mediterranean countries. Applied Economics 46: 3548–61. [Google Scholar] [CrossRef]
- General Statistics Office of Vietnam. 2021. Business Results of the Tourism Industry. Available online: https://www.gso.gov.vn/px-web-2/?pxid=V0825&theme=Th%C6%B0%C6%A1ng%20m%E1%BA%A1i%2C%20gi%C3%A1%20c%E1%BA%A3 (accessed on 28 October 2021).
- Granger, Clive W. J., and Paul Newbold. 1974. Spurious regressions in econometrics. Journal of Econometrics 2: 111–20. [Google Scholar] [CrossRef] [Green Version]
- Greene, William H. 2008. Econometric Analysis. Harlow: Pearson Prentice Hall. [Google Scholar]
- Kao, Chihwa. 1999. Spurious regression and residual-based tests for cointegration in panel data. Journal Econometrics 90: 1–44. [Google Scholar] [CrossRef]
- Kulendran, Nada, and Stephen F. Witt. 2001. Cointegration versus least squares regression. Annals of Tourism Research 28: 291–311. [Google Scholar] [CrossRef]
- Kumar, Nikeel, Kuma Ronald Ravinesh, Patel Arvind, Hussain Shahzad, Syed Jawad, and Stauvermann Peter Josef. 2020. Modelling inbound international tourism demand in small Pacific Island countries. Applied Economics 52: 1031–47. [Google Scholar] [CrossRef]
- Kraipornsak, Paitoon. 2011. The world economy, competition, external shocks and demand for international tourist arrivals in Thailand. International Journal Trade and Global Markets 4: 93–118. [Google Scholar] [CrossRef]
- Lee, Koon Nam Henry. 2011. Estimating demand elasticities for intra-regional tourist arrivals to Hong Kong—The “bounds” testing approach. Applied Economics Letters 18: 1645–54. [Google Scholar] [CrossRef]
- Li, Gang, Kevin K. F. Wong, Haiyan Song, and Stephen F. Witt. 2006. Tourism demand forecasting: A time varying parameter error correction model. Journal of Travel Research 45: 175–85. [Google Scholar] [CrossRef] [Green Version]
- Lim, Christine. 1997. Review of international tourism demand models. Annals of Tourism Research 24: 835–49. [Google Scholar] [CrossRef]
- Lim, Christine. 2004. The major determinants of Korean outbound travel to Australia. Mathematics and Computers in Simulation 64: 477–85. [Google Scholar] [CrossRef]
- Lin, Vera Shanshan, Anyu Liu, and Haiyan Song. 2015. Modeling and Forecasting Chinese Outbound Tourism: An Econometric Approach. Journal of Travel and Tourism Marketing 32: 34–49. [Google Scholar] [CrossRef]
- Mangion, Marie-Louise, Ramesh Durbarry, and M. Thea Sinclair. 2005. Tourism competitiveness: Price and quality. Tourism Economics 11: 45–68. [Google Scholar] [CrossRef]
- Martin, Christine A., and Stephen F. Witt. 1989. Forecasting tourism demand: A comparison of the accuracy of several quantitative methods. International Journal of Forecasting 5: 7–10. [Google Scholar] [CrossRef]
- Munoz, Teresa Gari. 2007. German demand for tourism in Spain. Tourism Management 28: 12–22. [Google Scholar] [CrossRef]
- Narayan, Paresh Kumar, and Seema Narayan. 2005. Estimating income and price elasticities of imports for Fiji in a cointegration framework. Economic Modelling 22: 423–38. [Google Scholar] [CrossRef]
- Nguyen, Quang Hai. 2021. Impact of Investment in Tourism Infrastructure Development on Attracting International Visitors: A Nonlinear Panel ARDL Approach Using Vietnam’s Data. Economies 9: 131. [Google Scholar] [CrossRef]
- Nkoro, Emeka, and Aham Kelvin Uko. 2016. Autoregressive Distributed Lag (ARDL) cointegration technique: Application and interpretation. Journal of Statistical and Econometric Methods 5: 63–91. [Google Scholar]
