Redefining Transactions, Trust, and Transparency in the Energy Market from Blockchain-Driven Technology
Abstract
1. Introduction
- RQ1. What are the key applications of blockchain in the energy sector?
- RQ2. Which applications are most analyzed in the academic literature?
- RQ3. What are the common technical, regulatory, and operational challenges often encountered within individual application domains?
2. Literature Review Methodology
3. Applications Based on the Use of Blockchain in the Energy Market
3.1. P2P Energy Trading
3.1.1. General Fundamentals and Legal and Regulatory Aspects
3.1.2. Privacy and Security
3.1.3. Performance, Cost, and Scalability
3.1.4. Market Mechanisms and Trading Models
3.1.5. Implementing Energy Trading Platforms
3.2. Smart Grids
3.2.1. Blockchain Applications in Smart Grids and Microgrids
3.2.2. Technical Enablers and Architectures
Smart Contracts and Execution Platforms
Integration with IoT, AI, and Edge Computing
Decentralized Autonomous Organizations in Energy Systems
Tokenization Models
3.3. Renewable Energy
3.3.1. Preliminary Musings
3.3.2. Fundamentals of Market Models
3.3.3. Challenges in the Implementation of Blockchain in Renewable Energy
3.4. Other Applications
3.4.1. Management of Energy Certificates and Carbon Credits
3.4.2. Flexibility Services and Demand Response
3.4.3. Smart Metering and Automated Billing
3.4.4. Energy Communities and Local Marketplaces
3.4.5. Integration of Electric Mobility and Vehicle-to-Grid (V2G)
3.4.6. Supply Chain Management for Energy Commodities
3.4.7. Investment Tokenization and Project Financing
3.4.8. Wholesale Energy Market Operations
3.4.9. Regulatory Compliance and Auditability
4. Some Considerations on Privacy and Security
- Public blockchains, which are openly accessible and operated by decentralized communities (e.g., Bitcoin, Ethereum, and Solana);
- Private blockchains, which restrict access to specific participants and are typically used within businesses (e.g., Hyperledger Fabric, Quorum, and R3 Corda);
- Consortium blockchains lie between the two and are operated by entities that trust each other (e.g., Multichain and FISCO BCOS).
- Identity Management and Authentication—since centralized identity systems are not well-suited for distributed energy systems. Risks include impersonation attacks and poor key management. Blockchain offers decentralized identity (DID) models and verifiable credentials to address these weaknesses.
- Data Integrity and Tamper-Resistance—as energy data needs to be accurate and verifiable and protected against tampering. Attackers may inject false data, tamper with the logs, or even compromise the smart meters. Blockchain’s immutable ledgers and cryptographic hashes enable strong integrity guarantees.
- Secure Energy Trading—since energy trading systems are vulnerable to manipulation and fraud. Smart contract flaws, front-running, and settlement disputes are frequent issues. Blockchain enables atomic, auditable, and transparent trading protocols.
- Threat Models in Decentralized Energy Systems—where distributed energy systems suffer from Denial of Service (DoS) attacks, Sybil attacks, and replay attacks. While blockchain mitigates some risks (e.g., tampering), it also requires secure hardware and governance.
- Privacy Leakage—as granular data, can reveal sensitive behavior through detailed energy use patterns. Standard blockchain ledgers may reveal metadata even when pseudonyms are used. Techniques like ZKPs, differential privacy, and noise addition are essential to balance audibility and confidentiality.
4.1. Privacy-Preserving Mechanisms
4.1.1. Zero-Knowledge Proofs (ZKPs) and Noise Adding
4.1.2. Anonymous Messaging
- First, pseudonymous, transaction-specific addresses allow prosumers and consumers to generate fresh and unique blockchain and messaging key pairs for each transaction, ensuring no long-term identifier can be linked to their real identity. This approach builds upon prior work on unlikable transactions in Bitcoin and privacy-enhancing overlays such as TumbleBit [138,139].
- Second, multi-signature smart contracts, employing m-of-n multi-signature scripts (e.g., 2-of-3 among buyer, seller, and mediator) to ensure no single party, besides the mediator, can reveal transactional data, with dispute resolution maintaining anonymity.
- Third, anonymous encrypted messaging streams, inspired by Bitmessage [140], transmit all negotiation messages in encrypted form to the entire network. Every node receives every message, but only the intended recipient can decrypt it, thus concealing communication patterns.
4.1.3. Secure Multi-Party Computation (SMPC)
4.1.4. Homomorphic Encryption (HE)
4.1.5. Ring Signatures and Mixing Services
4.1.6. Trusted Execution Environments (TEEs)
4.1.7. Differential Privacy (DP) for Aggregates
4.1.8. Attribute-Based Encryption (ABE)
4.1.9. Federated Learning for Demand Response Models
4.2. Identity and Access Management
4.2.1. Access Control Systems
4.2.2. Scalable Privacy-Preserving Protocols
4.2.3. Formal Security Verification of Smart Contracts
4.2.4. Threat Modeling and Intrusion Detection
5. Results
- Assessment of these solutions’ social and territorial impact, especially in environments with low digital infrastructure or unequal energy access.
6. Discussion
6.1. Results for Smart Grids
6.1.1. Multi-Microgrid Energy Sharing and Interoperability
6.1.2. AI and Blockchain Co-Design for Grid Optimization
6.1.3. Green and Scalable Consensus Mechanisms
6.1.4. Governance Considerations for Policy-Makers
6.1.5. Socio-Technical Matters for Equity
6.2. Advances and Challenges in P2P Energy Trading
6.2.1. Advances in Market Mechanism Dynamization and Business Models
6.2.2. Scalability, Performance, and Structure
6.2.3. Privacy, Security, and Regulatory Framework
6.2.4. Implementation and Adoption in Real Environments
6.3. Blockchain for Renewable Energy: Feasibility and Persistent Challenges
6.3.1. Economic and Regulatory Challenges
6.3.2. Technical Challenges
7. Conclusions
8. Future Research Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ABAC | Attribute-Based Access Control |
ABE | Attribute-Based Encryption |
ACM | Account Mapping |
AI | Artificial Intelligence |
AMI | Advanced Metering Infrastructure |
