Influence of Filament Moisture on 3D Printing Nylon †
Abstract
1. Introduction
2. Experiment
3. Results and Discussion
3.1. Moisture Measurement
3.2. Extruded Material
3.3. Surface Finish
3.4. Mechanical Testing
3.5. Thermal Testing
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Klenam, D.E.P.; McBagonluri, F.; Asumadu, T.K.; Osafo, S.A.; Bodunrin, M.O.; Agyepong, L.; Osei, E.D.; Mornah, D.; Soboyejo, W.O. Additive manufacturing: Shaping the future of the manufacturing industry—Overview of trends, challenges and opportunities. Appl. Eng. Sci. 2025, 22, 100224. [Google Scholar]
- Gibson, I.; Rosen, D.; Stucker, B.; Khorasani, M. Additive Manufacturing Technologies, 3rd ed.; Springer: Cham, Switzerland, 2020; pp. 188–191. [Google Scholar]
- Kleba-Ehrhardt, R.; Jastram, B.; Heinze, C.; Gordei, A.; Gurlo, A.; Karl, D. Effect of relative humidity on powder flowability and powder bed formation in additive manufacturing. Addit. Manuf. 2025, 109, 104862. [Google Scholar] [CrossRef]
- Mattingly, F.; Kumar, V.; Chawla, K.; Bras, W.; Kunc, V.; Duty, C. Vacuum-assisted extrusion to reduce internal porosity in large-format additive manufacturing. Addit. Manuf. 2025, 97, 104612. [Google Scholar]
- Al-Mazrouei, N.; Al-Marzouqi, A.H.; Ahmed, W. Characterization and sustainability potential of recycling 3D-printed nylon composite wastes. Sustainability 2022, 14, 10458. [Google Scholar] [CrossRef]
- Agrawal, K.; Bhat, A.R. Advances in 3D printing with eco-friendly materials: A sustainable approach to manufacturing. RSC Sustain. 2025, 3, 2582–2604. [Google Scholar] [CrossRef]
- Tuli, N.T.; Khatun, S.; Rashid, A.B. Unlocking the future of precision manufacturing: A comprehensive exploration of 3D printing with fiber-reinforced composites in aerospace, automotive, medical, and consumer industries. Heliyon 2024, 10, e27328. [Google Scholar] [CrossRef]
- Lee, S.; Wee, J.W. Effect of temperature and relative humidity on hydrolytic degradation of additively manufactured PLA: Characterization and artificial neural network modeling. Polym. Degrad. Stab. 2024, 230, 111055. [Google Scholar] [CrossRef]
- Lendvai, L.; Fekete, I.; Jakab, S.K.; Szarka, G.; Verebélyi, K.; Iván, B. Influence of environmental humidity during filament storage on the structural and mechanical properties of material extrusion 3D-printed poly (lactic acid) parts. Results Eng. 2024, 24, 103013. [Google Scholar] [CrossRef]
- Palaniappan, M.; Tirlangi, S.; Mohamed, M.J.S.; Sathiya Moorthy, R.M.; Valet, S.V.; Boopathi, S. Fused deposition modelling of polylactic acid (PLA)-based polymer composites: A case study, development, properties, and industrial applications of 3D printed polymer composites. In Development, Properties, and Industrial Applications of 3D Printed Polymer Composites; Keshavamurthy, R., Tambrallimath, V., Davim, J.P., Eds.; IGI Global: Hershey, PA, USA, 2023; pp. 66–85. [Google Scholar]
- Menezes, O.; Roberts, T.; Motta, G.; Patrenos, M.; McCurdy, W.; Alotaibi, A.; Vanderpool, M.; Vaseghi, M.; Beheshti, A.; Davami, K. Performance of additively manufactured polylactic acid (PLA) in prolonged marine environments. Polym. Degrad. Stab. 2022, 199, 109903. [Google Scholar] [CrossRef]
- Kakanuru, P.; Pochiraju, K. Moisture ingress and degradation of additively manufactured PLA, ABS and PLA/SiC composite parts. Addit. Manuf. 2020, 36, 101529. [Google Scholar]
- Fang, L.; Yan, Y.; Agarwal, O.; Yao, S.; Seppala, J.E.; Kang, S.H. Effects of environmental temperature and humidity on the geometry and strength of polycarbonate specimens prepared by fused filament fabrication. Materials 2020, 13, 4414. [Google Scholar] [CrossRef] [PubMed]
- Wichniarek, R.; Hamrol, A.; Kuczko, W.; Górski, F.; Rogalewicz, M. ABS filament moisture compensation possibilities in the FDM process. CIRP J. Manuf. Sci. Technol. 2021, 35, 550–559. [Google Scholar] [CrossRef]
- Zaldivar, R.J.; Mclouth, T.D.; Ferrelli, G.L.; Patel, D.N.; Hopkins, A.R.; Witkin, D. Effect of initial filament moisture content on the microstructure and mechanical performance of ULTEM® 9085 3D printed parts. Addit. Manuf. 2018, 24, 457–466. [Google Scholar]
- Vidakis, N.; Petousis, M.; Michailidis, N.; Papadakis, V.; Mountakis, N.; Argyros, A.; Spiridaki, M.; Valsamos, J. Cyclic economy driven additive manufacturing: Valorization of mechanically recycled poly(methyl methacrylate) scrap in material extrusion 3D printing. J. Clean. Prod. 2025, 486, 144639. [Google Scholar]