- Ouerfelli, Chokri. 2008. Co-integration analysis of quarterly European tourism demand in Tunisia. Tourism Management 29: 127–137. [Google Scholar] [CrossRef]
- Pedroni, Peter. 1999. Critical values for cointegration tests in heterogeneous panels with multiple regressors. Oxford Bulletin of Economics and Statistics 61: 653–670. [Google Scholar] [CrossRef]
- Peng, Bo, Haiyan Song, and Geoffrey I. Crouch. 2014. A meta-analysis of international tourism demand forecasting and implications for practice. Tourism Management 45: 181–93. [Google Scholar] [CrossRef]
- Pesaran, M. Hashem, Yongcheol Shin, and Richard J. Smith. 2001. Bounds testing approaches to the analysis of level relationships. Journal of Applied Econometrics 16: 289–326. [Google Scholar] [CrossRef]
- Ramos, Vicente, Akarapong Untong, and Mingsarn Kaosaard. 2017. ASEAN’s intra-regional tourism demand to Thailand. Asia Pacific Journal of Tourism Research 22: 909–21. [Google Scholar] [CrossRef]
- Ritchie, Brent W. 2004. Chaos, crises and disasters: A strategic approach to crisis management in the tourism industry. Tourism Management 25: 669–83. [Google Scholar] [CrossRef]
- Salisu, Afees A., and Kazeem O. Isah. 2017. Revisiting the oil price and stock market nexus: A nonlinear Panel ARDL approach. Economic Modelling 66: 258–71. [Google Scholar] [CrossRef]
- Samirkaş, Meryem, and Mustafa Can Samirkaş. 2015. The Impact of Exchange Rate on Tourism Industry: The Case of Turkey. In Handbook of Research on Global Hospitality and Tourism Management. Hershey: IGI Global, Chapter 54. pp. 1177–90. [Google Scholar] [CrossRef] [Green Version]
- Seetaram, Neelu, Peter Forsyth, and Larry Dwyer. 2016. Measuring price elasticities of demand for outbound tourism using competitiveness indices. Annals of Tourism Research 56: 65–79. [Google Scholar] [CrossRef] [Green Version]
- Seetaram, Neelu. 2012. Immigration and international inbound tourism: Empirical evidence from Australia. Tourism Management 33: 1535–43. [Google Scholar] [CrossRef]
- Shafiullah, Muhammad, Luke Emeka Okafor, and Usman Khalid. 2018. Determinants of International Tourism Demand: Evidence from Australian States and Territories. Tourism Economics 25: 274–96. [Google Scholar] [CrossRef]
- Song, Haiyan, and Gang Li. 2008. Tourism demand modelling and forecasting—A review of recent research. Tourism Management 29: 203–220. [Google Scholar] [CrossRef] [Green Version]
- Song, Haiyan, and Kevin KF Wong. 2003. Tourism demand modelling: A time-varying parameter approach. Journal of Travel Research 42: 57–64. [Google Scholar] [CrossRef]
- Song, Haiyan, and Stephen F. Witt. 2003. Tourism forecasting: The general-to-specific approach. Journal of Travel Research 42: 65–74. [Google Scholar] [CrossRef]
- Song, Haiyan, Jae H. Kim, and Shu Yang. 2010. Confidence intervals for tourism demand elasticity. Annals of Tourism Research 37: 377–96. [Google Scholar] [CrossRef] [Green Version]
- Song, Haiyan, Stephen F. Witt, and Gang Li. 2003. Modelling and forecasting the demand for Thai tourism. Tourism Economics 9: 363–87. [Google Scholar] [CrossRef] [Green Version]
- Song, Haiyan, Stephen F. Witt, and Gang Li. 2009. The Advanced Econometrics of Tourism Demand. New York: Routledge. [Google Scholar]
- Studenmund, Arnold H. 2006. Using Econometrics: A Practical Guide, 5th ed. Boston: Pearson Education. [Google Scholar]
- The World Bank. 2021. World Bank Open Data. Available online: https://data.worldbank.org/ (accessed on 28 October 2021).