BAC | Block Alliance Consensus |
BGV | Brakerski–Gentry–Vaikuntanathan |
DAC | Discretionary Access Control |
DACO | Decentralized Ant-Colony Optimization |
DAGs | Directed Acyclic Graphs |
DAOs | Decentralized Autonomous Organizations |
DCS | Distributed Control System |
DePIN | Decentralized Physical Infrastructure Network |
DERs | Distributed Energy Resources |
DID | Decentralized Identity |
DLT | Distributed Ledger Technology |
DOS | Denial of Service |
DP | Differential Privacy |
EAGs | Energy Auction Gateways |
FDI | False Data Injection |
FHIPE | Function-Hiding Inner Product Encryption |
GRUs | Gated Recurrent Units |
HE | Homomorphic Encryption |
ICTs | Information and Communication Technologies |
ILP | Inter Ledger Protocol |
IoT | Internet of Things |
LEM | Local Energy Market |
LSTM | Long Short-Term Memory |
MAC | Mandatory Access Control |
MECS | Multi-Party Electronic Contract Signing |
MILP | Mixed Integer Linear Programming |
MVCC | Multi-Version Concurrency Control |
P2P | Peer-to-Peer |
PBFT | Practical Byzantine Fault Tolerance |
PoA | Proof of Authority |
PoS | Proof of Stake |
PoW | Proof of Work |
RBAC | Role-Based Access Control |
RECs | Renewable Energy Certificates |
SCIE | Science Citation Index Expanded |
SMPC | Secure Multi-Party Computation |
SNARK | Succinct Non-interactive Argument of Knowledge |
SSCI | Social Sciences Citation Index |
STARK | Scalable Transparent Argument of Knowledge |
TEEs | Trusted Execution Environments |
TTP | Trusted Third Party |
V2G | Vehicle-to-Grid |
VPP | Virtual Power Plant |
ZKP | Zero-Knowledge Proof |
References
- Andoni, M.; Robu, V.; Flynn, D.; Abram, S.; Geach, D.; Jenkins, D.; McCallum, P.; Peacock, A. Blockchain technology in the energy sector: A systematic review of challenges and opportunities. Renew. Sustain. Energy Rev. 2019, 100, 143–174. [Google Scholar] [CrossRef]
- Bhavana, N.; Kumar, N.; Rai, I.; Reddy, C.S.; Kumar, S. Applications of blockchain technology in peer-to-peer energy markets and green hydrogen supply chains: A topical review. Sci. Rep. 2024, 14, 21954. [Google Scholar] [CrossRef]
- Mollah, M.B.; Zhao, J.; Niyato, D.; Wang, P.; Lam, K.-Y.; Zhang, X.; Ghias, A.M.Y.M.; Koh, L.H.; Yang, L. Blockchain for Future Smart Grid: A Comprehensive Survey. IEEE Internet Things J. 2021, 8, 18–43. [Google Scholar] [CrossRef]
- Bao, Z.; Liu, S.; He, D.; Choo, K.-K.R. A Survey of Blockchain Applications in the Energy Sector. IEEE Trans. Ind. Inform. 2020, 17, 5240–5252. [Google Scholar] [CrossRef]
- Karumba, S.; Sethuvenkatraman, S.; Dedeoglu, V.; Jurdak, R.; Kanhere, S.S. Barriers to blockchain-based decentralised energy trading: A systematic review. Int. J. Sustain. Energy 2023, 42, 41–71. [Google Scholar] [CrossRef]
- Chiarini, A.; Compagnucci, L. Blockchain, data protection and P2P energy trading: A review on legal and economic challenges. Sustainability 2022, 14, 16305. [Google Scholar] [CrossRef]
- Boumaiza, A. A blockchain-centric P2P trading framework incorporating carbon and energy trades. Energy Strategy Rev. 2024, 54, 101466. [Google Scholar] [CrossRef]
- Snyder, H. Literature review as a research methodology: An overview and guidelines. J. Bus. Res. 2019, 104, 333–339. [Google Scholar] [CrossRef]
- Paul, J.; Criado, A.R. The art of writing literature review: What do we know and what do we need to know? Int. Bus. Rev. 2020, 29, 101717. [Google Scholar] [CrossRef]
- Wong, G.; Greenhalgh, T.; Westhorp, G.; Buckingham, J.; Pawson, R. RAMESES publication standards: Meta-narrative reviews. BMC Med. 2013, 11, 20. [Google Scholar] [CrossRef]
- Zhang, C.; Kitamura, H.; Goto, M. A new framework of vehicle-to-grid economic evaluation: From semi-systematic review of 132 prior studies. Energies 2025, 18, 3088. [Google Scholar] [CrossRef]
- Yeter, G.; Vecchio, Y.; Masi, M.; Marrocco, E.S.; La Sala, P.; Adinolfi, F. Circular consumption in agri-food to become sustainable: A semi-systematic review. Circ. Econ. Sustain. 2025, 5, 1581–1606. [Google Scholar] [CrossRef]
- Duetsch, S.; Oestreich, M. Linking entrepreneurship to external business successions: A semi-systematic review of the existing family-external business succession literature in the family firm and entrepreneurship research. J. Small Bus. Entrep. 2025, 1–22. [Google Scholar] [CrossRef]
- Vishnu, C.R.; Joshin, J. Reflections on solar energy adoption research: A semi-systematic review. Int. J. Energy Sect. Manag. 2024, 18, 2141–2168. [Google Scholar] [CrossRef]
- Musango, J.K. Advancing technology assessment in energy transitions: A semi-systematic literature review. Renew. Sustain. Energy Rev. 2025, 208, 115060. [Google Scholar] [CrossRef]
- Munn, Z.; Peters, M.D.; Stern, C.; Tufanaru, C.; McArthur, A.; Aromataris, E. Systematic review or scoping review? Guidance for authors when choosing between a systematic or scoping review. BMC Med. Res. Methodol. 2018, 18, 143. [Google Scholar] [CrossRef]
- Arksey, H.; O’Malley, L. Scoping studies: Towards a methodological framework. Int. J. Soc. Res. Methodol. 2005, 8, 19–32. [Google Scholar] [CrossRef]
- Levac, D.; Colquhoun, H.; O’Brien, K.K. Scoping studies: Advancing the methodology. Implement. Sci. 2010, 5, 69. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- McHugh, M.L. Interrater reliability: The kappa statistic. Biochem. Medica 2012, 22, 276–282. [Google Scholar] [CrossRef]
- Li, Z.; Kang, J.; Yu, R.; Ye, D.; Deng, Q.; Zhang, Y. Consortium blockchain for secure energy trading in industrial Internet of Things. IEEE Trans. Ind. Inf. 2018, 14, 3690–3700. [Google Scholar] [CrossRef]
- Zhang, M.; Eliassen, F.; Taherkordi, A.; Chung, H.-M.; Jacobsen, H.-A.; Zhang, Y. Demand-response games for peer-to-peer energy trading with the Hyperledger Blockchain. IEEE Trans. Syst. Man Cybern. Syst. 2022, 52, 7837–7848. [Google Scholar] [CrossRef]
- Kang, J.; Yu, R.; Huang, X.; Maharjan, S.; Zhang, Y.; Hossain, E. Enabling Localized Peer-to-Peer Electricity Trading among Plug-in Hybrid Electric Vehicles Using Consortium Blockchains. IEEE Trans. Ind. Inform. 2017, 13, 3154–3164. [Google Scholar] [CrossRef]
- Seven, S.; Yao, G.; Soran, A.; Onen, A.; Muyeen, S.M. Peer-to-peer energy trading in virtual power plant based on blockchain smart contracts. IEEE Access 2020, 8, 165996–166014. [Google Scholar] [CrossRef]
