Augmented Reality in Industry 4.0 and Future Innovation Programs
Abstract
:1. Introduction
2. State of the Art of Augmented Reality
2.1. Review of Augmented Reality Software
2.2. Review of Augmented Reality Hardware
2.2.1. Video See through Devices
2.2.2. Optical See-Through Devices
2.2.3. Embedded Tracking Systems and Tools
3. Analysis of AR Applications and Comments
3.1. Applications Proposed by Literature
3.2. Hardware Limitations
3.3. Software Limitations
3.4. Usability Limitation in Industrial Environment
4. Bridging the Gap between AR and Industry Needs
4.1. Technology
4.2. Hardware
4.3. Software
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Azuma, R.T. A survey of augmented reality. In Presence: Teleoperators and Virtual Environments; MIT Press: Cambridge, MA, USA, 1997; Volume 6, pp. 355–385. [Google Scholar] [CrossRef]
- Merino, L.; Schwarzl, M.; Kraus, M.; Sedlmair, M.; Schmalstieg, D.; Weiskopf, D. Evaluating Mixed and Augmented Reality: A Systematic Literature Review (2009–2019). In Proceedings of the 2020 IEEE International Symposium Mixed Augmented Reality, ISMAR 2020, Porto de Galinhas, Brazil, 9–13 November 2020; pp. 438–451. Available online: http://arxiv.org/abs/2010.05988 (accessed on 9 April 2021).
- Gattullo, M.; Evangelista, A.; Uva, A.E.; Fiorentino, M.; Gabbard, J. What, How, and Why are Visual Assets used in Industrial Augmented Reality? A Systematic Review and Classification in Maintenance, Assembly, and Training (from 1997 to 2019). IEEE Trans. Vis. Comput. Graph. 2020. [Google Scholar] [CrossRef]
- Simsarian, K.; Åkesson, K. Windows on the World: An example of Augmented Virtuality. Available online: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.27.4281 (accessed on 7 December 2020).
- Azuma, R.; Baillot, Y.; Behringer, R.; Feiner, S.; Julier, S.; MacIntyre, B. Recent advances in augmented reality. IEEE Comput. Graph. Appl. 2001, 21, 34–47. [Google Scholar] [CrossRef] [Green Version]
- Neges, M.; Adwernat, S.; Abramovici, M. Augmented Virtuality for maintenance training simulation under various stress conditions. Procedia Manuf. 2018, 19, 171–178. [Google Scholar] [CrossRef]
- Milgram, P.; Takemura, H.; Utsumi, A.; Kishino, F. Augmented reality: A class of displays on the reality-virtuality continuum. Telemanip. Telepresence Technol. 1995, 2351, 282–292. [Google Scholar] [CrossRef]
- Microsoft Official Website. Available online: https://developer.microsoft.com/en-us/windows/mixed-reality/mixed_reality (accessed on 7 December 2020).
- Amin, D.; Govilkar, S. Comparative Study of Augmented Reality Sdk’s. Int. J. Comput. Sci. Appl. 2015, 5, 11–26. [Google Scholar] [CrossRef]
- Siltanen, S. Texture generation over the marker area. In Proceedings of the ISMAR 2006: Fifth IEEE and ACM International Symposium on Mixed and Augmented Reality, Santa Barbara, CA, USA, 22–25 October 2006; pp. 253–254. [Google Scholar] [CrossRef]
- Mur-Artal, R.; Montiel, J.M.M.; Tardos, J.D. ORB-SLAM: A Versatile and Accurate Monocular SLAM System. IEEE Trans. Robot. 2015, 31, 1147–1163. [Google Scholar] [CrossRef] [Green Version]
- Osti, F.; Ceruti, A.; Liverani, A.; Caligiana, G. Semi-automatic Design for Disassembly Strategy Planning: An Augmented Reality Approach. Procedia Manuf. 2017, 11, 1481–1488. [Google Scholar] [CrossRef]
- Gattullo, M.; Dammacco, L.; Ruospo, F.; Evangelista, A.; Fiorentino, M.; Schmitt, J.; Uva, A.E. Design preferences on Industrial Augmented Reality: A survey with potential technical writers. In Proceedings of the 2020 IEEE International Symposium on Mixed and Augmented Reality, ISMAR-Adjunct 2020, Recife, Brazil, 9–13 November 2020; pp. 172–177. [Google Scholar] [CrossRef]
- ARCore Official Webste. Available online: https://developers.google.com/ar/ (accessed on 3 January 2018).