- Untong, Akarapong, Vicente Ramos, Mingsam Kaosa-Ard, and Javier Rey-Maquieira. 2015. Tourism Demand Analysis of Chinese Arrivals in Thailand. Tourism Economics 21: 1221–34. [Google Scholar] [CrossRef]
- Uysal, Muzaffer, and Joln L. Crompton. 1984. Determinants of demand for international tourist flows to Turkey. Tourism Management 5: 288–97. [Google Scholar] [CrossRef]
- Vanegas, Manuel, Sr., and Robertico R. Croes. 2000. Evaluation of demand: US tourist to Aruba. Annals of Tourism Research 27: 946–63. [Google Scholar] [CrossRef]
- Vietnam National Administration of Tourism. 2020. Vietnam Tourism Annual Report 2019; Hanoi: Labor Publishing House, ISBN 978-604-301-333-7.
- Vietnam National Administration of Tourism. 2021. International Visitors. Available online: https://vietnamtourism.gov.vn/index.php/statistic/international (accessed on 28 October 2021).
- Wooldridge, Jeffrey M. 2015. Introductory Econometrics: A Modern Approach. Boston: Cengage Learning, ISBN-13 978-1-111-53104-1. [Google Scholar]
- Xu, Lizhi, Shouyang Wang, Jingjing Li, Ling Tang, and Yanmin Shao. 2018. Modelling International Tourism Flows to China: A panel data analysis with the gravity model. Tourism Economics 25: 1047–69. [Google Scholar] [CrossRef]
Country | To Vietnam (1995–2019) | Descriptive Statistics | ||||||
---|---|---|---|---|---|---|---|---|
Tourists | CARG | Proportion | Mean | Maximum | Minimum | Standard Deviation | Coefficient of Variation | |
China | 35,081,325 | 20.77% | 25.53% | 1,403,253 | 5,806,425 | 62,640 | 1,485,151 | 1.06 |
Korea Rep. | 19,039,123 | 21.99% | 13.85% | 761,565 | 4,290,802 | 36,375 | 1,094,738 | 1.44 |
Japan | 10,317,026 | 9.03% | 7.51% | 412,681 | 951,962 | 95,258 | 254,619 | 0.62 |
The US | 9,285,132 | 5.89% | 6.76% | 371,405 | 746,171 | 146,488 | 166,373 | 0.45 |
Malaysia | 4,757,314 | 17.19% | 3.46% | 190,293 | 606,206 | 13,462 | 181,977 | 0.96 |
Australia | 4,959,124 | 9.81% | 3.61% | 198,365 | 386,934 | 40,600 | 122,006 | 0.62 |
The UK | 3,258,704 | 7.73% | 2.37% | 130,348 | 315,084 | 39,631 | 87,347 | 0.67 |
Singapore | 3,250,617 | 11.15% | 2.37% | 130,025 | 308,969 | 24,437 | 96,333 | 0.74 |
France | 4,017,356 | 3.78% | 2.92% | 160,694 | 287,655 | 67,000 | 70,503 | 0.44 |
Germany | 2,334,845 | 10.60% | 1.70% | 93,394 | 226,792 | 20,206 | 63,295 | 0.68 |
Others | 41,124,065 | 7.80% | 29.92% | 550,468 | 4,085,014 | 1,644,963 | 1,022,204 | 0.62 |
Total | 137,424,630 | 11.39% | 100.00% | 18,008,591 | 1,351,300 | 5,496,985 | 4,500,652 | 0.82 |
Asia sample | 72,445,404 | 17.36% | 52.72% | 2,897,816 | 11,964,364 | 72,445,404 | 3,049,227 | 1.05 |
Other sample | 23,855,161 | 6.62% | 17.36% | 954,206 | 1,959,213 | 23,855,161 | 502,061 | 0.53 |