- Thukral, M.K. Emergence of blockchain-technology application in peer-to-peer electrical-energy trading: A review. Clean Energy 2021, 5, 104–123. [Google Scholar] [CrossRef]
- Yap, K.Y.; Chin, H.H.; Klemeš, J.J. Blockchain technology for distributed generation: A review of current development, challenges and future prospect. Renew. Sustain. Energy Rev. 2023, 175, 113170. [Google Scholar] [CrossRef]
- Guerrero, J.; Chapman, A.C.; Verbič, G. Decentralized P2P energy trading under network constraints in a low-voltage network. IEEE Trans. Smart Grid 2018, 10, 5163–5173. [Google Scholar] [CrossRef]
- Han, D.; Zhang, C.; Ping, J.; Yan, Z. Smart contract architecture for decentralized energy trading and management based on blockchains. Energy 2020, 199, 117417. [Google Scholar] [CrossRef]
- Son, Y.-B.; Im, J.-H.; Kwon, H.-Y.; Jeon, S.-Y.; Lee, M.-K. Privacy-Preserving Peer-to-Peer Energy Trading in Blockchain-Enabled Smart Grids Using Functional Encryption. Energies 2020, 13, 1321. [Google Scholar] [CrossRef]
- Wang, B.; Xu, L.; Wang, J. A privacy-preserving trading strategy for blockchain-based P2P electricity transactions. Appl. Energy 2023, 335, 120664. [Google Scholar] [CrossRef]
- Yang, J.; Dai, J.; Gooi, H.B.; Nguyen, H.D.; Wang, P. Hierarchical blockchain design for distributed control and energy trading within microgrids. IEEE Trans. Smart Grid 2022, 13, 3133–3144. [Google Scholar] [CrossRef]
- Esmat, A.; de Vos, M.; Ghiassi-Farrokhfal, Y.; Palensky, P.; Epema, D. A novel decentralized platform for peer-to-peer energy trading market with blockchain technology. Appl. Energy 2021, 282, 116123. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Y.; Jiao, W.; Wang, G.K.; Ping, J.; Yan, Z.; Zhang, C.; Han, D. An efficient, secured, and infinitely scalable consensus mechanism for peer-to-peer energy trading blockchain. IEEE Trans. Ind. Appl. 2023, 59, 5215–5229. [Google Scholar] [CrossRef]
- Wang, Y.; Yuan, L.; Qiang, Y.; Zhao, J.; Jiao, W.; Yang, Q.; Li, K. A fast and secured vehicle-to-vehicle energy trading based on blockchain consensus in the Internet of Electric Vehicles. IEEE Trans. Veh. Technol. 2023, 72, 7838–7853. [Google Scholar] [CrossRef]
- Boumaiza, A. A blockchain-based scalability solution with microgrids peer-to-peer trade. Energies 2024, 17, 915. [Google Scholar] [CrossRef]
- Abdella, J.; Tari, Z.; de Sousa, P.W.A.; Mahmood, A. An architecture and performance evaluation of blockchain-based peer-to-peer energy trading. IEEE Trans. Smart Grid 2021, 12, 2487–2497. [Google Scholar] [CrossRef]
- Wongthongtham, P.; Marrable, D.; Abu-Salih, B.; Liu, X.; Morrison, G. Blockchain-enabled Peer-to-Peer energy trading. Comput. Electr. Eng. 2021, 94, 107299. [Google Scholar] [CrossRef]
- Song, J.G.; Kim, E.S.; Shin, H.W.; Jang, J.W. A smart contract-based P2P energy trading system with dynamic pricing on Ethereum blockchain. Sensors 2021, 21, 1985. [Google Scholar] [CrossRef]
- Khalid, R.; Javaid, N.; Almogren, A.; Javed, M.U.; Javaid, S.; Zuair, M.A. blockchain-based load balancing in decentralized hybrid P2P energy trading market in smart grid. IEEE Access 2020, 8, 47047–47062. [Google Scholar] [CrossRef]
- Park, L.; Lee, S.; Chang, H. A sustainable home energy prosumer-chain methodology with energy tags over the blockchain. Sustainability 2018, 10, 658. [Google Scholar] [CrossRef]
- Dong, J.; Song, C.; Liu, S.; Yin, H.; Zheng, H.; Li, Y. Decentralized peer-to-peer energy trading strategy in energy blockchain environment: A game-theoretic approach. Appl. Energy 2022, 325, 119852. [Google Scholar] [CrossRef]
- Ali, L.; Azim, M.I.; Ojha, N.B.; Peters, J.; Bhandari, V.; Menon, A.; Green, J.; Muyeen, S.M. Integrating forecasting service and Gen2 blockchain into a local energy trading platform to promote sustainability goals. IEEE Access 2023, 12, 2941–2964. [Google Scholar] [CrossRef]
- Mengelkamp, E.; Gärttner, J.; Rock, K.; Kessler, S.; Orsini, L.; Weinhardt, C. Designing microgrid energy markets: A case study: The Brooklyn Microgrid. Appl. Energy 2018, 210, 870–880. [Google Scholar] [CrossRef]
- Sousa, T.; Soares, T.; Pinson, P.; Moret, F.; Baroche, T.; Sorin, E. Peer-to-peer and community-based markets: A comprehensive review. Renew. Sustain. Energy Rev. 2019, 104, 367–378. [Google Scholar] [CrossRef]
- Monfort, A. A Systematic Review of Peer-to-Peer Electricity Trading: Market Design and Regulation. Renew. Sustain. Energy Rev. 2022, 162, 112398. [Google Scholar] [CrossRef]
- Shan, Y.; Zhou, Y.; Wang, C.; Wu, J. Blockchain-Based Peer-to-Peer Energy Trading: Key Components, Technologies, and Future Research. Sustainability 2023, 15, 16284. [Google Scholar] [CrossRef]
- Mylrea, M.; Gourisetti, S. Blockchain for Smart Grid Resilience: Exchanging Distributed Energy at Speed, Scale and Security. In Proceedings of the 2017 Resilience Week (RWS), Wilmington, DE, USA, 18–22 September 2017; IEEE: Piscataway, NJ, USA. [Google Scholar] [CrossRef]
- Hasan, M.; Alkhalifah, A.; Islam, S.; Babiker, N.; Ahasan, A.; Aman, A.; Hossain, M. Blockchain Technology on Smart Grid, Energy Trading, and Big Data: Security Issues, Challenges, and Recommendations. Wireless Commun. Mobile Comput. 2022, 1, 9065768. [Google Scholar] [CrossRef]
- Heng, Y.B.; Ramachandaramurthy, V.K.; Verayiah, R.; Walker, S.L. Developing Peer-to-Peer (P2P) Energy Trading Model for Malaysia: A Review and Proposed Implementation. IEEE Access 2022, 10, 33183–33199. [Google Scholar] [CrossRef]
- Hernandez, A.A.; Yip, S.Y.; Goh, K.M.; Caballero, A.R.; Victorino, M.L.S. Peer-to-Peer Energy Resource Sharing in Rural Communities: Enabling Technologies, Applications, and Challenges. IEEE Access 2025, 13, 69353–69368. [Google Scholar] [CrossRef]
- Musleh, A.S.; Yao, G.; Muyeen, S.M. Blockchain Applications in Smart Grid–Review and Frameworks. IEEE Access 2019, 7, 86746–86757. [Google Scholar] [CrossRef]
- Alladi, T.; Chamola, V.; Rodrigues, J.J.P.C.; Kozlov, S.A. Blockchain in Smart Grids: A Review on Different Use Cases. Sensors 2019, 19, 4862. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Qi, Q.; Zhou, J.; Luo, X. Blockchain-Based Applications for Smart Grids: An Umbrella Review. Energies 2023, 16, 6147. [Google Scholar] [CrossRef]
