Physicochemical Properties of Gac (Momordica cochinchinensis (Lour.) Spreng) Seeds and Their Oil Extracted by Supercritical Carbon Dioxide and Soxhlet Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Chemicals
2.1.2. Gac Seed Kernels
2.2. Proximate Analysis of the Gac Seed Kernels
2.3. Preparation of Gac Seed Kernel Powder for Oil Extraction
2.4. Methods for the Extraction of Gac Seed Oil
2.4.1. SC-CO2 Extraction
2.4.2. Soxhlet Extraction
2.5. Oil Yield Calculation
2.6. Methods for Characterisation of Oils
2.6.1. Determination of Physicochemical Indices
2.6.2. Colour Measurement
2.6.3. Determination of Antioxidant Activity
2.7. Statistical Analyses
3. Results and Discussion
3.1. Characteristics of Gac Seeds
3.2. Oil Yield
3.3. Characterisation of the Extracted Oils
3.4. Colour Characterisation
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tran, X.T.; Parks, S.E.; Roach, P.D.; Golding, J.B.; Nguyen, M.H. Effects of maturity on physicochemical properties of Gac fruit (Momordica cochinchinensis Spreng.). Food Sci. Nutr. 2016, 4, 305–314. [Google Scholar] [CrossRef] [PubMed]
- Kha, T.C.; Nguyen, M.H.; Roach, P.D.; Parks, S.E.; Stathopoulos, C. Gac fruit: Nutrient and phytochemical composition, and options for processing. Food Rev. Int. 2013, 29, 92–106. [Google Scholar] [CrossRef]
- Chuyen, H.V.; Nguyen, M.H.; Roach, P.D.; Golding, J.B.; Parks, S.E. Gac fruit (Momordica cochinchinensis Spreng): A rich source of bioactive compounds and its potential health benefits. Int. J. Food Sci. Technol. 2015, 50, 567–577. [Google Scholar] [CrossRef]
- Masayo, I.; Hikaru, O.; Tatsuo, Y.; Masako, T.; Yoshie, R.; Shuji, H.; Mihashi, K.; Higuchi, R. Studies on the constituents of Momordica cochinchinensis Spreng. I. Isolation and characterization of the seed saponins, Momordica saponins I and II. Chem. Pharm. Bull. 1985, 33, 464–478. [Google Scholar] [CrossRef]
- Behera, T.; John, K.J.; Bharathi, L.; Karuppaiyan, R. Wild Crop Relatives: Genomic and Breeding Resources: Vegetables. In Wild Crop Relatives: Genomic and Breeding Resources; Kole, C., Ed.; Springer: New York, NY, USA, 2011; pp. 217–246. [Google Scholar]
- Shang, H. Studies on Fatty Acid Composition in the Oil of Momordica cochinchinensis. Chin. Tradit. Herbal Drugs 2000, 31, 727–728. [Google Scholar]
- Matthaus, B.; Vosmann, K.; Pham, L.Q.; Aitzetmüller, K. FA and tocopherol composition of Vietnamese oilseeds. J. Am. Oil Chem. Soc. 2003, 80, 1013–1020. [Google Scholar] [CrossRef]
- Q3C—Tables and List Guidance for Industry. Available online: https://www.fda.gov/downloads/drugs/guidances/ucm073395.pdf (accessed on 10 October 2012).
