A Stochastic Finite-Difference Time-Domain (FDTD) Method for Assessing Material and Geometric Uncertainties in Rectangular Objects †
Abstract
:1. Introduction
2. Literature Review of Related Works
3. Methodology
4. Numerical Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- Smith, S.M.; Furse, C. A stochastic FDTD method for statistically varying biological tissues. In Proceedings of the 2011 IEEE International Symposium on Antennas and Propagation (APSURSI), Spokane, WA, USA, 3–8 July 2011; pp. 2274–2277. [Google Scholar] [CrossRef]
- Aiouaz, O.; Lautru, D.; Wong, M.F.; Conil, E.; Gati, A.; Wiart, J.; Hanna, V.F. Uncertainty analysis of the specific absorption rate induced in a phantom using a stochastic spectral collocation method. Ann. Telecommun. 2011, 66, 409–418. [Google Scholar] [CrossRef]
- Hastings, F.D.; Schneider, J.B.; Broschat, S.L. A Monte-Carlo FDTD technique for rough surface scattering. IEEE Trans. Antennas Propag. 1995, 43, 1183–1191. [Google Scholar] [CrossRef]
- Xiu, D.; Karniadakis, G.E. The Wiener–Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 2002, 24, 619–644. [Google Scholar] [CrossRef]
- Smith, S.M.; Furse, C. Stochastic FDTD for analysis of statistical variation in electromagnetic fields. IEEE Trans. Antennas Propag. 2012, 60, 3343–3350. [Google Scholar] [CrossRef]
- Salis, C.; Kantartzis, N.; Zygiridis, T. A stochastic FDTD method for rectangular objects with geometric uncertainties. In Proceedings of the 2019 8th International Conference on Modern Circuits and Systems Technologies (MOCAST), Thessaloniki, Greece, 13–15 May 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Nguyen, B.T.; Furse, C.; Simpson, J.J. A 3-D stochastic FDTD model of electromagnetic wave propagation in magnetized ionosphere plasma. IEEE Trans. Antennas Propag. 2015, 63, 304–313. [Google Scholar] [CrossRef]
- Fang, Y.; Liu, J.; Jiao, Z.; Bai, G.; Xi, X. A 3-D Stochastic FDTD algorithm for wave propagation in isotropic cold plasma medium based on bilinear transform. IEEE Trans. Plasma Sci. 2019, 47, 173–178. [Google Scholar] [CrossRef]
- Salis, C.; Zygiridis, T.; Sarigiannidis, P.; Kantartzis, N. Unconditionally-stable time-domain approach for uncertainty assessment in transmission lines. In Proceedings of the 2016 5th International Conference on Modern Circuits and Systems Technologies (MOCAST), Thessaloniki, Greece, 12–14 May 2016; pp. 1–4. [Google Scholar] [CrossRef]
- Salis, C.; Kantartzis, N.; Zygiridis, T. Stochastic LOD-FDTD method for two-dimensional electromagnetic uncertainty problems. COMPEL 2017, 36, 1442–1456. [Google Scholar] [CrossRef]
- Salis, C.I.; Zygiridis, T.T. An unconditionally stable technique for uncertainty assessment in random media based on the ADI scheme. J. Electromagnet. Wave. 2018, 32, 671–684. [Google Scholar] [CrossRef]
- Salis, C.; Zygiridis, T.; Sarigiannidis, P.; Kantartzis, N. A stochastic FDTD approach for assessing random media uncertainties in polar coordinates. In Proceedings of the 2017 6th International Conference on Modern Circuits and Systems Technologies (MOCAST), Thessaloniki, Greece, 4–6 May 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Masumnia-Bisheh, K.; Forooraghi, K.; Ghaffari-Miab, M. Electromagnetic uncertainty analysis using stochastic FDFD method. IEEE Trans. Antennas Propag. 2019, 67, 3268–3277. [Google Scholar] [CrossRef]
- Liu, J.F.; Lv, H.; Fang, Y.; Zhao, Y.C.; Xi, X.L. A D-H scheme stochastic FDTD method and its SC-PML implementation. IEICE Electron Expr. 2018, 15, 20180606. [Google Scholar] [CrossRef]
- Masumnia-Bisheh, K.; Forooraghi, K.; Ghaffari-Miab, M.; Furse, C.M. Geometrically stochastic FDTD method for uncertainty quantification of EM Fields and SAR in biological tissues. IEEE Trans. Antennas Propag. 2019, 67, 7466–7475. [Google Scholar] [CrossRef]
- Taflove, A.; Hagness, S.C. Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed.; Artech House: Norwood, MA, USA, 2005. [Google Scholar]
- Mur, G. Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations. IEEE Trans. Electromagn. Compat. 1981, EMC-23, 377–382. [Google Scholar] [CrossRef]
- Berenger, J.P. A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 1994, 114, 185–200. [Google Scholar] [CrossRef]
- Bisheh, K.M.; Gatabi, B.Z.; Andargoli, S.M.H. Stochastic FDTD accuracy improvement through correlation coefficient estimation. Wave Random Complex 2015, 25, 154–169. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salis, C.; Kantartzis, N.; Zygiridis, T. A Stochastic Finite-Difference Time-Domain (FDTD) Method for Assessing Material and Geometric Uncertainties in Rectangular Objects. Technologies 2020, 8, 12. https://doi.org/10.3390/technologies8010012
Salis C, Kantartzis N, Zygiridis T. A Stochastic Finite-Difference Time-Domain (FDTD) Method for Assessing Material and Geometric Uncertainties in Rectangular Objects. Technologies. 2020; 8(1):12. https://doi.org/10.3390/technologies8010012
Chicago/Turabian StyleSalis, Christos, Nikolaos Kantartzis, and Theodoros Zygiridis. 2020. "A Stochastic Finite-Difference Time-Domain (FDTD) Method for Assessing Material and Geometric Uncertainties in Rectangular Objects" Technologies 8, no. 1: 12. https://doi.org/10.3390/technologies8010012