- Agung, A.A.G.; Handayani, R. Blockchain for Smart Grid. J. King Saud Univ. Comput. Inf. Sci. 2022, 34, 666–675. [Google Scholar] [CrossRef]
- Li, Z.; Bahramirad, S.; Paaso, A.; Yan, M.; Shahidehpour, M. Blockchain for Decentralized Transactive Energy Management System in Networked Microgrids. Electr. J. 2019, 32, 58–72. [Google Scholar] [CrossRef]
- Kumari, A.; Sukharamwala, U.C.; Tanwar, S.; Raboaca, M.S.; Alqahtani, F.; Tolba, A.; Sharma, R.; Aschilean, I.; Mihaltan, T.C. Blockchain-Based Peer-to-Peer Transactive Energy Management Scheme for Smart Grid System. Sensors 2022, 22, 4826. [Google Scholar] [CrossRef]
- Vieira, G.; Zhang, J. Peer-to-Peer Energy Trading in a Microgrid Leveraged by Smart Contracts. Renewable and Sustainable. Energy Rev. 2021, 143, 110900. [Google Scholar] [CrossRef]
- Appasani, B.; Mishra, S.K.; Jha, A.V.; Mishra, S.K.; Enescu, F.M.; Sorlei, I.S.; Bîrleanu, F.G.; Takorabet, N.; Thounthong, P.; Bizon, N. Blockchain-Enabled Smart Grid Applications: Architecture, Challenges, and Solutions. Sustainability 2022, 14, 8801. [Google Scholar] [CrossRef]
- Guo, Y.; Wan, Z.; Cheng, X. When Blockchain Meets Smart Grids: A Comprehensive Survey. High-Confid. Comput. 2022, 2, 100059. [Google Scholar] [CrossRef]
- Di Silvestre, M.L.; Gallo, P.; Ippolito, M.G.; Musca, R.; Riva Sanseverino, E.; Tran, Q.T.T.; Zizzo, G. Ancillary Services in the Energy Blockchain for Microgrids. IEEE Trans. Ind. Appl. 2019, 55, 7310–7319. [Google Scholar] [CrossRef]
- Cao, Y.; Wang, Y.; Ding, Y.; Guo, Z.; Wu, Q.; Liang, H. Blockchain-Empowered Security and Privacy Protection Technologies for Smart Grids. Comput. Stand. Interfaces 2023, 85, 103708. [Google Scholar] [CrossRef]
- Kwak, J.; Lee, C. Implementation of Blockchain-Based P2P Energy Trading Platform. In Proceedings of the International Conference on Information Networking (ICOIN), Jeju Island, Republic of Korea, 13–16 January 2021; pp. 5–7. [Google Scholar] [CrossRef]
- Liu, C.; Chai, K.K.; Zhang, X.; Chen, Y. Peer-to-Peer Electricity Trading System: Smart Contracts Based Proof-of-Benefit Consensus Protocol. Wirel. Netw. 2021, 27, 4217–4228. [Google Scholar] [CrossRef]
- Leeuwen, G.; AlSkaif, T.; Gibescu, M.; van Sark, W. An Integrated Blockchain-Based Energy Management Platform with Bilateral Trading for Microgrid Communities. Appl. Energy 2020, 263, 114613. [Google Scholar] [CrossRef]
- Condon, F.; Franco, P.; Martínez, J.M.; Eltamaly, A.M.; Kim, Y.-C.; Ahmed, M.A. EnergyAuction: IoT-Blockchain Architecture for Local Peer-to-Peer Energy Trading in a Microgrid. Sustainability 2023, 15, 13203. [Google Scholar] [CrossRef]
- Baig, M.J.A.; Iqbal, M.T.; Jamil, M.; Khan, J. Peer-to-Peer Energy Trading in a Micro-grid Using Internet of Things and Blockchain. Electron. J. 2021, 25, 39–49. [Google Scholar] [CrossRef]
- Tightiz, L.; Yang, H. A Comprehensive Review on IoT Protocols’ Features in Smart Grid Communication. Energies 2020, 13, 2762. [Google Scholar] [CrossRef]
- Li, Y.; Deng, H.; Wang, Y. Edge Computing-Enabled Peer-to-Peer Energy Trading in a Local Energy Community. IEEE Trans. Smart Grid 2025, 16, 4058–4072. [Google Scholar] [CrossRef]
- Mofreh, E.; Nguyen, P.; Kok, K. Secure and Efficient Peer-to-Peer Energy Trading: A Case Study on Edge Computing Simulation Platform for Decentralized Decision Making. In Proceedings of the IEEE International Conference on Environment and Electrical Engineering and IEEE Industrial and Commercial Power Systems Europe, Rome, Italy, 17–20 June 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Mololoth, V.K.; Saguna, S.; Åhlund, C. Blockchain and Machine Learning for Future Smart Grids: A Review. Energies 2023, 16, 528. [Google Scholar] [CrossRef]
- Kumar, N.M.; Chand, A.A.; Malvoni, M.; Prasad, K.A.; Mamun, K.A.; Islam, F.R.; Chopra, S.S. Distributed Energy Resources and the Application of AI, IoT, and Blockchain in Smart Grids. Energies 2020, 13, 5739. [Google Scholar] [CrossRef]
- Aljarrah, E. AI-Based Model for Prediction of Power Consumption in Smart Grid–Smart Way towards Smart City Using Blockchain Technology. Intell. Syst. Appl. 2024, 24, 200440. [Google Scholar] [CrossRef]
- Hua, W.; Chen, Y.; Qadrdan, M.; Jiang, J.; Sun, H.; Wu, J. Applications of Blockchain and Artificial Intelligence Technologies for Enabling Prosumers in Smart Grids: A Review. Renew. Sustain. Energy Rev. 2022, 161, 112308. [Google Scholar] [CrossRef]
- Islam, S.N. A Review of Peer-to-Peer Energy Trading Markets: Enabling Models and Technologies. Energies 2024, 17, 1702. [Google Scholar] [CrossRef]
- Ding, Y.; Sun, X.; Ruan, J.; Shi, W.; Wu, H.; Xu, Z. Customized Decentralized Autonomous Organization Based Optimal Energy Management for Smart Buildings. Appl. Energy 2024, 376, 124223. [Google Scholar] [CrossRef]
- Trevisan, R.; Mureddu, M.; Ghiani, E.; Galici, M.; Pilo, F. Transactive Energy Systems in Decentralized Autonomous Renewable Energy Communities. In Proceedings of the IEEE Power & Energy Society General Meeting (PESGM), Orlando, FL, USA, 16–20 July 2023; pp. 1–5. [Google Scholar] [CrossRef]
- Mehdinejad, M.; Shayanfar, H.; Mohammadi-Ivatloo, B. Decentralized Blockchain-Based Peer-to-Peer Energy-Backed Token Trading for Active Prosumers. Energy 2022, 244, 122713. [Google Scholar] [CrossRef]
- Maya, P.; Salam, P.A. Implementation of a Blockchain-Based DApp for P2P Electricity Trading. In Proceedings of the 5th International Conference on Energy, Power and Environment: Towards Flexible Green Energy Technologies (ICEPE), Shillong, India, 15–17 June 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Ma, N.; Waegel, A.; Hakkarainen, M.; Braham, W.W.; Glass, L.; Aviv, D. Blockchain + IoT Sensor Network to Measure, Evaluate and Incentivize Personal Environmental Accounting and Efficient Energy Use in Indoor Spaces. Appl. Energy 2023, 332, 120443. [Google Scholar] [CrossRef]
- Moti, M.M.M.A.; Uddin, R.S.; Hai, M.A.; Saleh, T.B.; Alam, M.G.R.; Hassan, M.M.; Hassan, M.R. Blockchain Based Smart-Grid Stackelberg Model for Electricity Trading and Price Forecasting Using Reinforcement Learning. Appl. Sci. 2022, 12, 5144. [Google Scholar] [CrossRef]
- Babaei, A.; Tirkolaee, E.B.; Boz, E. Optimizing energy consumption for blockchain adoption through renewable energy sources. Renew. Energy 2025, 238, 121936. [Google Scholar] [CrossRef]