- ARKit Official Website. Available online: https://developer.apple.com/arkit/ (accessed on 3 January 2018).
- Meta Official Website. Available online: https://meta-eu.myshopify.com/ (accessed on 7 November 2020).
- Beattie, N.; Horan, B.; McKenzie, S. Taking the LEAP with the Oculus HMD and CAD—Plucking at thin Air? Procedia Technol. 2015, 20, 149–154. [Google Scholar] [CrossRef] [Green Version]
- Agnusdei, G.P.; Elia, V.; Gnoni, M.G. Is Digital Twin Technology Supporting Safety Management? A Bibliometric and Systematic Review. Appl. Sci. 2021, 11, 2767. [Google Scholar] [CrossRef]
- Agnusdei, G.P.; Elia, V.; Gnoni, M.G. A classification proposal of digital twin applications in the safety domain. Comput. Ind. Eng. 2021, 154, 107137. [Google Scholar] [CrossRef]
- De Marchi, L.; Ceruti, A.; Marzani, A.; Liverani, A. Augmented reality to support on-field post-impact maintenance operations on thin structures. J. Sens. 2013, 2013. [Google Scholar] [CrossRef] [Green Version]
- Mourtzis, D.; Siatras, V.; Angelopoulos, J. Real-Time Remote Maintenance Support Based on Augmented Reality (AR). Appl. Sci. 2020, 10, 1855. [Google Scholar] [CrossRef] [Green Version]
- Ceruti, A.; Liverani, A.; Bombardi, T. Augmented vision and interactive monitoring in 3D printing process. Int. J. Interact. Des. Manuf. 2017, 11, 385–395. [Google Scholar] [CrossRef]
- Baron, L.; Braune, A. Case study on applying augmented reality for process supervision in industrial use cases. In Proceedings of the IEEE International Conference on Emerging Technologies and Factory Automation, ETFA, Berlin, Germany, 6–9 September 2016; Volume 2016. [Google Scholar] [CrossRef]
- Di Donato, M.; Fiorentino, M.; Uva, A.E.; Gattullo, M.; Monno, G. Text legibility for projected Augmented Reality on industrial workbenches. Comput. Ind. 2015, 70, 70–78. [Google Scholar] [CrossRef]
- Maly, I.; Sedlacek, D.; Leitao, P. Augmented reality experiments with industrial robot in industry 4.0 environment. In Proceedings of the IEEE International Conference on Industrial Informatics (INDIN), Poitiers, France, 18–21 July 2016; pp. 176–181. [Google Scholar] [CrossRef] [Green Version]
- Fiorentino, M.; Uva, A.E.; Gattullo, M.; Debernardis, S.; Monno, G. Augmented reality on large screen for interactive maintenance instructions. Comput. Ind. 2014, 65, 270–278. [Google Scholar] [CrossRef]
- Hanson, R.; Falkenström, W.; Miettinen, M. Augmented reality as a means of conveying picking information in kit preparation for mixed-model assembly. Comput. Ind. Eng. 2017, 113, 570–575. [Google Scholar] [CrossRef]
- Reif, R.; Günthner, W.A.; Schwerdtfeger, B.; Klinker, G. Evaluation of an augmented reality supported picking system under practical conditions. Comput. Graph. Forum. 2010, 29, 2–12. [Google Scholar] [CrossRef]
- Schwerdtfeger, B.; Reif, R.; Günthner, W.A.; Klinker, G. Pick-by-vision: There is something to pick at the end of the augmented tunnel. Virtual Real. 2011, 15, 213–223. [Google Scholar] [CrossRef]
- Casari, F.A.; Navab, N.; Hruby, L.A.; Kriechling, P.; Nakamura, R.; Tori, R.; de Lourdes dos Santos Nunes, F.; Queiroz, M.C.; Fürnstahl, P.; Farshad, M. Augmented Reality in Orthopedic Surgery Is Emerging from Proof of Concept Towards Clinical Studies: A Literature Review Explaining the Technology and Current State of the Art. Curr. Rev. Musculoskelet. Med. 2021, 14. [Google Scholar] [CrossRef]
