Microwave-Assisted Preparation of High Entropy Alloys
Abstract
:1. Introduction
2. Experimental Section
Element | Purity (%) | Particle Size (µm) | At Radius (pm) | Cell |
---|---|---|---|---|
Fe | 97.00 | <44 | 156 | BCC |
Co | 99.80 | <2 | 152 | HCP |
Ni | 99.70 | <5 | 149 | FCC |
Cu | 99.00 | <10 | 145 | FCC |
Ti | 99.90 | <44 | 176 | HCP |
Cr | 99.00 | <44 | 166 | BCC |
Al | 99.00 | <75 | 118 | FCC |
- FeCoNiCuAl
- FeCrNiTiAl
- FeCoCrNiAl2.5
3. Results and Discussion
3.1. Heating and Cooling Curves
3.2. Samples Characterization
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Tsai, M.-H.; Yeh, J.-W. High-Entropy Alloys: A Critical Review. Mater. Res. Lett. 2014, 2, 107–123. [Google Scholar] [CrossRef]
- Cantor, B.; Chang, I.T.H.; Knight, P.; Vincent, A.J.B. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 2004, 375–377, 213–218. [Google Scholar] [CrossRef]
- Guo, S.; Liu, C.T. Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase. Prog. Nat. Sci. Mater. Int. 2011, 21, 433–446. [Google Scholar] [CrossRef]
- Yeh, J.-W.; Chen, S.-K.; Lin, S.-J.; Gan, J.-Y.; Chin, T.-S.; Shun, T.-T.; Tsau, C.-H.; Chang, S.-Y. Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Adv. Eng. Mater. 2004, 6, 299–303. [Google Scholar] [CrossRef]
- Yeh, J.-W.; Chen, Y.-L.; Lin, S.-J.; Chen, S.-K. High-Entropy Alloys—A New Era of Exploitation. Mater. Sci. Forum 2007, 560, 1–9. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Hong, U.T.; Shih, H.C.; Yeh, J.W.; Duval, T. Electrochemical kinetics of the high entropy alloys in aqueous environments—A comparison with type 304 stainless steel. Corros. Sci. 2005, 47, 2679–2699. [Google Scholar] [CrossRef]
- Huang, P.-K.; Yeh, J.-W.; Shun, T.-T.; Chen, S.-K. Multi-Principal-Element Alloys with Improved Oxidation and Wear Resistance for Thermal Spray Coating. Adv. Eng. Mater. 2004, 1–2, 74–78. [Google Scholar] [CrossRef]
- Shun, T.-T.; Du, Y.-C. Age hardening of the Al0.3CoCrFeNiC0.1 high entropy alloy. J. Alloy. Compd. 2009, 478, 269–272. [Google Scholar] [CrossRef]
- Tsai, K.-Y.; Tsai, M.-H.; Yeh, J.-W. Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys. Acta Mater. 2013, 61, 4887–4897. [Google Scholar] [CrossRef]
- Zhang, Y.; Zuo, T.T.; Tang, Z.; Gao, M.C.; Dahmen, K.A.; Liaw, P.K.; Lu, Z.P. Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 2014, 61, 1–93. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Duval, T.; Hung, U.D.; Yeh, J.W.; Shih, H.C. Microstructure and electrochemical properties of high entropy alloys—A comparison with type-304 stainless steel. Corros. Sci. 2005, 47, 2257–2279. [Google Scholar] [CrossRef]
- Chen, Y.L.; Tsai, C.W.; Juan, C.C.; Chuang, M.H.; Yeh, J.W.; Chin, T.S.; Chen, S.K. Amorphization of equimolar alloys with HCP elements during mechanical alloying. J. Alloy. Compd. 2010, 506, 210–215. [Google Scholar] [CrossRef]
- Dolique, V.; Thomann, A.L.; Brault, P. High-entropy alloys deposited by magnetron sputtering. IEEE Trans. Plasma Sci. 2011, 39, 2478–2479. [Google Scholar] [CrossRef]
- Yao, C.Z.; Zhang, P.; Liu, M.; Li, G.R.; Ye, J.Q.; Liu, P.; Tong, Y.X. Electrochemical preparation and magnetic study of Bi-Fe-Co-Ni-Mn high entropy alloy. Electrochim. Acta 2008, 53, 8359–8365. [Google Scholar] [CrossRef]
- Zhou, Y.J.; Zhang, Y.; Wang, Y.L.; Chen, G.L. Microstructure and compressive properties of multicomponent Alx(TiVCrMnFeCoNiCu)100−x high-entropy alloys. Mater. Sci. Eng. A 2007, 454–455, 260–265. [Google Scholar] [CrossRef]