- Stahl, E.; Schuetz, E.; Mangold, H.K. Extraction of seed oils with liquid and supercritical carbon dioxide. J. Agric. Food Chem. 1980, 28, 1153–1157. [Google Scholar] [CrossRef]
- Venturi, F.; Sanmartin, C.; Taglieri, I.; Andrich, G.; Zinnai, A. A simplified method to estimate Sc-CO2 extraction of bioactive compounds from different matrices: Chili pepper vs. tomato by-products. Appl. Sci. 2017, 7, 361. [Google Scholar] [CrossRef]
- Anh, V.L.; Paul, D.R.; Minh, H.N.; Sophie, E.P. Optimisation of process parameters for supercritical carbon dioxide extraction of oil from Gac seed kernel powder. Adv. J. Food Sci. Technol. 2017, 13, 170–177. [Google Scholar] [CrossRef]
- Firestone, D. Official Methods and Recommended Practices of the American Oil Chemists Society, 5th ed.; AOCS Press: Champaign, IL, USA, 1998; ISBN 0935315977. [Google Scholar]
- Da Porto, C.; Porretto, E.; Decorti, D. Comparison of ultrasound-assisted extraction with conventional extraction methods of oil and polyphenols from grape (Vitis vinifera L.) seeds. Ultrason. Sonochem. 2013, 20, 1076–1080. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.Q. A chromametric method for the rapid assessment of deep frying oil quality. J. Sci. Food Agric. 2003, 83, 1293–1296. [Google Scholar] [CrossRef]
- Tan, S.P.; Stathopoulos, C.; Parks, S.; Roach, P. An optimised aqueous extract of phenolic compounds from bitter melon with high antioxidant capacity. Antioxidants 2014, 3, 814–829. [Google Scholar] [CrossRef] [PubMed]
- Christodouleas, D.C.; Fotakis, C.; Nikokavoura, A.; Papadopoulos, K.; Calokerinos, A.C. Modified DPPH and ABTS assays to assess the antioxidant profile of untreated oils. Food Anal. Methods 2015, 8, 1294–1302. [Google Scholar] [CrossRef]
- Ishida, B.K.; Turner, C.; Chapman, M.H.; McKeon, T.A. Fatty acid and carotenoid composition of Gac (Momordica cochinchinensis Spreng) fruit. J. Agric. Food Chem. 2004, 52, 274–279. [Google Scholar] [CrossRef] [PubMed]
- Ezeagu, I.; Maziya-Dixon, B.; Tarawali, G. Seed characteristics and nutrient and antinutrient composition of 12 Mucuna accessions from Nigeria. Trop. Subtrop. Agroecosyst. 2003, 1, 129–139. [Google Scholar]
- Gupta, R.; Das, S. Fracture resistance of sunflower seed and kernel to compressive loading. J. Food Eng. 2000, 46, 1–8. [Google Scholar] [CrossRef]
- Applewhite, T.H. Proceedings of the World Conference on Oilseed Technology And Utilization; The American Oil Chemists Society: Urbana, IL, USA, 1993; ISBN 0935315454. [Google Scholar]
- Saiedirad, M.; Tabatabaeefar, A.; Borghei, A.; Mirsalehi, M.; Badii, F.; Varnamkhasti, M.G. Effects of moisture content, seed size, loading rate and seed orientation on force and energy required for fracturing cumin seed (Cuminum cyminum Linn.) under quasi-static loading. J. Food Eng. 2008, 86, 565–572. [Google Scholar] [CrossRef]
- Brooker, D.B.; Bakker-Arkema, F.W.; Hall, C.W. Drying and Storage of Grains and Oilseeds; Springer Science and Business Media: Berlin/Heidelberg, Germany, 1992; ISBN 0442205155. [Google Scholar]
- Olaofe, O.; Adeyemi, F.; Adediran, G.O. Amino acid and mineral compositions and functional properties of some oilseeds. J. Agric. Food Chem. 1994, 42, 878–881. [Google Scholar] [CrossRef]
- Frandsen, G.I.; Mundy, J.; Tzen, J.T. Oil bodies and their associated proteins, oleosin and caleosin. Physiol. Plant 2001, 112, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Stahl, E.; Quirin, K.W.; Blagrove, R.J. Extraction of seed oils with supercritical carbon dioxide: Effect on residual proteins. J. Agric. Food Chem. 1984, 32, 938–940. [Google Scholar] [CrossRef]