- Pratt, P.; Ives, M.; Lawton, G.; Simmons, J.; Radev, N.; Spyropoulou, L.; Amiras, D. Through the HoloLensTM looking glass: Augmented reality for extremity reconstruction surgery using 3D vascular models with perforating vessels. Eur. Radiol. Exp. 2018, 2. [Google Scholar] [CrossRef] [PubMed]
- Tepper, O.M.; Rudy, H.L.; Lefkowitz, A.; Weimer, K.A.; Marks, S.M.; Stern, C.S.; Garfein, E.S. Mixed reality with hololens: Where virtual reality meets augmented reality in the operating room. Plast. Reconstr. Surg. 2017, 140, 1066–1070. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.A.; Ahn, S.; Hoff, W.; Billinghurst, M. Enhancing First-Person View Task Instruction Videos with Augmented Reality Cues. In Proceedings of the 2020 IEEE International Symposium on Mixed and Augmented Reality, ISMAR 2020, Porto de Galinhas, Brazil, 9–13 November 2020; pp. 498–508. [Google Scholar] [CrossRef]
- Wang, Z.; Bai, X.; Zhang, S.; Billinghurst, M.; He, W.; Wang, Y.; Han, D.; Chen, G.; Li, J. The role of user-centered AR instruction in improving novice spatial cognition in a high-precision procedural task. Adv. Eng. Inform. 2021, 47, 101250. [Google Scholar] [CrossRef]
- Magic Leap Official Website. Available online: https://www.magicleap.com/en-us (accessed on 7 January 2021).
- Segovia, D.; Ramírez, H.; Mendoza, M.; Mendoza, M.; Mendoza, E.; González, E. Machining and Dimensional Validation Training Using Augmented Reality for a Lean Process. Procedia Comput. Sci. 2015, 75, 195–204. [Google Scholar] [CrossRef] [Green Version]
- Ferwerda, J.A. Three varieties of realism in computer graphics. Hum. Vis. Electron. Imaging VIII 2003, 5007, 290. [Google Scholar] [CrossRef]
- Vuforia Official Website. Available online: https://library.vuforia.com/articles/Solution/model-target-test-app-user-guide.html (accessed on 1 December 2018).
- Aittala, M. Inverse lighting and photorealistic rendering for augmented reality. Visual Comput. 2010, 26, 669–678. [Google Scholar] [CrossRef]
- Gao, Q.H.; Wan, T.R.; Tang, W.; Chen, L. A stable and accurate marker-less augmented reality registration method. In Proceedings of the 2017 International Conference on Cyberworlds, CW 2017-in Cooperation with: Eurographics Association International Federation for Information Processing ACM SIGGRAPH, Chester, UK, 30 November 2017; Volume 2017, pp. 41–47. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santi, G.M.; Ceruti, A.; Liverani, A.; Osti, F. Augmented Reality in Industry 4.0 and Future Innovation Programs. Technologies 2021, 9, 33. https://doi.org/10.3390/technologies9020033
Santi GM, Ceruti A, Liverani A, Osti F. Augmented Reality in Industry 4.0 and Future Innovation Programs. Technologies. 2021; 9(2):33. https://doi.org/10.3390/technologies9020033
Chicago/Turabian StyleSanti, Gian Maria, Alessandro Ceruti, Alfredo Liverani, and Francesco Osti. 2021. "Augmented Reality in Industry 4.0 and Future Innovation Programs" Technologies 9, no. 2: 33. https://doi.org/10.3390/technologies9020033
APA StyleSanti, G. M., Ceruti, A., Liverani, A., & Osti, F. (2021). Augmented Reality in Industry 4.0 and Future Innovation Programs. Technologies, 9(2), 33. https://doi.org/10.3390/technologies9020033