- Varalakshmi, S.; Kamaraj, M.; Murty, B.S. Processing and properties of nanocrystalline CuNiCoZnAlTi high entropy alloys by mechanical alloying. Mater. Sci. Eng. A 2010, 527, 1027–1030. [Google Scholar] [CrossRef]
- Roy, R.; Agrawal, D.; Cheng, J.; Gedevanishvili, S. Full sintering of powdered-metal bodies in a microwave field. Nature 1999, 399, 668–670. [Google Scholar]
- Gupta, M.; Wong, E.W. Microwaves and Metals; John Wiley & Sons: Singapore, 2007. [Google Scholar]
- Kingman, S.W. Recent developments in microwave processing of minerals. Int. Mater. Rev. 2006, 51, 1–12. [Google Scholar] [CrossRef]
- Yang, J.; Huang, M.; Peng, J. Electromagnetic fields. In Microwave Heating for Metallurgical Engineering; Kwang, M.-H., Yoon, S.-O., Eds.; Nova Science Publishers Inc.: New York, NY, USA, 2013. [Google Scholar]
- Teng, W.; Kong, J.; Bingxuan, C. Microstructure and mechanical properties of FeCoNiCuAl high-entropy alloy prepared by microwave-assisted combustion synthesis. Powder Metall. Technol. 2011, 29, 435–438. (In Chinese) [Google Scholar]
- Veronesi, P.; Rosa, R.; Colombini, E.; Leonelli, C.; Poli, G.; Casagrande, A. Microwave assisted combustion synthesis of non-equilibrium intermetallic compounds. J. Microw. Power Electromagn. Energy 2010, 44, 46–56. [Google Scholar]
- Rosa, R.; Veronesi, P. Functionally graded materials obtained by combustion synthesis techniques: A review. In Functionally Graded Materials; Reynolds, N.J.M., Ed.; Nova Science Publishers: New York, NY, USA, 2012; Chapter 2; pp. 93–122. [Google Scholar]
- Colombini, E.; Rosa, R.; Veronesi, P.; Cavallini, M.; Poli, G.; Leonelli, C. Microwave ignited combustion synthesis as a joining technique for dissimilar materials: Modeling and experimental results. Int. J. Self Propag. High Temp. Synth. 2012, 21, 25–31. [Google Scholar] [CrossRef]
- Poli, G.; Sola, R.; Veronesi, P. Microwave-assisted combustion synthesis of NiAl intermetallics in a single mode applicator: Modeling and optimization. Mater. Sci. Eng. A 2006, 441, 149–156. [Google Scholar] [CrossRef]
- Rosa, R.; Veronesi, P.; Leonelli, C. A review on combustion synthesis intensification by means of microwave energy. Chem. Eng. Process. Process Intensif. 2013, 71, 2–18. [Google Scholar] [CrossRef]
- Veronesi, P.; Leonelli, C.; Poli, G.; Casagrande, A. Enhanced reactive NiAl coatings by microwave-assisted SHS. COMPEL 2008, 27, 491–499. [Google Scholar]
- Rosa, R.; Veronesi, P.; Leonelli, C.; Corradi, A.B. Alternative Sintering Processes: Microwave (MW)-Assisted Combustion Synthesis of Micrometric Metallic Powders for the Preparation of Intermetallic-Based Materials. In Proceedings of the PM2010 Powder Metallurgy World Congress, Florence, Italy, 10–14 October 2010; The European Powder Metallurgy Association: Shrewsbury, UK, 2010. [Google Scholar]
- Jablonski, P.D.; Licavoli, J.J.; Gao, M.C.; Hawk, J.A. Manufacturing of High Entropy Alloys. JOM 2015, 67, 2278–2287. [Google Scholar] [CrossRef]
- Rybakov, K.I.; Olevsky, E.A.; Krikun, E.V. Microwave Sintering: Fundamentals and Modeling. J. Am. Ceram. Soc. 2013, 96, 1003–1020. [Google Scholar] [CrossRef]
- Rosa, R.; Veronesi, P.; Michelazzi, M.; Leonelli, C.; Boccaccini, A.R. Combination of electrophoretic deposition and microwave-ignited combustion synthesis for the preparation of ceramic coated intermetallic-based materials. Surf. Coat. Technol. 2012, 206, 3240–3249. [Google Scholar] [CrossRef]