- Gawusu, S.; Zhang, X.; Ahmed, A.; Jamatutu, S.A.; Miensah, E.D.; Amadu, A.A.; Osei, F.A.J. Renewable energy sources from the perspective of blockchain integration: From theory to application. Sustain. Energy Technol. Assess. 2022, 52, 102108. [Google Scholar] [CrossRef]
- Cui, M.-L.; Feng, T.-T.; Wang, H.-R. How can blockchain be integrated into renewable energy: A bibliometric-based analysis. Energy Strategy Rev. 2023, 50, 101207. [Google Scholar] [CrossRef]
- Rejeb, A.; Rejeb, K.; Zrelli, I.; Süle, E.; Iranmanesh, M. Blockchain technology in the renewable energy sector: A co-word analysis of academic discourse. Heliyon 2024, 10, e29600. [Google Scholar] [CrossRef]
- Wu, J.; Tran, N.K. Application of Blockchain Technology in Sustainable Energy Systems: An Overview. Sustainability 2018, 10, 3067. [Google Scholar] [CrossRef]
- Al-Abri, T.; Onen, A.; Al-Abri, R.; Hossen, A.; Al-Hinai, A.; Jung, J.; Ustun, T.S. Review on Energy Application Using Blockchain Technology with an Introductions in the Pricing Infrastructure. IEEE Access 2022, 10, 77093–77114. [Google Scholar] [CrossRef]
- Brilliantova, O.; Turner, A. Sources of emission reductions: Market and policy-stringency effects. Energy Econ. 2019, 77, 59–71. [Google Scholar] [CrossRef]
- Miglani, A.; Kumar, N.; Chamola, V.; Zeadally, S. Blockchain for Internet of Energy management: Review, solutions, and challenges. Comp. Commun. 2020, 151, 395–418. [Google Scholar] [CrossRef]
- Juszczyk, O.; Shahzad, K. Blockchain Technology for Renewable Energy: Principles, Applications and Prospects. Energies 2022, 15, 4603. [Google Scholar] [CrossRef]
- Taherdoost, H. Blockchain Integration and Its Impact on Renewable Energy. Computers 2024, 13, 107. [Google Scholar] [CrossRef]
- Tomin, N.; Shakirov, V.; Kozlov, A.; Sidorov, D.; Kurbatsky, V.; Rehtanz, C.; Lora, E.E. Design and optimal energy management of community microgrids with flexible renewable energy sources. Renew. Energy 2022, 183, 903–921. [Google Scholar] [CrossRef]
- Gough, M.; Lotfi, M.; Catalão, J.P.S.; Santos, S.F.; Osório, G.J. Blockchain-Based Transactive Energy Framework for Connected Virtual Power Plants. IEEE Trans. Ind. Appl. 2022, 58, 60–72. [Google Scholar] [CrossRef]
- Choobineh, M.; Arabnya, A.; Sohrabi, B.; Khodaei, A.; Paaso, A. Blockchain technology in energy systems: A state-of-the-art review. IET Blockch. 2023, 3, 35–59. [Google Scholar] [CrossRef]
- Yildizbasi, A. Blockchain and renewable energy: Integration challenges in circular economy era. Renew. Energy 2021, 176, 183–197. [Google Scholar] [CrossRef]
- Onukwulu, U.N. Advances in Blockchain Integration for Transparent Renewable Energy Supply Chains. Int. J. Res. Sci. Technol. 2024, 3, 038–054. [Google Scholar] [CrossRef]
- Almutairi, K.; Hosseini Dehshiri, S.S.; Hosseini Dehshiri, S.J.; Mostafaeipour, A.; Issakhov, A.; Techato, K. Blockchain Technology Application Challenges in Renewable Energy Supply Chain Management. Environ. Sci. Pollut. Res. 2022, 29, 71142–71168. [Google Scholar] [CrossRef] [PubMed]
- Baashar, Y.; Alkawsi, G.; Al-Ahdal, T.; Ongsakul, W.; Abusorrah, R.; Ting, S.K. Toward Blockchain Technology in the Energy Environment. Sustainability 2021, 13, 9008. [Google Scholar] [CrossRef]
- Sahebi, I.G.; Mosayebi, A.; Masoomi, B.; Marandi, F. Modeling the enablers for blockchain technology adoption in renewable energy supply chain. Technol. Soc. 2022, 68, 101871. [Google Scholar] [CrossRef]
- Waseem, M.; Khan, M.A.; Goudarzi, A.; Fahad, S.; Sajjad, I.A.; Siano, P. Incorporation of Blockchain Technology for Different Smart Grid Applications: Architecture, Prospects, and Challenges. Energies 2023, 16, 820. [Google Scholar] [CrossRef]
- Wang, T.; Hua, H.; Wei, Z.; Cao, J. Challenges of blockchain in new generation energy systems and future outlooks. Int. J. Electr. Power Energy Syst. 2022, 135, 107499. [Google Scholar] [CrossRef]
- Babaei, A.; Tirkolaee, E.B.; Ali, S.S. Assessing the viability of blockchain technology in renewable energy supply chains: A consolidation framework. Renew. Sustain. Energy Rev. 2025, 212, 115444. [Google Scholar] [CrossRef]
- Liu, W.-J.; Chiu, W.-Y.; Hua, W. Blockchain-enabled renewable energy certificate trading: A secure and privacy-preserving approach. Energy 2024, 290, 130110. [Google Scholar] [CrossRef]
- Xu, Y.; Tao, X.; Das, M.; Kwok, H.H.L.; Liu, H.; Kuan, K.K.L.; Lau, A.K.H.; Cheng, J.C.P. A blockchain-based framework for carbon management towards construction material and product certification. Adv. Eng. Inform. 2024, 61, 102242. [Google Scholar] [CrossRef]
- Dang, D.; Bui, V.; Do, T.; Nguyen, L. Blockchain-Powered Carbon Credits Market: Decentralized Solutions for Climate Action. In Proceedings of the 2nd International Conference—Resilience by Technology and Design (RTD 2024), Ho Chi Minh City, Vietnam, 15–17 July 2024; pp. 480–493. [Google Scholar] [CrossRef]
- Danish, S.M.; Zhang, K.; Amara, F.; Cepeda, J.C.O.; Vasquez, L.F.R.; Marynowski, T. Blockchain for Energy Credits and Certificates: A Comprehensive Review. IEEE Trans. Sustain. Comput. 2024, 9, 727–739. [Google Scholar] [CrossRef]
- Pop, C.; Cioara, T.; Antal, M.; Anghel, I.; Salomie, I.; Bertoncini, M. Blockchain Based Decentralized Management of Demand Response Programs in Smart Energy Grids. Sensors 2018, 18, 162. [Google Scholar] [CrossRef]
- Gür, A.Ö.; Öksüzer, Ş.; Karaarslan, E. Blockchain Based Metering and Billing System Proposal with Privacy Protection for the Electric Network. In Proceedings of the 7th International Istanbul Smart Grids and Cities Congress and Fair (ICSG), Istanbul, Turkey, 25–26 April 2019; pp. 204–208. [Google Scholar] [CrossRef]
- Saxena, S.; Farag, H.; Brookson, A.; Turesson, H.; Kim, H. Design and Field Implementation of Blockchain Based Renewable Energy Trading in Residential Communities. In Proceedings of the 2nd International Conference on Smart Grid and Renewable Energy (SGRE), Doha, Qatar, 19–21 November 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, Y.; Cimen, H.; Vasquez, J.C.; Guerrero, J.M. Towards collective energy Community: Potential roles of microgrid and blockchain to go beyond P2P energy trading. Appl. Energy 2022, 314, 119003. [Google Scholar] [CrossRef]