- Wong, R.C.; Fong, W.; Ng, T. Multiple trypsin inhibitors from Momordica cochinchinensis seeds, the Chinese drug mubiezhi. Peptides 2004, 25, 163–169. [Google Scholar] [CrossRef] [PubMed]
- Makkar, H.; Becker, K.; Schmook, B. Edible provenances of Jatropha curcas from Quintana Roo state of Mexico and effect of roasting on antinutrient and toxic factors in seeds. Plant Foods Hum. Nutr. 1998, 52, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Raheja, R.; Batta, S.; Ahuja, K.; Labana, K.; Singh, M. Comparison of oil content and fatty acid composition of peanut genotypes differing in growth habit. Plant Foods Hum. Nutr. 1987, 37, 103–108. [Google Scholar] [CrossRef]
- Zheljazkov, V.D.; Vick, B.A.; Ebelhar, M.W.; Buehring, N.; Baldwin, B.S.; Astatkie, T.; Miller, J.F. Yield, oil content, and composition of sunflower grown at multiple locations in Mississippi. Agron. J. 2008, 100, 635–642. [Google Scholar] [CrossRef]
- Were, B.A.; Onkware, A.O.; Gudu, S.; Welander, M.; Carlsson, A.S. Seed oil content and fatty acid composition in East African sesame (Sesamum indicum L.) accessions evaluated over 3 years. Field Crops. Res. 2006, 97, 254–260. [Google Scholar] [CrossRef]
- Gunstone, F. The Chemistry of Oils and Fats: Sources, Composition, Properties and Uses; John Wiley & Sons: Hoboken, NJ, USA, 2009; ISBN 1405150025. [Google Scholar]
- Zhao, G.; Ren, Y.; Ma, H. Extraction and characterization of radish seed oils using different methods. Trop. J. Pharm. Res. 2017, 16, 165–169. [Google Scholar] [CrossRef]
- Gómez, A.M.; López, C.P.; de la Ossa, E.M. Recovery of grape seed oil by liquid and supercritical carbon dioxide extraction: A comparison with conventional solvent extraction. Chem. Eng. J. Biochem. Eng. J. 1996, 61, 227–231. [Google Scholar] [CrossRef]
- Noureddini, H.; Teoh, B.; Clements, L.D. Densities of vegetable oils and fatty acids. J. Am. Oil Chem. Soc. 1992, 69, 1184–1188. [Google Scholar] [CrossRef] [Green Version]
- Gunstone, F.D. Rapeseed and Canola Oil: Production, Processing, Properties and Uses; CRC Press: Boca Raton, FL, USA, 2004; ISBN 0849323649. [Google Scholar]
- Knothe, G. Structure indices in FA chemistry. How relevant is the iodine value? J. Am. Oil Chem. Soc. 2002, 79, 847–854. [Google Scholar] [CrossRef]
- Kyriakidis, N.B.; Katsiloulis, T. Calculation of iodine value from measurements of fatty acid methyl esters of some oils: Comparison with the relevant American oil chemists society method. J. Am. Oil Chem. Soc. 2000, 77, 1235–1238. [Google Scholar] [CrossRef]
- Codex, A.C. Codex Alimentarius: Fats, Oils and Related Products; Food and Agriculture Organisation: Quebec, QC, Canada, 2001; ISBN 9251046824. [Google Scholar]
- Koh, L.P.; Wilcove, D.S. Cashing in palm oil for conservation. Nature 2007, 448, 993. [Google Scholar] [CrossRef] [PubMed]
- Mekhilef, S.; Siga, S.; Saidur, R. A review on palm oil biodiesel as a source of renewable fuel. Renew. Sust. Energy Rev. 2011, 15, 1937–1949. [Google Scholar] [CrossRef]
- Mba, O.I.; Dumont, M.-J.; Ngadi, M. Palm oil: Processing, characterization and utilization in the food industry—A review. Food Biosci. 2015, 10, 26–41. [Google Scholar] [CrossRef]
- Patterson, H.B.W. Quality and Control. In Hydrogenation of Fats and Oils: Theory and Practice, 2nd ed.; List, G.R., King, J.W., Eds.; Elsevier Inc.: Urbana, IL, USA, 2011; pp. 329–350. [Google Scholar]
- Kumar, A.; Sharma, S. An evaluation of multipurpose oil seed crop for industrial uses (Jatropha curcas L.): A review. Ind. Crops. Prod. 2008, 28, 1–10. [Google Scholar] [CrossRef]