Scheme | Variable | Mean | Maximum | Minimum | Standard Deviation | Observations |
---|---|---|---|---|---|---|
Overall | lnDT | 12.1310 | 15.5745 | 9.5076 | 1.1677 | 250 |
lnIT | 10.026 | 11.1295 | 6.4129 | 0.9919 | 250 | |
lnTP | 8.7047 | 11.3285 | 2.2408 | 2.4454 | 250 | |
lnSP | 6.1314 | 9.5676 | −2.5640 | 2.8244 | 250 | |
Asia | lnDT | 12.4029 | 15.574 | 9.5076 | 1.3821 | 125 |
lnIT | 9.5231 | 11.1003 | 6.4129 | 1.1709 | 125 | |
lnTP | 7.1249 | 10.7986 | 2.2407 | 2.5539 | 125 | |
lnSP | 4.1908 | 7.72912 | −2.5257 | 2.5994 | 125 | |
Intercontinental | lnDT | 11.8590 | 13.5227 | 9.9137 | 0.8239 | 125 |
lnIT | 10.5294 | 11.1294 | 9.8777 | 0.3068 | 125 | |
lnTP | 10.2844 | 11.3285 | 8.9756 | 0.6736 | 125 | |
lnSP | 8.0720 | 9.5676 | 4.4055 | 1.2918 | 125 |
Sample | Variable | Individual Intercept | Individual Trend and Intercept | ||||||
---|---|---|---|---|---|---|---|---|---|
LLC | IPS | ADF | PP | LLC | IPS | ADF | PP | ||
Overall | lnDT | I(1) *** | I(1) *** | I(1) *** | I(1) *** | I(1) *** | I(1) *** | I(1) *** | I(0) *** |
lnIT | I(1) *** | I(1) *** | I(1) *** | I(1) *** | I(1) *** | I(1) *** | I(1) *** | I(1) *** | |
lnTP | I(1) *** | I(1) *** | I(1) *** | I(1) *** | I(1) *** | I(1) ** | I(1) ** | I(1) *** | |
lnSP | I(1) *** | I(1) *** | I(1) *** | I(1) *** | I(2) *** | I(1) *** | I(1) *** | I(1) *** | |
Asia | lnDT | I(1) *** | I(1) *** | I(1) *** | I(1) *** | I(2) *** | I(1) *** | I(1) ** | I(1) *** |
lnIT | I(1) *** | I(1) *** | I(1) *** | I(1) *** | I(1) *** | I(1) *** | I(1) *** | I(1) *** | |
lnTP | I(1) *** | I(1) *** | I(1) *** | I(1) *** | I(1) *** | I(2) *** | I(2) *** | I(1) ** | |
lnSP | I(0) *** | I(0) *** | I(0) *** | I(0) *** | I(0) ** | I(1) *** | I(1) *** | I(1) *** | |
Intercontinental | lnDT | I(1) *** | I(1) *** | I(1) *** | I(1) *** | I(1) *** | I(1) *** | I(1) *** | I(0) *** |
lnIT | I(1) *** | I(1) *** | I(1) *** | I(1) *** | I(1) *** | I(1) *** | I(1) *** | I(1) *** | |
lnTP | I(1) *** | I(1) *** | I(1) *** | I(1) *** | I(1) *** | I(1) *** | I(1) *** | I(1) ** | |
lnSP | I(0) *** | I(0) *** | I(0) *** | I(0) *** | I(0) *** | I(1) *** | I(1) *** | I(0) ** |
Variable | Overall Sample | Asia Sample | Intercontinental Sample | |||
---|---|---|---|---|---|---|
Coefficient | t-Statistic | Coefficient | t-Statistic | Coefficient | t-Statistic | |
Long-Run Equation | ||||||
LOG(IT) | 1.0268 | 7.3412 *** | 2.7718 | 16.3323 *** | 0.8371 | 4.8364 *** |
LOG(TP) | −0.5450 | −5.4776 *** | −1.2429 | −8.4753 *** | −0.3612 | −2.3036 ** |
LOG(SP) | 0.1821 | 8.9896 *** | 0.5497 | 9.5667 *** | 0.1524 | 8.0919 *** |
X | −0.2055 | −2.2963 ** | 0.0603 | 0.6750 | −0.0412 | −0.4619 |
Short-Run Equation | ||||||