- Montakhabi, M.; Madhusudan, A.; Mustafa, M.A.; Vanhaverbeke, W.; Almirall, E.; van der Graaf, S. Leveraging Blockchain for Energy Transition in Urban Contexts. Big Data Soc. 2023, 10. [Google Scholar] [CrossRef]
- Lin, Z.; Wang, T.; Shi, L.; Zhang, S.; Cao, B. Decentralized Physical Infrastructure Networks (DePIN): Challenges and Opportunities. IEEE Netw. 2025, 39, 91–99. [Google Scholar] [CrossRef]
- Aoudia, M.; Alaraj, M.B.M.; Abu Waraga, O.; Mokhamed, T.; Abu Talib, M.; Bettayeb, M.; Nasir, Q.; Ghenai, C. Toward Better Blockchain-Enabled Energy Trading between Electric Vehicles and Smart Grids in Internet of Things Environments: A Survey. Front. Energy Res. 2024, 12, 1393084. [Google Scholar] [CrossRef]
- Zhang, J.; Lin, Z.; Chen, J. Leveraging Blockchain for Enhanced Visibility and Sustainability in the Energy Sector Supply Chain. Int. J. Electr. Power Energy Syst. 2024, 2, 17–26. [Google Scholar] [CrossRef]
- Bohr, M.; Goschnick, P.; Brecht, P.; Hahn, C.H. Tokenization as the Driver for the Transition to Green Energy Systems: A Bibliometric Analysis and Perspectives of Technology Providers, Financial Institutions, and Energy Industry Experts. In Proceedings of the 7th European Industrial Engineering and Operations Management Conference (IEOM), Augsburg, Germany, 16–18 July 2024. [Google Scholar] [CrossRef]
- Sharshar, M.; Elzeky, K.; Othman, M.; Khaled, S.; Moubarak, H.; Gomaa, W. Blockchain-Based Framework for Stock Market Operations: IPOs, Trading, and Dividend Distribution. In Proceedings of the IEEE International Conference on Cloud Computing Technology and Science (CloudCom), Abu Dhabi, United Arab Emirates, 9–11 December 2024; pp. 25–32. [Google Scholar] [CrossRef]
- Umar, A.; Kumar, D.; Ghose, T.; Alghamdi, T.A.H.; Abdelaziz, A.Y. Decentralized Community Energy Management: Enhancing Demand Response Through Smart Contracts in a Blockchain Network. IEEE Access 2024, 12, 80781–80798. [Google Scholar] [CrossRef]
- Tesfamicael, A.D.; Liu, V.; McKague, M.; Caelli, W.; Foo, E. A Design for a Secure Energy Market Trading System in a National Wholesale Electricity Market. IEEE Access 2020, 8, 132424–132445. [Google Scholar] [CrossRef]
- Bassey, K.E.; Rajput, S.A.; Oyewale, K. Peer-to-peer energy trading: Innovations, regulatory challenges, and the future of decentralized energy systems. World J. Adv. Res. Rev. 2024, 24, 172–186. [Google Scholar] [CrossRef]
- He, X.; Zhang, M. Blockchain-Based energy trading in Renewable-Based community based Self-Sufficient Utility: Analysis of Technical, Economic, and regulatory aspects. Sustain. Energy Technol. Assess. 2024, 64, 103679. [Google Scholar] [CrossRef]
- Zheng, Z.; Xie, S.; Dai, H.; Chen, X.; Wang, H. An Overview of Blockchain Technology: Architecture, Consensus, and Future Trends. In Proceedings of the IEEE International Congress on Big Data (BigData Congress), Honolulu, HI, USA, 25–30 June 2017; pp. 557–564. [Google Scholar] [CrossRef]
- He, Y.; Zhou, Z.; Pan, Y.; Chong, F.; Wu, B.; Xiao, K.; Li, H. Review of Data Security within Energy Blockchain: A Comprehensive Analysis of Storage, Management, and Utilization. High-Confid. Comput. 2024, 4, 100233. [Google Scholar] [CrossRef]
- Zhang, X.; Jiang, S.; Liu, Y.; Jiang, T.; Zhou, Y. Privacy-Preserving Scheme with Account-Mapping and Noise-Adding for Energy Trading Based on Consortium Blockchain. IEEE Trans. Netw. Serv. Manag. 2022, 19, 569–581. [Google Scholar] [CrossRef]
- Sun, X.; Yu, F.R.; Zhang, P.; Sun, Z.; Xie, W.; Peng, X. A Survey on Zero-Knowledge Proof in Blockchain. IEEE Netw. 2021, 35, 198–205. [Google Scholar] [CrossRef]
- Zhou, L.; Diro, A.; Saini, A.; Kaisar, S.; Hiep, P.C. Leveraging Zero Knowledge Proofs for Blockchain-Based Identity Sharing: A Survey of Advancements, Challenges, and Opportunities. J. Inf. Secur. Appl. 2024, 80, 103678. [Google Scholar] [CrossRef]
- Al-Aswad, M.A.; Hasan, R.; Elmedany, W.; Ali, M.; Balakrishna, C. Towards a Blockchain-Based Zero-Knowledge Model for Secure Data Sharing and Access. In Proceedings of the 7th IEEE International Conference on Future Internet of Things and Cloud (FiCloud), Istanbul, Turkey, 26–28 August 2019; pp. 76–82. [Google Scholar] [CrossRef]
- Groth, J. On the Size of Pairing-Based Non-interactive Arguments. In Advances in Cryptology—EUROCRYPT 2016; Fischlin, M., Coron, J.-S., Eds.; Lecture Notes in Computer Science; Springer: Berlin, Heidelberg, 2016; Volume 9666. [Google Scholar] [CrossRef]
- Electric Coin Company. NU5 Activation: Zcash’s Halo Arc Eliminates Trusted Setup. 2022. Available online: https://electriccoin.co/blog/nu5-activation/ (accessed on 20 August 2025).
- Samardzic, N.; Langowski, S.; Devadas, S.; Sanchez, D. Accelerating Zero-Knowledge Proofs Through Hardware-Algorithm Co-Design. In Proceedings of the 2024 57th IEEE/ACM International Symposium on Microarchitecture (MICRO), Austin, TX, USA, 2–6 November 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 366–379. [Google Scholar] [CrossRef]
- Derei, T.; Aulenbach, B.; Carolino, V.; Geren, C.; Kaufman, M.; Klein, J.; Shanto, R.I.; Korth, H.F. Scaling Zero-Knowledge to Verifiable Databases. In Proceedings of the 1st Workshop on Verifiable Database Systems (VDBS ’23), Seattle, WA, USA, 23 June 2023; Association for Computing Machinery: New York, NY, USA, 2023; pp. 1–9. [Google Scholar] [CrossRef]
- Ben-Sasson, E.; Bentov, I.; Horesh, Y.; Riabzev, M. Scalable Zero Knowledge with No Trusted Setup. In Advances in Cryptology—CRYPTO 2019; Boldyreva, A., Micciancio, D., Eds.; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2019; Volume 11694. [Google Scholar] [CrossRef]
- El-Hajj, M.; Oude Roelink, B. Evaluating the Efficiency of zk-SNARK, zk-STARK, and Bulletproof in Real-World Scenarios: A Benchmark Study. Information 2024, 15, 463. [Google Scholar] [CrossRef]
- PJM Learning Center. Available online: https://learn.pjm.com/ (accessed on 20 August 2025).
- California Energy Commission. Smart Meter Data Latency and Interval Requirements. 2022. Available online: https://www.energy.ca.gov (accessed on 21 August 2025).
- OpenADR Alliance. OpenADR 2.0 Profile Specification. 2020. Available online: https://www.openadr.org/specification (accessed on 21 August 2025).