- Nikiema, D.; Balland, P.; Sergent, A. Study of the mechanical properties of 3D-printed Onyx parts: Investigation on printing parameters and effect of humidity. Chin. J. Mech. Eng. Addit. Manuf. Front. 2023, 2, 100075. [Google Scholar] [CrossRef]
- Okwuosa, T.C.; Sadia, M.; Isreb, A.; Habashy, R.; Peak, M.; Alhnan, M.A. Can filaments be stored as a shelf-item for on-demand manufacturing of oral 3D printed tablets? An initial stability assessment. Int. J. Pharm. 2021, 600, 120442. [Google Scholar]
- Shahmirzadi, M.R.; Gholampour, A.; Kashani, A.; Ngo, T.D. Shrinkage behavior of cementitious 3D printing materials: Effect of temperature and relative humidity. Cem. Concr. Compos. 2021, 124, 104238. [Google Scholar] [CrossRef]
- Monson, L.; Braunwarth, M.; Extrand, C.W. Moisture absorption by various polyamides and their associated dimensional changes. J. Appl. Polym. Sci. 2008, 107, 355–363. [Google Scholar]
- Banjo, A.D.; Agrawal, V.; Auad, M.L.; Celestine, A.N. Moisture-induced changes in the mechanical behavior of 3D printed polymers. Compos. Part C Open Access 2022, 7, 100243. [Google Scholar]
- Pillay, S.; Vaidya, U.K.; Janowski, G.M. Effects of moisture and UV exposure on liquid molded carbon fabric reinforced nylon 6 composite laminates. Compos. Sci. Technol. 2009, 69, 839–846. [Google Scholar] [CrossRef]
- Hou, Y.; Panesar, A. The moisture absorption of additively manufactured short carbon fibre reinforced polyamide. Compos. Part A 2025, 188, 108528. [Google Scholar]
- Hadi, A.; Kadauw, A.; Zeidler, H. The effect of printing temperature and moisture on tensile properties of 3D printed glass fiber reinforced nylon 6. Mater. Today Proc. 2023, 91, 48–55. [Google Scholar]
- Achhammer, B.G.; Reinhart, F.W.; Kline, G.M. Mechanism of the degradation of polyamides. J. Res. Natl. Bur. Stand. 1951, 46, 391–421. [Google Scholar] [CrossRef]
- Fan, X. Mechanics of moisture for polymers: Fundamental concepts and model study. In Proceedings of the EuroSimE 2008—International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Micro-Systems, Freiburg im Breisgau, Germany, 20–23 April 2008; IEEE: Piscataway, NJ, USA, 2008. [Google Scholar]
- ASTM D638; Standard Test Method for Tensile Properties of Plastics. ASTM International: West Conshohocken, PA, USA, 2014.
- ASTM D256; Standard Test Methods for Determining the Izod Pendulum Impact Resistance of Plastics. ASTM International: West Conshohocken, PA, USA, 2024.
- ISO 17295; Additive Manufacturing—General Principles: Part Positioning, Coordinates and Orientation. International Organization for Standardization: Geneva, Switzerland, 2023.
- Lay, M.; Thajudin, N.L.N.; Hamid, Z.A.A.; Rusli, A.; Abdullah, M.K.; Shuib, R.K. Comparison of physical and mechanical properties of PLA, ABS and nylon 6 fabricated using fused deposition modeling and injection molding. Compos. Part B 2019, 176, 107341. [Google Scholar]
- Ramesh, M.; Panneerselvam, K. Mechanical investigation and optimization of parameter selection for Nylon material processed by FDM. Mater. Today Proc. 2021, 46, 9303–9307. [Google Scholar]
- Shashikumar, S.; Sreekanth, M.S. The effect of printing parameters on tensile properties of thermoplastics prepared by fused deposition modeling (FDM) based additive manufacturing technique. Mater. Today Proc. 2023, 90, 256–261. [Google Scholar]
- Ngo, C.; Nguyen, Q.A.; Le, N.; Le, N.L.L.; Nguyen, Q.H. Fabrication of airy, lightweight polymer below-elbow cast by a combination of 3D scanning and 3D printing. In Proceedings of the IFToMM Asian Conference on Mechanism and Machine Science, Hanoi, Vietnam, 15–18 December 2021; Springer International Publishing: Cham, Switzerland, 2021; pp. 628–637. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, H.; Runzi, M.; Wang, Z.; Wu, L.; Zhang, Y. Influence of Filament Moisture on 3D Printing Nylon. Technologies 2025, 13, 376. https://doi.org/10.3390/technologies13080376
Gong H, Runzi M, Wang Z, Wu L, Zhang Y. Influence of Filament Moisture on 3D Printing Nylon. Technologies. 2025; 13(8):376. https://doi.org/10.3390/technologies13080376
Chicago/Turabian StyleGong, Haijun, Michael Runzi, Zezheng Wang, Lianjun Wu, and Yue Zhang. 2025. "Influence of Filament Moisture on 3D Printing Nylon" Technologies 13, no. 8: 376. https://doi.org/10.3390/technologies13080376
APA StyleGong, H., Runzi, M., Wang, Z., Wu, L., & Zhang, Y. (2025). Influence of Filament Moisture on 3D Printing Nylon. Technologies, 13(8), 376. https://doi.org/10.3390/technologies13080376