Bright Single-Photon Sources Based on Anti-Reflection Coated Deterministic Quantum Dot Microlenses
Abstract
:1. Introduction
2. Device Fabrication and Experimental Setup
3. Methods and Materials
3.1. Deposition of Ta2O5 onto the Microlens Surface
3.2. µPL Spectroscopy on AR-Coated Microlenses
3.3. Simulation of Coated Microlenses Using Finite-Element Methods
3.4. PEE of AR-Coated Deterministic QD Microlenses with DBR
3.5. Triggered Single Photons from AR-Coated Deterministic QD Microlenses
4. Conclusion
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kiraz, A.; Atatüre, M.; Imamoğlu, A. Quantum-dot single photon sources: Prospects for applications in linear quantum-information processing. Phys. Rev. A 2004, 69, 032305. [Google Scholar]
- Santori, C.; Fattal, D.; Vučkovic, J.; Solomon, G.S.; Yamamoto, Y. Indistinguishable photons from a single photon device. Nature 2002, 419, 594–598. [Google Scholar] [PubMed]
- Akopian, N.; Lindner, N.H.; Poem, E.; Berlatzky, Y.; Avron, J.; Gershoni, D.; Gerardot, B.D.; Petroff, P.M. Entangled Photon Pairs from Semiconductor Quantum Dots. Phys. Rev. Lett. 2006, 96, 130501. [Google Scholar] [CrossRef] [PubMed]
- Gisin, N.; Thew, R. Quantum communication. Nat. Photonics 2007, 1, 165–171. [Google Scholar] [CrossRef]
- He, Y.-M.; He, Y.; Wei, Y.-J.; Wu, D.; Atatüre, M.; Schneider, C.; Hoefling, S.; Kamp, M.; Lu, C.-Y.; Pan, J.-W. On-demand semiconductor single-photon source with near-unity indistinguishability. Nat. Nano 2013, 8, 217–220. [Google Scholar] [CrossRef] [PubMed]
- Trotta, R.; Wildmann, J.S.; Zallo, E.; Schmidt, O.G.; Rastelli, A. Highly Entangled Photons from Hybrid Piezoelectric-Semiconductor Quantum Dot Devices. Nano Lett. 2014, 14, 3439–3444. [Google Scholar] [CrossRef] [PubMed]
- Gérard, J.M.; Sermage, B.; Gayral, B.; Legrand, B.; Costard, E.; Thierry-Mieg, V. Enhanced Spontaneous Emission by Quantum Boxes in a Monolithic Optical Microcavity. Phys. Rev. Lett. 1998, 81, 1110–1113. [Google Scholar] [CrossRef]
- Kiraz, A.; Michler, P.; Becher, C.; Gayral, B.; Imamoğlu, A.; Zhang, L.; Hu, E.; Schoenfeld, W.V.; Petroff, P.M. Cavity-quantum electrodynamics using a single InAs quantum dot in a microdisk structure. Appl. Phys. Lett. 2001, 78, 3932–3934. [Google Scholar] [CrossRef]
- Ellis, D.J.P.; Bennett, A.J.; Dewhurst, S.J.; Nicoll, C.A.; Ritchie, D.A.; Shields, A.J. Cavity-enhanced radiative emission rate in a single-photon-emitting diode operating at 0.5 GHz. New J. Phys. 2008, 10, 043035. [Google Scholar] [CrossRef]
- Dousse, A.; Suffczyński, J.; Beveratos, A.; Krebs, O.; Lemaître, A.; Sagnes, I.; Bloch, J.; Voisin, P.; Senellart, P. Ultrabright source of entangled photon pairs. Nature 2010, 466, 217–220. [Google Scholar] [CrossRef] [PubMed]
- Heindel, T.; Schneider, C.; Lermer, M.; Kwon, S.H.; Braun, T.; Reitzenstein, S.; Höfling, S.; Kamp, M.; Forchel, A. Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency. Appl. Phys. Lett. 2010, 96, 011107. [Google Scholar] [CrossRef]
- Rayleigh, J.S. On the reflection of vibrations at the confines of two media between which the transition is gradual. Proc. London Math. Soc. 1880, 11, 51–56. [Google Scholar] [CrossRef]
- Kuo, M.L.; Poxson, D.J.; Kim, Y.S.; Mont, F.W.; Kim, J.K.; Schubert, E.F.; Lin, S.Y. Realization of a near-perfect antireflection coating for silicon solar energy utilization. Opt. Lett. 2008, 33, 2527–2529. [Google Scholar] [CrossRef] [PubMed]
- An, S.J.; Chae, J.H.; Yi, G.-C.; Park, G.H. Enhanced light output of GaN-based light-emitting diodes with ZnO nanorod arrays. Appl. Phys. Lett. 2008, 92, 121108. [Google Scholar] [CrossRef]
- Rosfjord, K.; Yang, J.; Dauler, E.; Kerman, A.; Anant, V.; Voronov, B.; Gol’tsman, G.; Berggren, K. Nanowire single-photon detector with an integrated optical cavity and anti-reflection coating. Opt. Express 2006, 14, 527–534. [Google Scholar] [CrossRef]