- Zhang, T.; Wang, Y.; Ding, Y.; Wu, Q.; Liang, H.; Wang, H. Multi-Party Electronic Contract Signing Protocol Based on Blockchain. IEICE Trans. Inf. Syst. 2022, 105, 264–271. [Google Scholar] [CrossRef]
- Nassar, S.; Hamdy, A.; Nagaty, K. Hybrid zk-STARK and zk-SNARK Framework for Privacy-Preserving Smart Contract Data Feeds. In Proceedings of the 2024 International Conference on Computer and Applications (ICCA), Cairo, Egypt, 17–19 December 2024; pp. 1–7. [Google Scholar] [CrossRef]
- Aitzhan, N.Z.; Svetinovic, D. Security and Privacy in Decentralized Energy Trading Through Multi-Signatures, Blockchain and Anonymous Messaging Streams. IEEE Trans. Dependable Secur. Comput. 2018, 15, 840–852. [Google Scholar] [CrossRef]
- Meiklejohn, S.; Pomarole, M.; Jordan, G.; Levchenko, K.; McCoy, D.; Voelker, G.M.; Savage, S. A Fistful of Bitcoins: Characterizing Payments among Men with No Names. Commun. ACM 2016, 59, 86–93. [Google Scholar] [CrossRef]
- Heilman, E.; AlShenibr, L.; Baldimtsi, F.; Scafuro, A.; Goldberg, S. TumbleBit: An Untrusted Bitcoin-Compatible Anonymous Payment Hub. In Proceedings of the NDSS Symposium 2017, San Diego, CA, USA, 26 February–1 March 2017; The Internet Society: San Diego, CA, USA, 2017; Available online: https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/tumblebit-untrusted-bitcoin-compatible-anonymous-payment-hub/ (accessed on 21 August 2025).
- Warren, J.; Bitmessage: A Peer-to-Peer Message Authentication and Delivery System. White Paper, 27 November 2012. Available online: https://bitmessage.org/bitmessage.pdf (accessed on 22 August 2025).
- Gueron, S.; Intel® Advanced Encryption Standard (AES) New Instructions Set. White Paper, May 2010. Intel Corporation. Available online: https://www.intel.com/content/dam/doc/white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf (accessed on 22 August 2025).
- Von der Heyden, J.; Schlüter, N.; Binfet, P.; Asman, M.; Zdrallek, M.; Jager, T.; Darup, M.S. Privacy-Preserving Power Flow Analysis via Secure Multi-Party Computation. IEEE Trans. Smart Grid 2025, 16, 344–355. [Google Scholar] [CrossRef]
- Mu, C.; Ding, T.; Sun, Y.; Huang, Y.; Li, F.; Siano, P. Energy Block-Based Peer-to-Peer Contract Trading with Secure Multi-Party Computation in Nanogrid. IEEE Trans. Smart Grid 2022, 13, 4759–4772. [Google Scholar] [CrossRef]
- Lindell, Y. Secure Multiparty Computation. Commun. ACM 2021, 64, 86–96. [Google Scholar] [CrossRef]
- Keller, M.; Pastro, V.; Rotaru, D. Overdrive: Making SPDZ Great Again. In Advances in Cryptology—EUROCRYPT 2018; Nielsen, J., Rijmen, V., Eds.; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2018; Volume 10822. [Google Scholar] [CrossRef]
- Mohassel, P.; Rindal, P. ABY3: A Mixed Protocol Framework for Machine Learning. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security (CCS ’18), Toronto, Canada, 15–19 October 2018; Association for Computing Machinery: New York, NY, USA, 2018; pp. 35–52. [Google Scholar] [CrossRef]
- Wang, N.; Chau, S.C.-K.; Zhou, Y. Privacy-Preserving Energy Storage Sharing with Blockchain and Secure Multi-Party Computation. SIGENERGY Energy Inform. Rev. 2021, 1, 32–50. [Google Scholar] [CrossRef]
- Raj, R.; Kurt Peker, Y.; Mutlu, Z.D. Blockchain and Homomorphic Encryption for Data Security and Statistical Privacy. Electronics 2024, 13, 3050. [Google Scholar] [CrossRef]
- Zhou, Y.; Huang, H.; Liao, W.; Liu, J.; Ying, X.; Zhang, C.; Luo, E. CRT-Paillier Homomorphic Privacy Protection Scheme Based on BLS Signatures in Mobile Vehicular Networks. In Proceedings of the 2024 IEEE International Conferences on Internet of Things (iThings), Green Computing & Communica-tions (GreenCom), Cyber, Physical & Social Computing (CPSCom), Smart Data (SmartData) and Congress on Cybermatics, Copenhagen, Denmark, 19–22 August 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 489–496. [Google Scholar] [CrossRef]
- Wang, W.; Hu, Y.; Chen, L.; Huang, X.; Sunar, B. Exploring the Feasibility of Fully Homomorphic Encryption. IEEE Trans. Comput. 2015, 64, 698–706. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Y.; Li, T.; Ren, X. A Regulatable Data Privacy Protection Scheme for Energy Transactions Based on Consortium Blockchain. Secur. Commun. Netw. 2021, 2021, 4840253. [Google Scholar] [CrossRef]
- Ye, Q.; Wang, M.; Meng, H.; Xia, F.; Yan, X. Efficient Linkable Ring Signature Scheme over NTRU Lattice with Unconditional Anonymity. Comput. Intell. Neurosci. 2022, 2022, 8431874. [Google Scholar] [CrossRef]
- Wang, D.; Zhao, J.; Wang, Y. A Survey on Privacy Protection of Blockchain: The Technology and Application. IEEE Access 2020, 8, 108766–108781. [Google Scholar] [CrossRef]
- Bao, Z.; Wang, Q.; Shi, W.; Wang, L.; Lei, H.; Chen, B. When Blockchain Meets SGX: An Overview, Challenges, and Open Issues. IEEE Access 2020, 8, 170404–170420. [Google Scholar] [CrossRef]
- Brenzikofer, A.; Melchior, N. Privacy-Preserving P2P Energy Market on the Blockchain. arXiv 2019, arXiv:1905.07940. [Google Scholar] [CrossRef]
- Mahhouk, M.; Weichbrodt, N.; Kapitza, R. SGXoMeter: Open and Modular Benchmarking for Intel SGX. In Proceedings of the 14th European Workshop on Systems Security (EuroSec ’21), Edinburgh, UK, 26 April 2021; Association for Computing Machinery: New York, NY, USA, 2021; pp. 55–61. [Google Scholar] [CrossRef]
- Hardin, T.; Kotz, D. Amanuensis: Provenance, Privacy, and Permission in TEE-Enabled Blockchain Data Systems. In Proceedings of the 2022 IEEE 42nd International Conference on Distributed Computing Systems (ICDCS), Bologna, Italy, 10–13 July 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 144–156. [Google Scholar] [CrossRef]
- Qashlan, A.; Nanda, P.; Mohanty, M. Differential Privacy Model for Blockchain-Based Smart Home Architecture. Future Gener. Comput. Syst. 2024, 150, 49–63. [Google Scholar] [CrossRef]
- Hafeez, K.; Rehmani, M.H.; Mishra, S.; O’Shea, D. Practical Implications of Implementing Local Differential Privacy for Smart Grids. IEEE Commun. Mag. 2025, 63, 125–131. [Google Scholar] [CrossRef]
- Bontekoe, T.; Asghar, H.J.; Turkmen, F. Efficient Verifiable Differential Privacy with Input Authenticity in the Local and Shuffle Model. arXiv 2024, arXiv:2406.18940. [Google Scholar] [CrossRef]
- Dwork, C.; Roth, A. The Algorithmic Foundations of Differential Privacy. Found. Trends Theor. Comput. Sci. 2014, 9, 211–407. [Google Scholar] [CrossRef]