COINTEQ01 | −0.3922 | −3.6110 *** | −0.3195 | −1.6151 | −0.4327 | −2.4678 ** |
ΔLnDT | 0.0825 | 1.1124 | 0.2126 | 2.3679 ** | −0.0283 | −0.3127 |
ΔLnIT | 0.0684 | 0.4178 | −0.0580 | −0.1117 | −0.1357 | −0.6188 |
ΔLnIT(−1) | 0.1525 | 0.3329 | −0.3557 | −0.4125 | 0.6567 | 1.5757 |
ΔLnTP | 0.2164 | 1.2571 | 0.1207 | 0.2633 | 0.3854 | 4.4173 *** |
ΔLnTP(−1) | −0.3472 | −1.7519 * | −0.2474 | −0.8718 | −0.5752 | −2.2208 ** |
ΔLnSP | −0.0303 | −0.7201 | −0.0554 | −1.2138 | −0.0505 | −0.7983 |
ΔLnSP(−1) | −0.1102 | −2.4437 ** | −0.1981 | −2.0899 ** | −0.0652 | −2.2911 ** |
ΔX | −0.0441 | −1.8996 * | −0.1447 | −5.4968 *** | −0.0862 | −3.7898 *** |
ΔX(−1) | −0.0594 | −3.2575 *** | −0.1181 | −3.8767 *** | −0.0735 | −2.8919 *** |
C | 1.7251 | 4.3774 *** | −2.6211 | −1.3425 | 2.1158 | 2.5222 ** |
@Trend | 0.0343 | 3.1823 *** | 0.0064 | 0.8600 | 0.0273 | 2.5880 ** |
Statistics | ||||||
S.E. of regression | 0.0983 | 0.1229 | 0.0747 | |||
Sum squared residual | 1.2168 | 0.9216 | 0.3406 | |||
Log-likelihood | 304.1710 | 128.8731 | 177.2918 | |||
Akaike info criterion | −1.4414 | −1.0380 | −1.8127 |
China | Korea | Japan | The US | Malaysia | Australia | The UK | Singapore | France | Germany | |
---|---|---|---|---|---|---|---|---|---|---|
COINTEQ01 | −0.1893 *** | −0.1647 *** | −1.1140 *** | −0.1207 *** | −0.4043 *** | −0.8788 *** | −0.0885 *** | −0.1827 *** | −0.4085 *** | −0.3701 *** |
ΔLnDT | 0.1380 *** | 0.1247 * | 0.2127 *** | 0.1070 *** | 0.4979 *** | 0.0005 | −0.0791 ** | 0.2618 *** | −0.0560 ** | −0.3823 *** |
ΔLnIT | 0.3103 | 0.6033 | −0.1833 | 0.7951 | 0.4950 ** | −0.2350 * | −0.1427 | 0.3614 | −0.7257 * | −0.5944 |
ΔLnIT(−1) | −3.3247 ** | 1.4358 | −0.5805 | 1.6215 * | 0.1095 | −0.2412 ** | 0.0046 | 0.7070 ** | 0.2351 | 1.5585 *** |
ΔLnTP | 1.2171 ** | −0.3514 | 0.0104 | 0.6059 *** | −0.7203 *** | 0.4921 *** | 0.1235 * | −0.0841 | 0.4433 ** | 0.4273 * |
ΔLnTP(−1) | −0.0482 | −1.0790 ** | 0.0944 | −0.5753 *** | 0.7308 *** | −0.0214 | −0.2742 *** | −0.2749 | −0.5121 ** | −1.5122 *** |
ΔLnSP | −0.0072 | −0.0386 | −0.2506 *** | 0.1299 *** | −0.0503 ** | −0.1469 *** | −0.0202 *** | 0.1800 ** | 0.0638 *** | −0.1616 *** |
ΔLnSP(−1) | −0.0184 * | −0.1556 *** | −0.2100 *** | −0.1161 *** | −0.4608 *** | −0.0723 *** | 0.0320 *** | −0.0253 | −0.0388 *** | −0.0363 *** |
ΔX | −0.0705 *** | −0.0907 *** | 0.0881 *** | −0.1028 *** | −0.0921 *** | 0.0900 *** | −0.1080 *** | −0.0520 *** | −0.0597 *** | −0.0432 *** |
ΔX(−1) | −0.0338 *** | −0.0530 *** | 0.0221 *** | −0.0171 *** | −0.1483 *** | 0.0245 *** | −0.0913 *** | −0.0954 *** | −0.0932 *** | −0.1081 *** |
C | 1.9394 | 0.4955 ** | 3.5716 | 0.5720 | 2.1382 ** | 3.9257 | 0.4384 *** | 0.7311 * | 1.8304 * | 1.6092 ** |
