Crustal Strain Observation Using a Two-Color Interferometer with Accurate Correction of Refractive Index of Air
Abstract
:1. Introduction
2. Refractive Index of Air
3. Principle of Two-Color Measurement
4. Two-Color Interferometer
4.1. Optical Configuration
4.2. Measurement System
5. Calibration
6. Observation in the Shallow AIST Tunnel
7. Observation at a Deep Underground Site in Kamioka
8. Discussion and Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Murray-Moraleda, J. GPS: Applications in Crustal Deformation Monitoring. In Extreme Environmental Events; Meyers, R.A., Ed.; Springer: New York, NY, USA, 2011; pp. 589–622. [Google Scholar]
- Graham, L.C. Synthetic interferometer radar for topographic mapping. Proc. IEEE 1974, 62, 763–768. [Google Scholar] [CrossRef]
- Seeber, G. Satellite Geodesy, 2nd ed.; Walter de Gruyter Inc.: Berlin, Germany, 2003. [Google Scholar]
- Bergstrand, E. Distance measuring by means of modulated light. Bull. Geod. 1952, 24, 243–249. [Google Scholar] [CrossRef]
- Tomasi, P.; Rioja, M.J.; Sarti, P. The European VLBI Network activity in geodesy: Crustal deformation in Europe. New Astron. Rev. 1999, 43, 603–607. [Google Scholar] [CrossRef]
- Benioff, H. Fuzed quartz extensometer for secular, tidal, and seismic strains. Geol. Soc. Am. Bull. 1959, 70, 1019–1032. [Google Scholar] [CrossRef]
- Berger, J.; Lovberg, R. Earth strain measurements with a laser interferometer. Science 1970, 170, 296–303. [Google Scholar]
- Vali, V.; Bostrom, R.C. One thousand meter laser interferometer. Rev. Sci. Instrum. 1968, 39, 1304–1306. [Google Scholar] [CrossRef]
- Liu, Q.; Tokunaga, T.; He, Z. Sub-Nano resolution fiber-optic static sensor using a sideband interrogation technique. Opt. Lett. 2012, 37, 434–436. [Google Scholar]
- Araya, A.; Kunugi, T.; Fukao, Y.; Yamada, I.; Suda, N.; Maruyama, S.; Mio, N.; Moriwaki, S. Iodine-stabilized Nd:YAG laser applied to a long-baseline interferometer for wideband earth strain observations. Rev. Sci. Instrum. 2001, 73, 2434–2439. [Google Scholar]
- Takemoto, S.; Araya, A.; Akamatsu, J.; Morii, W.; Momose, H.; Ohashi, M.; Kawasaki, I.; Higashi, T.; Fukuda, Y.; Miyoki, S.; et al. A 100 m laser strainmeter system installed in a 1 km deep tunnel at Kamioka, Gifu, Japan. J. Geodyn. 2004, 38, 477–488. [Google Scholar] [CrossRef]
- Araya, A.; Morii, W.; Hayakawa, H.; Takamori, A.; Uchiyama, T.; Ohashi, M.; Yamada, I.; Telada, S.; Takemoto, S. Broadband observation with laser strainmeters and a strategy for high resolution long-term strain observation based on quantum standard. J. Geod. Soc. Jpn. 2007, 53, 81–97. [Google Scholar]
- Matsumoto, H.; Honda, T. High-accuracy length-measuring interferometer using the two-color method of compensating for the refractive index of air. Meas. Sci. Technol. 1992, 3, 1084–1086. [Google Scholar] [CrossRef]
- Zeng, L.; Telada, S.; Seta, K.; Matsumoto, H.; Iwasaki, S. A weight average method to improve the uncertainty of length measurement in a two-color interferometer. Opt. Commun. 2001, 187, 295–299. [Google Scholar] [CrossRef]
- Fujima, I.; Xie, G.; Seta, K. Precise measurement of the difference of the air refractive indices between visible and near-infrared wavelength using two-color interferometer. Proc. SPIE 1999, 3897, 767–772. [Google Scholar] [CrossRef]
- Edlen, B. The refractive index of air. Metrologia 1966, 2, 71–80. [Google Scholar] [CrossRef]
- Ciddor, P.E. Refractive index of air: New equations for the visible and the near infrared. Appl. Opt. 1996, 35, 1566–1573. [Google Scholar] [CrossRef]
- Ohishi, T.; Seino, S.; Sakurai, Y. Vacuum-pipeless laser earth strainmeter. Appl. Opt. 1981, 20, 1329–1332. [Google Scholar] [CrossRef]
- The Super-Kamiokande Collaboration. The Super-Kamiokande detector. Nucl. Instrum. Meth. 2003, A501, 418–462. [Google Scholar]
- Araki, T.; Enomoto, S.; Furuno, K.; Gando, Y.; Ichimura, K.; Ikeda, H.; Inoue, K.; Kishimoto, Y.; Koga, Y.; Koseki, Y.; et al. Experimental investigation of geologically produced antineutrinos with KamLAND. Nature 2005, 436, 499–503. [Google Scholar] [CrossRef]
- Ohashi, M.; Kuroda, K.; Miyoki, S.; Uchiyama, T.; Yamamoto, K.; Kasahara, K.; Shintomi, T.; Yamamoto, A.; Haruyama, T.; Saito, Y.; et al. Design and construction status of CLIO. Class. Quantum Grav. 2003, 20, S599–S608. [Google Scholar] [CrossRef]
- Uchiyama, T.; Miyoki, S.; Telada, S.; Yamamoto, K.; Ohashi, M.; Agatsuma, K.; Arai, K.; Fujimoto, M-K.; Haruyama, T.; Kawamura, S.; et al. Reduction of thermal fluctuations in a cryogenic laser interferometric gravitational wave detector. Phys. Rev. Lett. 2012, 108, 141101. [Google Scholar] [CrossRef]
- Araya, A.; Takamori, A.; Morii, W.; Hayakawa, H.; Uchiyama, T.; Ohashi, M.; Telada, S.; Takemoto, S. Analyses of far-field coseismic crustal deformation observed by a new laser distance measurement system. Geophys. J. Int. 2010, 181, 127–140. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Telada, S.; Araya, A.; Takamori, A. Crustal Strain Observation Using a Two-Color Interferometer with Accurate Correction of Refractive Index of Air. Technologies 2014, 2, 115-128. https://doi.org/10.3390/technologies2030115
Telada S, Araya A, Takamori A. Crustal Strain Observation Using a Two-Color Interferometer with Accurate Correction of Refractive Index of Air. Technologies. 2014; 2(3):115-128. https://doi.org/10.3390/technologies2030115
Chicago/Turabian StyleTelada, Souichi, Akito Araya, and Akiteru Takamori. 2014. "Crustal Strain Observation Using a Two-Color Interferometer with Accurate Correction of Refractive Index of Air" Technologies 2, no. 3: 115-128. https://doi.org/10.3390/technologies2030115
APA StyleTelada, S., Araya, A., & Takamori, A. (2014). Crustal Strain Observation Using a Two-Color Interferometer with Accurate Correction of Refractive Index of Air. Technologies, 2(3), 115-128. https://doi.org/10.3390/technologies2030115