- Feng, G.; Mu, T.; Lyu, H.; Yang, H.; Lai, Y.; Li, H. A Lightweight Attribute-Based Encryption Scheme for Data Access Control in Smart Grids. In Proceedings of the 5th IEEE International Conference on Computer and Communication Engineering Technology (CCET), Beijing, China, 19–21 August 2022; pp. 280–284. [Google Scholar] [CrossRef]
- La Manna, M.; Treccozzi, L.; Perazzo, P.; Saponara, S.; Dini, G. Performance Evaluation of Attribute-Based Encryption in Automotive Embedded Platform for Secure Software Over-The-Air Update. Sensors 2021, 21, 515. [Google Scholar] [CrossRef]
- Otoum, S.; Ridhawi, I.A.; Mouftah, H. A Federated Learning and Blockchain-Enabled Sustainable Energy Trade at the Edge: A Framework for Industry 4.0. IEEE Internet Things J. 2023, 10, 3018–3026. [Google Scholar] [CrossRef]
- Li, T.; Sahu, A.K.; Talwalkar, A.; Smith, V. Federated Learning: Challenges, Methods, and Future Directions. IEEE Signal Process. Mag. 2020, 37, 50–60. [Google Scholar] [CrossRef]
- Waheed, U.; Khan, S.A.; Masud, M.; Jamshed, H.; Jumani, T.A.; Malik, N.U.R. Blockchain-Based, Dynamic Attribute-Based Access Control for Smart Home Energy Systems. Energies 2025, 18, 1973. [Google Scholar] [CrossRef]
- Rai, H.M.; Shukla, K.K.; Tightiz, L.; Padmanaban, S. Enhancing Data Security and Privacy in Energy Applications: Integrating IoT and Blockchain Technologies. Heliyon 2024, 10, e38917. [Google Scholar] [CrossRef] [PubMed]
- Bulgakov, A.L.; Aleshina, A.V.; Smirnov, S.D.; Demidov, A.D.; Milyutin, M.A.; Xin, Y. Scalability and Security in Blockchain Networks: Evaluation of Sharding Algorithms and Prospects for Decentralized Data Storage. Mathematics 2024, 12, 3860. [Google Scholar] [CrossRef]
- Krichen, M.; Lahami, M.; Al–Haija, Q.A. Formal Methods for the Verification of Smart Contracts: A Review. In Proceedings of the 15th International Conference on Security of Information and Networks (SIN), Sousse, Tunisia, 11–13 November 2022; pp. 1–8. [Google Scholar] [CrossRef]
- Hu, B.; Zhou, C.; Tian, Y.-C.; Qin, Y.; Junping, X. A Collaborative Intrusion Detection Approach Using Blockchain for Multimicrogrid Systems. IEEE Trans. Syst. Man. Cybern. Syst. 2019, 49, 1720–1730. [Google Scholar] [CrossRef]
- Liang, W.; Xiao, L.; Zhang, K.; Tang, M.; He, D.; Li, K.-C. Data Fusion Approach for Collaborative Anomaly Intrusion Detection in Blockchain-Based Systems. IEEE Internet Things J. 2022, 9, 14741–14751. [Google Scholar] [CrossRef]
- George, L.; Kizhakkethottam, J.J. A Comparative Study of Zero Knowledge Proof and Homomorphic Encryption in Guaranteeing Data Privacy in Blockchain Applications. Int. J. Adv. Res. 2021, 9, 359–361. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, C. Privacy protection method for blockchain transaction data based on homomorphic encryption and zero-knowledge proof. In Proceedings of the International Conference on Computer Application and Information Security (ICCAIS), online, 21 March 2023. [Google Scholar] [CrossRef]
- Dhokrat, J.G.; Pulgam, N.; Maktum, T.; Mane, V.A. Framework for Privacy-Preserving Multiparty Computation with Homomorphic Encryption and Zero-Knowledge Proofs. Informatica 2024, 48, 1–14. [Google Scholar] [CrossRef]
- Sonkar, S. Recent Innovations in AI Privacy: Protecting Data in the Age of Machine Learning. Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol. 2025, 11, 611–619. [Google Scholar] [CrossRef]
- Zhuo, Y. Research on Blockchain Interactive Zero Knowledge Proof Privacy Protection Scheme Based on Improved Paillier Homomorphic Encryption. Front. Sci. Eng. 2025, 11, 611–619. [Google Scholar] [CrossRef]
- Ranaweera, T.A.V.; Hewage, H.N.H.; Hapuhinna, H.K.D.W.M.C.B.; Preethilal, K.L.K.T.; Senarathne, A.; Ruggahakotuwa, L. Ensuring Electronic Health Record (EHR) Privacy using Zero Knowledge Proofs (ZKP) and Secure Encryption Schemes on Blockchain. In Proceedings of the 5th International Conference on Advancements in Computing (ICAC), Colombo, Sri Lanka, 7–8 December 2023; pp. 792–797. [Google Scholar] [CrossRef]
- Al Shareef, A.M.; Seçkiner, S.; Eid, B.; Abumeteir, H. Integration of Blockchain with Artificial Intelligence Technologies in the Energy Sector: A Systematic Review. Front. Energy Res. 2024, 12, 1377950. [Google Scholar] [CrossRef]
- Khan, A.A.; Laghari, A.A.; Rashid, M.; Li, H.; Javed, A.R.; Gadekallu, T.R. Artificial Intelligence and Blockchain Technology for Secure Smart-Grid and Power-Distribution Automation: A State-of-the-Art Review. Sustain. Energy Technol. Assess. 2023, 57, 103282. [Google Scholar] [CrossRef]
- Li, J.; Herdem, M.S.; Nathwani, J.; Wen, J.Z. Methods and Applications for Artificial Intelligence, Big Data, Internet-of-Things, and Blockchain in Smart Energy Management. Energy AI 2023, 11, 100208. [Google Scholar] [CrossRef]
- Antal, M.; Mihailescu, V.; Cioara, T.; Anghel, I. Blockchain-Based Distributed Federated Learning in Smart Grid. Mathematics 2022, 10, 4499. [Google Scholar] [CrossRef]
- Banerjee, R.; Koti, S.; Singh, G.; Chakraborty, A.; Gurrala, G.; Jagyasi, B.; Simmhan, Y. Optimizing Federated Learning for Scalable Power-demand Forecasting in Microgrids. arXiv 2025, arXiv:2508.08022. [Google Scholar] [CrossRef]
- Liu, L.; Omote, K. A traceable authentication system based on blockchain for decentralized physical infrastructure networks. Sci. Rep. 2025, 15, 16708. [Google Scholar] [CrossRef] [PubMed]
- O’Donovan, P.; O’Sullivan, D.T.A. Systematic analysis of real-world energy blockchain initiatives. Future Internet 2019, 11, 174. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uche-Soria, M.; Martínez Raya, A.; Muñoz Cabanes, A.; Moya Velasco, J. Redefining Transactions, Trust, and Transparency in the Energy Market from Blockchain-Driven Technology. Technologies 2025, 13, 412. https://doi.org/10.3390/technologies13090412
Uche-Soria M, Martínez Raya A, Muñoz Cabanes A, Moya Velasco J. Redefining Transactions, Trust, and Transparency in the Energy Market from Blockchain-Driven Technology. Technologies. 2025; 13(9):412. https://doi.org/10.3390/technologies13090412
Chicago/Turabian StyleUche-Soria, Manuel, Antonio Martínez Raya, Alberto Muñoz Cabanes, and Jorge Moya Velasco. 2025. "Redefining Transactions, Trust, and Transparency in the Energy Market from Blockchain-Driven Technology" Technologies 13, no. 9: 412. https://doi.org/10.3390/technologies13090412
APA StyleUche-Soria, M., Martínez Raya, A., Muñoz Cabanes, A., & Moya Velasco, J. (2025). Redefining Transactions, Trust, and Transparency in the Energy Market from Blockchain-Driven Technology. Technologies, 13(9), 412. https://doi.org/10.3390/technologies13090412