@Trend | 0.0091 *** | 0.0282 *** | 0.1207 *** | 0.0077 *** | 0.0426 *** | 0.0543 *** | 0.0087 *** | 0.0146 *** | 0.0299 *** | 0.0269 *** |
Sample | Variable | Coefficient Confidence Intervals | Wald Test: C(1) = C(2) = C(3) = C(4) = 0 | |||||
---|---|---|---|---|---|---|---|---|
Coefficient | 95% Confidence Intervals | 99% Confidence Intervals | ||||||
Low | High | Low | High | F-Statistic | Chi-Square | |||
Overall | LnIT | 1.0268 | 0.7500 | 1.3036 | 0.6610 | 1.3926 | 40.3363 *** | 161.3451 *** |
LnTP | −0.5450 | −0.7419 | −0.3481 | −0.8052 | −0.2848 | |||
LnSP | 0.1821 | 0.1420 | 0.2221 | 0.1291 | 0.2350 | |||
X | −0.2055 | −0.3827 | −0.0284 | −0.4396 | 0.0286 | |||
Asia | LnIT | 2.7718 | 2.4324 | 3.1111 | 2.3205 | 3.2230 | 88.6741 *** | 354.6963 *** |
LnTP | −1.2429 | −1.5362 | −0.9497 | −1.6329 | −0.8530 | |||
LnSP | 0.5497 | 0.4348 | 0.6646 | 0.3969 | 0.7025 | |||
X | 0.0603 | −0.1183 | 0.2389 | −0.1772 | 0.2977 | |||
Intercontinental | LnIT | 0.8371 | 0.4910 | 1.1833 | 0.3769 | 1.2974 | 48.4243 *** | 193.6973 *** |
LnTP | −0.3612 | −0.6746 | −0.0477 | −0.7780 | 0.0557 | |||
LnSP | 0.1524 | 0.1147 | 0.1901 | 0.1023 | 0.2025 | |||
X | −0.0412 | −0.2197 | 0.1373 | −0.2786 | 0.1961 |
Variable | Overall Sample | Asia Sample | Intercontinental Sample | ||||||
---|---|---|---|---|---|---|---|---|---|
ARDL | FMOLS | Bias | ARDL | FMOLS | Bias | ARDL | FMOLS | Bias | |
LnIT | 1.0268 *** | 0.9988 *** | 0.028 (2.73%) | 2.7718 *** | 1.2133 *** | 1.5585 (56.23%) | 0.8371 *** | 1.1326 *** | 0.2955 (35.30%) |
LnTP | −0.5450 *** | −0.3729 *** | 0.1721 (31.58%) | −1.2429 *** | −0.0239 | −0.3612 *** | −0.3458 *** | 0.014 (4.26%) | |
LnSP | 0.1821 *** | 0.0179 | 0.5497 *** | 0.3138 *** | 0.2359 (42.91%) | 0.1524 *** | 0.0301 ** | 0.1223 (80.25%) | |
X | −0.2055 ** | −0.0608 *** | 0.1447 (70.41%) | 0.0603 | −0.0181 | −0.0412 | −0.0888 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, Q.H. Tourism Demand Elasticities by Income and Prices of International Market Regions: Evidence Using Vietnam’s Data. Economies 2022, 10, 1. https://doi.org/10.3390/economies10010001
Nguyen QH. Tourism Demand Elasticities by Income and Prices of International Market Regions: Evidence Using Vietnam’s Data. Economies. 2022; 10(1):1. https://doi.org/10.3390/economies10010001
Chicago/Turabian StyleNguyen, Quang Hai. 2022. "Tourism Demand Elasticities by Income and Prices of International Market Regions: Evidence Using Vietnam’s Data" Economies 10, no. 1: 1. https://doi.org/10.3390/economies10010001
APA StyleNguyen, Q. H. (2022). Tourism Demand Elasticities by Income and Prices of International Market Regions: Evidence Using Vietnam’s Data. Economies, 10(1), 1. https://doi.org/10.3390/economies10010001