- Friedrich, J.; Pryde, E. Supercritical CO2 extraction of lipid-bearing materials and characterization of the products. J. Am. Oil Chem. Soc. 1984, 61, 223–228. [Google Scholar] [CrossRef]
- Paul, B.; Munshi, M.; Ahmed, M.; Saha, G.; Roy, S. The fatty acid composition and properties of oil extracted from fresh rhizomes of turmeric (Curcuma longa Linn.) cultivars of Bangladesh. Bangladesh J. Sci. Ind. Res. 2011, 46, 127–132. [Google Scholar] [CrossRef]
- Hamm, W.; Hamilton, R.J.; Calliauw, G. Edible Oil Processing; John Wiley & Sons: Hoboken, NJ, USA, 2013; ISBN 1118541782. [Google Scholar]
- Fontanel, D. Unsaponifiable Matter in Plant Seed Oils; Springer: New York, NY, USA, 2013; ISBN 3642357091. [Google Scholar]
- Bailey, A.E. Industrial Oil and Fat Products; Interscience Publishers, Inc.: New York, NY, USA, 1945; ISBN 9780471678496. [Google Scholar]
- Kan, L.; Hu, Q.; Chao, Z.; Song, X.; Cao, X. Chemical constituents of unsaponifiable matter from seed oil of Momordica cochinchinensis. China J. Chin. Mater. Med. 2006, 31, 1441–1444. [Google Scholar]
- Shan, M.D.; Hu, L.H.; Chen, Z.L. A new multiflorane triterpenoid ester from Momordica cochinchinensis Spreng. Nat. Prod. Lett. 2001, 15, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.Y.; Liu, X.; Yang, F.; Yu, Y.Q. Structural characterization and identification of five triterpenoid saponins isolated from Momordica cochinchinensis extracts by liquid chromatography/tandem mass spectrometry. Int. J. Mass Spectrom. 2012, 328, 43–66. [Google Scholar] [CrossRef]
- Le, A.V.; Parks, S.E.; Nguyen, M.H.; Roach, P.D. Optimisation of the microwave-assisted ethanol extraction of saponins from Gac (Momordica cochinchinensis Spreng) seeds. Medicines 2018, 5, 70. [Google Scholar] [CrossRef] [PubMed]
- Jung, K.; Chin, Y.-W.; Yoon, K.D.; Chae, H.-S.; Kim, C.Y.; Yoo, H.; Kim, J. Anti-inflammatory properties of a triterpenoidal glycoside from Momordica cochinchinensis in LPS-stimulated macrophages. Immunopharmacol. Immunotoxicol. 2013, 35, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Akihisa, T.; Tokuda, H.; Ichiishi, E.; Mukainaka, T.; Toriumi, M.; Ukiya, M.; Yasukawa, K.; Nishino, H. Anti-tumor promoting effects of multiflorane-type triterpenoids and cytotoxic activity of karounidiol against human cancer cell lines. Cancer Lett. 2001, 173, 9–14. [Google Scholar] [CrossRef]
- Yasukawa, K.; Akihisa, T.; Tamura, T.; Takido, M. Inhibitory effect of karounidiol on 12-O-tetradecanoylphorbol-13-acetate-induced tumor promotion. Biol. Pharm. Bull. 1994, 17, 460–462. [Google Scholar] [CrossRef] [PubMed]
- Firestone, D. Physical and Chemical Characteristics of Oils, Fats, and Waxes; AOCS press: Urbana, IL, USA, 2013; ISBN 0983079196. [Google Scholar]
- Mowlah, G.; Sheikh, N.M.; Kamal, A.S.M. A Hand Book on Edible Oils and Fats, with Special Reference to Bangladesh, 1st ed.; University of Dhaka: Dhaka, Bangladesh, 1990; pp. 9–172. [Google Scholar]
- Kamal-Eldin, A.; Appelqvist, L.Å. The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids 1996, 31, 671–701. [Google Scholar] [CrossRef] [PubMed]
- Uluata, S.; Özdemir, N. Antioxidant activities and oxidative stabilities of some unconventional oilseeds. J. Am. Oil Chem. Soc. 2012, 89, 551–559. [Google Scholar] [CrossRef] [PubMed]
- Kraujalyte, V.; Andjelkovic, M.; Verhé, R.; Venskutonis, P.R. Determination of volatiles, tocopherols and colour changes in aromatised oils with marjoram. FOODBALT-2011 2011, 2011, 84. [Google Scholar] [CrossRef]
- Vernon, L.P.; Seely, G.R. The Chlorophylls; Academic Press: Cambridge, MA, USA, 2014; ISBN 1483267725. [Google Scholar]
