# Accelerated Detector Response Function in Squeezed Vacuum

## Abstract

**:**

## 1. Introduction

## 2. Simple Quantum Field Theory in Squeezed Vacuum

## 3. Accelerated Frames

## 4. Detector Response Function

- When the detector’s acceleration is ($a\le {\xi}^{\prime}$) The poles all lie in the upper half, therefore the integral vanishes and thereby the transition probability is vanishing . Hence, particle creation is not observed.
- Moreover, for ($a>{\xi}^{\prime}$ ) The poles lie in the lower half, therefore we can sum the resides and have the following transition probability:$$P={g}^{2}\sum _{E}\left(\frac{|\langle E|\widehat{\mu}|{E}_{0}{\rangle |}^{2}}{{e}^{2\pi \varpi (E-{E}_{0})}-1}\right).$$

## 5. Discussion

## 6. Conclusions

## Acknowledgments

## Conflicts of Interest

## References

- Barton, G.; Scharnhorst, K. QED between parallel mirrors: Light signals faster than c, or amplified by the vacuum. J. Phys. A Math. Gen.
**1993**, 26, 2037. [Google Scholar] [CrossRef] - Scharnhorst, K. The velocities of light in modified QED vacua. Phys. Lett. B
**1998**, 7, 700–709. [Google Scholar] [CrossRef] - Barton, G. Faster-than-c light between parallel mirrors The Scharnhorst effect rederived. Phys. Lett. B
**1990**, 237, 559–562. [Google Scholar] [CrossRef] - Milonni, P.W.; Shih, M.-L. Source theory of the Casimir force. Phys. Rev. A
**1992**, 45, 4241–4253. [Google Scholar] [CrossRef] [PubMed] - Al Saleh, S. Geometric Backreaction of Modified Quantum Vacua and Diffeomorphism Covariance. J. Mod. Phys.
**2016**, 3, 312–319. [Google Scholar] [CrossRef] - Birrell, N.D.; Davies, P.C.W. Quantum Fields in Curved Space; Number 7; Cambridge University Press: Cambridge, UK, 1984. [Google Scholar]
- Jennings, D. On the response of a particle detector in anti-de Sitter spacetime. Class. Quantum Gravity
**2010**, 27, 205005. [Google Scholar] [CrossRef] - Barut, A.O. De Sitter and Conformal Groups and Their Applications; Colorado Associated University Press: Denver, Colorado, US, 1971; Volume 13. [Google Scholar]
- Cotaescu, I.I. Accelerated frames in de Sitter spacetime. arXiv, 2014; arXiv:1403.3074. [Google Scholar]
- Cotăescu, I.I. Covariant representations of the de Sitter isometry group. Mod. Phys. Lett. A
**2013**, 28, 1350033. [Google Scholar] [CrossRef] - Parikh, M.K. New coordinates for de Sitter space and de Sitter radiation. Phys. Lett. B
**2002**, 546, 189–195. [Google Scholar] [CrossRef] - Hawking, S.W.; Page, D.N. Thermodynamics of black holes in anti-de Sitter space. Commun. Math. Phys.
**1983**, 87, 577–588. [Google Scholar] [CrossRef]

**Figure 1.**Rindler wedge with the dashed lines resembles the “modifeid” horizons due to modifying the vacuum, and immersing the new geometry in flat spacetime. The new horizons are spread by an angle ${tan}^{-1}\frac{b}{3}$ each, corresponding to a superluminal photon propagation.

© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Alsaleh, S. Accelerated Detector Response Function in Squeezed Vacuum. *Technologies* **2017**, *5*, 17.
https://doi.org/10.3390/technologies5020017

**AMA Style**

Alsaleh S. Accelerated Detector Response Function in Squeezed Vacuum. *Technologies*. 2017; 5(2):17.
https://doi.org/10.3390/technologies5020017

**Chicago/Turabian Style**

Alsaleh, Salwa. 2017. "Accelerated Detector Response Function in Squeezed Vacuum" *Technologies* 5, no. 2: 17.
https://doi.org/10.3390/technologies5020017