- Yeung, T.K.; le Sage, D.; Pham, L.M.; Stanwix, P.L.; Walsworth, R.L. Anti-reflection coating for nitrogen-vacancy optical measurements in diamond. Appl. Phys. Lett. 2012, 100, 251111. [Google Scholar] [CrossRef]
- Gschrey, M.; Schmidt, R.; Schulze, J.-H.; Strittmatter, A.; Rodt, S.; Reitzenstein, S. Resolution and alignment accuracy of low-temperature in situ electron beam lithography for nanophotonic device fabrication. J. Vac. Sci. Technol. B 2015, 33, 021603. [Google Scholar] [CrossRef]
- Schlehahn, A.; Gaafar, M.; Vaupel, M.; Gschrey, M.; Schnauber, P.; Schulze, J.-H.; Rodt, S.; Strittmatter, A.; Stolz, W.; Rahimi-Iman, A.; et al. Single-photon emission at a rate of 143 MHz from a deterministic quantum-dot microlens triggered by a mode-locked vertical-external-cavity surface-emitting laser. Appl. Phys. Lett. 2015, 107, 041105. [Google Scholar] [CrossRef]
- Gschrey, M.; Thoma, A.; Schnauber, P.; Seifried, M.; Schmidt, R.; Wohlfeil, B.; Krüger, L.; Schulze, J.-H.; Heindel, T.; Burger, S.; et al. Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography. Nat. Commun. 2015, 6, 7662. [Google Scholar] [CrossRef] [PubMed]
- Young, R.J.; Stevenson, R.M.; Atkinson, P.; Cooper, K.; Ritchie, D.A.; Shields, A.J. Improved fidelity of triggered entangled photons from single quantum dots. New. J. Phys. 2006, 8, 29. [Google Scholar] [CrossRef]
- Gschrey, M.; Gericke, F.; Schüßler, A.; Schmidt, R.; Schulze, J.-H.; Heindel, T.; Rodt, S.; Strittmatter, A.; Reitzenstein, S. In situ electron-beam lithography of deterministic single-quantum-dot mesa-structures using low-temperature cathodoluminescence spectroscopy. Appl. Phys. Lett. 2013, 102, 251113. [Google Scholar] [CrossRef]
- Gschrey, M.; Schmidt, R.; Kaganskiy, A.; Rodt, S.; Reitzenstein, S. Study of high-resolution electron-beam resists for applications in low-temperature lithography. J. Vac. Sci. Technol. B 2014, 32, 061601. [Google Scholar] [CrossRef]
- Barnes, W.L.; Björk, G.; Gérard, J.M.; Jonsson, P.; Wasey, J.A.E.; Worthing, P.T.; Zwiller, V. Solid-state single photon sources: Light collection strategies. Eur. Phys. J. D 2002, 18, 197–210. [Google Scholar] [CrossRef]
- Raut, H.K.; Ganesh, V.A.; Nair, A.S.; Ramakrishna, S. Anti-reflective coatings: A critical in-depth review. Energy Environ. Sci. 2011, 4, 3779–3804. [Google Scholar] [CrossRef]
- JCMwave. JCMwave-Complete Finite Element Technology for Optical Simulations. Available online: http://www.jcmwave.com (accessed on 3 September 2015).
- Huang, Y.-F.; Chattopadhyay, S.; Jen, Y.-J.; Peng, C.-Y.; Liu, T.-A.; Hsu, Y.-K.; Pan, C.-L.; Lo, H.-C.; Hsu, C.-H.; Chang, Y.-H.; et al. Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures. Nat. Nano 2007, 2, 770–774. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schnauber, P.; Thoma, A.; Heine, C.V.; Schlehahn, A.; Gantz, L.; Gschrey, M.; Schmidt, R.; Hopfmann, C.; Wohlfeil, B.; Schulze, J.-H.; Strittmatter, A.; Heindel, T.; Rodt, S.; Woggon, U.; Gershoni, D.; Reitzenstein, S. Bright Single-Photon Sources Based on Anti-Reflection Coated Deterministic Quantum Dot Microlenses. Technologies 2016, 4, 1. https://doi.org/10.3390/technologies4010001
Schnauber P, Thoma A, Heine CV, Schlehahn A, Gantz L, Gschrey M, Schmidt R, Hopfmann C, Wohlfeil B, Schulze J-H, Strittmatter A, Heindel T, Rodt S, Woggon U, Gershoni D, Reitzenstein S. Bright Single-Photon Sources Based on Anti-Reflection Coated Deterministic Quantum Dot Microlenses. Technologies. 2016; 4(1):1. https://doi.org/10.3390/technologies4010001
Chicago/Turabian StyleSchnauber, Peter, Alexander Thoma, Christoph V. Heine, Alexander Schlehahn, Liron Gantz, Manuel Gschrey, Ronny Schmidt, Caspar Hopfmann, Benjamin Wohlfeil, Jan-Hindrick Schulze, André Strittmatter, Tobias Heindel, Sven Rodt, Ulrike Woggon, David Gershoni, and Stephan Reitzenstein. 2016. "Bright Single-Photon Sources Based on Anti-Reflection Coated Deterministic Quantum Dot Microlenses" Technologies 4, no. 1: 1. https://doi.org/10.3390/technologies4010001