- Boutaoui, N.; Zaiter, L.; Benayache, F.; Benayache, S.; Carradori, S.; Cesa, S.; Giusti, A.M.; Campestre, C.; Menghini, L.; Innosa, D.; et al. Qualitative and quantitative phytochemical analysis of different extracts from Thymus algeriensis aerial parts. Molecules 2018, 23, 463. [Google Scholar] [CrossRef] [PubMed]
- Boutaoui, N.; Zaiter, L.; Benayache, F.; Benayache, S.; Cacciagrano, F.; Cesa, S.; Secci, D.; Carradori, S.; Giusti, A.M.; Campestre, C.; et al. Atriplex mollis Desf. aerial parts: Extraction procedures, secondary metabolites and color analysis. Molecules 2018, 23, 1962. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Component | Mean ± SD |
---|---|---|
Average seed weight (g) † | Fresh seeds | 5.07 ± 0.19 a |
Average seed weight (g) † | Dried seeds | 3.15 ± 0.12 b |
Average kernel weight (g) † | Dried kernels | 2.09 ± 0.33 c |
Moisture (%) Moisture Analyser ‡ | Dried kernels | 3.34 ± 0.10 z |
Moisture (%) AOCS: Ab 2-49 ‡ | Dried kernels | 3.47 ± 0.11 z |
Crude protein (%) ‡ | Dried kernels | 17.33 ± 0.47 y |
Oil content (%) ‡ | Dried kernels | 53.02 ± 1.27 x |
Indices | Method Standard [9] | Unit | Mean ± SD | Standards for Vegetable Oil [38] | |
---|---|---|---|---|---|
SC-CO2 | Soxhlet * | ||||
Yield | % (m/m) | 34.1 ± 0.8 b | 53.0 ± 2.3 a | NA | |
Specific gravity | Cc 10a-25 | 25 °C/water at 20 °C | 0.895 ± 0.001 a | 0.885 ± 0.001 b | 0.881–0.927 |
Refractive index at 40 °C | Cc 7-25 | 1.455 ± 0.002 b | 1.462 ± 0.002 a | 1.448–1.477 | |
Iodine value (Wijs) | Cd 1-25 | g I2/100 g oil | 54.15 ± 0.62 a | 51.66 ± 0.55 b | 6–135, specific to oil |
Saponification value | Cd 3-35 | mg KOH/g oil | 189.4 ± 2.1 a | 167.2 ± 4.6 b | 168–265, specific to oil |
Unsaponifiable matter | Ca 6a-40 | g/kg | 33.2 ± 1.5 b | 52.6 ± 2.4 a | ≤28 |
Slip melting point | Cc 3-25 | °C | 24.8 ± 0.30 b | 26.8 ± 0.65 a | NA |
Free fatty acids | Ca 5-40 | mg KOH/g oil | 1.74 ± 0.12 b | 2.47 ± 0.09 a | ≤10 |
Peroxide value | Cd 8-53 | meq O2/kg oil | 0.12 ± 0.02 b | 1.80 ± 0.01 a | ≤15 |
Moist and volatile matter | Ca 2c-25 | % (m/m) | 0.08 ± 0.01 b | 0.12 ± 0.01 a | ≤0.2 |
Insoluble impurities | Ca 3-46 | % (m/m) | Not detected | 0.04 ± 0.01 | ≤0.05 |
Antioxidant activity | |||||
DPPH | µmol TE/g oil | 52.69 ± 0.06 a | 42.98 ± 0.02 b | NA | |
ABTS | µmol TE/g oil | 2.10 ± 0.12 a | 1.52 ± 0.06 b | NA |
Extraction Method | Colour | Colour Measurements | |||
---|---|---|---|---|---|
L* | a* | b* | |||
SC-CO2 | Light yellow | ||||
Soxhlet | Dark greenish brown |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
V. Le, A.; E. Parks, S.; H. Nguyen, M.; D. Roach, P. Physicochemical Properties of Gac (Momordica cochinchinensis (Lour.) Spreng) Seeds and Their Oil Extracted by Supercritical Carbon Dioxide and Soxhlet Methods. Technologies 2018, 6, 94. https://doi.org/10.3390/technologies6040094
V. Le A, E. Parks S, H. Nguyen M, D. Roach P. Physicochemical Properties of Gac (Momordica cochinchinensis (Lour.) Spreng) Seeds and Their Oil Extracted by Supercritical Carbon Dioxide and Soxhlet Methods. Technologies. 2018; 6(4):94. https://doi.org/10.3390/technologies6040094
Chicago/Turabian StyleV. Le, Anh, Sophie E. Parks, Minh H. Nguyen, and Paul D. Roach. 2018. "Physicochemical Properties of Gac (Momordica cochinchinensis (Lour.) Spreng) Seeds and Their Oil Extracted by Supercritical Carbon Dioxide and Soxhlet Methods" Technologies 6, no. 4: 94. https://doi.org/10.3390/technologies6040094
APA StyleV. Le, A., E. Parks, S., H. Nguyen, M., & D. Roach, P. (2018). Physicochemical Properties of Gac (Momordica cochinchinensis (Lour.) Spreng) Seeds and Their Oil Extracted by Supercritical Carbon Dioxide and Soxhlet Methods. Technologies, 6(4), 94. https://doi.org/10.3390/technologies6040094