- Rosa, R.; Veronesi, P.; Leonelli, C.; Corradi, A.B.; Ferraris, M.; Casalegno, V.; Salvo, M.; Han, S.H. Microwave activated combustion synthesis and compaction in separate E and H fields: Numerical simulation and experimental results. Adv. Sci. Technol. 2011, 63, 197–202. [Google Scholar] [CrossRef]
- Dube, D.C.; Ramesh, P.D.; Cheng, J.; Lanagan, M.T.; Agrawal, D.; Roy, R. Experimental Evidence of Redistribution of Fields During Processing in a High-Power Microwave Cavity. Appl. Phys. Lett. 2004, 85, 3632–3624. [Google Scholar] [CrossRef]
- Cammarota, G.P.; Casagrande, A.; Poli, G.; Veronesi, P. Ni-Al-Ti coatings obtained by microwave assisted SHS: Effect of annealing on microstructural and mechanical properties. Surf. Coat. Technol. 2009, 203, 1429–1437. [Google Scholar] [CrossRef]
- Suzuki, M.; Ignatenko, M.; Yamashiro, M.; Tanaka, M.; Sato, M. Numerical study of microwave heating of micrometer size metal particles. ISIJ Int. 2008, 48, 681–684. [Google Scholar] [CrossRef]
- Morsi, K. Review: Reaction synthesis processing of Ni-Al intermetallic materials. Mater. Sci. Eng. A 2001, 299, 1–15. [Google Scholar] [CrossRef]
- Itin, V.I.; Bratchikov, A.D.; Postnikova, L.N. Use of combustion and thermal explosion for the synthesis of intermetallic compounds and their alloys. Powder Metall. Met. Ceram. 1980, 19, 315–318. [Google Scholar] [CrossRef]
- Metaxas, A.A.; Meredith, R.J. Industrial Microwave Heating; The Institution of Engineering and Technology (IET): Herts, UK, 1983. [Google Scholar]
- Qiu, X.-W. Microstructure and properties of AlCrFeNiCoCu high entropy alloy prepared by powder metallurgy. J. Alloy. Compd. 2013, 555, 246–249. [Google Scholar] [CrossRef]
- Couzinié, J.P.; Dirras, G.; Perrière, L.; Chauveau, T.; Leroy, E.; Champion, Y.; Guillot, I. Microstructure of a near-equimolar refractory high-entropy alloy. Mater. Lett. 2014, 126, 285–287. [Google Scholar] [CrossRef]
- Zhang, K.B.; Fu, Z.Y.; Zhang, J.Y.; Shi, J.; Wang, W.M.; Wang, H.; Wang, Y.C.; Zhang, Q.J. Nanocrystalline CoCrFeNiCuAl high-entropy solid solution synthesized by mechanical alloying. J. Alloy. Compd. 2009, 485, L31–L34. [Google Scholar] [CrossRef]
- Tong, C.J.; Chen, Y.L.; Yeh, J.W.; Lin, S.J.; Chen, S.K.; Shun, T.T.; Tsau, C.H.; Lin, S.J.; Chang, S.Y. Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall. Mater. Trans. A 2005, 36, 881–893. [Google Scholar] [CrossRef]
- Hui, Z.; Ye, P.; Yizhu, H. Laser cladding FeCoNiCrAl2Si high entropy alloy coating. Acta Metall. Sin. 2011, 47, 1075–1079. (In Chinese) [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Veronesi, P.; Rosa, R.; Colombini, E.; Leonelli, C. Microwave-Assisted Preparation of High Entropy Alloys. Technologies 2015, 3, 182-197. https://doi.org/10.3390/technologies3040182
Veronesi P, Rosa R, Colombini E, Leonelli C. Microwave-Assisted Preparation of High Entropy Alloys. Technologies. 2015; 3(4):182-197. https://doi.org/10.3390/technologies3040182
Chicago/Turabian StyleVeronesi, Paolo, Roberto Rosa, Elena Colombini, and Cristina Leonelli. 2015. "Microwave-Assisted Preparation of High Entropy Alloys" Technologies 3, no. 4: 182-197. https://doi.org/10.3390/technologies3040182
APA StyleVeronesi, P., Rosa, R., Colombini, E., & Leonelli, C. (2015). Microwave-Assisted Preparation of High Entropy Alloys. Technologies, 3(4), 182-197. https://doi.org/10.3390/technologies3040182