Photocatalytic Degradation of Toxic Dyes on Cu and Al Co-Doped ZnO Nanostructured Films: A Comparative Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Sol–Gel Synthesis of Nanostructured ZnO:Al:Cu Films
2.2. Approach to Investigation of the Sample Surface Using SEM and of the Sample Crystal Structure Using XRD
2.3. Approach to Investigation of the Sample Composition Uisng FTIR
2.4. Approach to Investigation of the Sample Atomic Composition Using XPS
2.5. Approach to Investigation of the Photocatalytic Properties of Samples Under the Influence of Ultraviolet and Visible Radiation
3. Results and Discussion
3.1. Results of the Sample Crystal Structure
3.2. Results of the Sample Surface Morphoiogy According to SEM Investigation
3.3. Results of the Sample Composition According to FTIR Measurements
3.4. Results of the Sample Atomic Composition According to XPS Investigation
3.5. Results of the Sample Composition According to EDX Measurements
3.6. Photocatalytic Properties of Samples Under the Influence of Ultraviolet and Visible Radiation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, X.; Fu, L.; Karimi-Maleh, H.; Chen, F.; Zhao, S. Innovations in WO3 Gas Sensors: Nanostructure Engineering, Functionalization, and Future Perspectives. Heliyon 2024, 10, e27740. [Google Scholar] [CrossRef]
- Kandasamy, M.; Sahoo, S.; Nayak, S.K.; Chakraborty, B.; Rout, C.S. Recent Advances in Engineered Metal Oxide Nanostructures for Supercapacitor Applications: Experimental and Theoretical Aspects. J. Mater. Chem. A 2021, 9, 17643–17700. [Google Scholar] [CrossRef]
- Yang, F.; Yang, T.; Li, J.; Li, P.; Zhang, Q.; Lin, H.; Wu, L. Boosting the Electroreduction of CO2 to Liquid Products via Nanostructure Engineering of Cu2O Catalysts. J. Catal. 2024, 432, 115458. [Google Scholar] [CrossRef]
- Franco, M.A.; Conti, P.P.; Andre, R.S.; Correa, D.S. A Review on Chemiresistive ZnO Gas Sensors. Sens. Actuators Rep. 2022, 4, 100100. [Google Scholar] [CrossRef]
- Altaf, C.T.; Coskun, O.; Kumtepe, A.; Rostas, A.M.; Iatsunskyi, I.; Coy, E.; Erdem, E.; Sankir, M.; Sankir, N.D. Photo-Supercapacitors Based on Nanoscaled ZnO. Sci. Rep. 2022, 12, 11487. [Google Scholar] [CrossRef]
- Qin, L.; Mawignon, F.J.; Hussain, M.; Ange, N.K.; Lu, S.; Hafezi, M.; Dong, G. Economic Friendly ZnO-Based UV Sensors Using Hydrothermal Growth: A Review. Materials 2021, 14, 4083. [Google Scholar] [CrossRef]
- Ahmad, I.; Bousbih, R.; Mahal, A.; Khan, W.Q.; Aljohani, M.; Amin, M.A.; Jafar, N.N.A.; Jabir, M.S.; Majdi, H.; Alshomrany, A.S.; et al. Recent Progress in ZnO-Based Heterostructured Photocatalysts: A Review. Mater. Sci. Semicond. Process. 2024, 180, 108578. [Google Scholar]
- Lal, M.; Sharma, P.; Singh, L.; Ram, C. Photocatalytic Degradation of Hazardous Rhodamine B Dye Using Sol-Gel Mediated Ultrasonic Hydrothermal Synthesized of ZnO Nanoparticles. Results Eng. 2023, 17, 100890. [Google Scholar] [CrossRef]
- Zheng, A.L.T.; Abdullah, C.A.C.; Chung, E.L.T.; Andou, Y. Recent Progress in Visible Light-Doped ZnO Photocatalyst for Pollution Control. Int. J. Environ. Sci. Technol. 2023, 20, 5753–5772. [Google Scholar] [CrossRef]
- Sanakousar, F.M.; Vidyasagar, C.C.; Jiménez-Pérez, V.M.; Prakash, K. Recent Progress on Visible-Light-Driven Metal and Non-Metal Doped ZnO Nanostructures for Photocatalytic Degradation of Organic Pollutants. Mater. Sci. Semicond. Process. 2022, 140, 106390. [Google Scholar] [CrossRef]
- Zare, A.; Saadati, A.; Sheibani, S. Modification of a Z-Scheme ZnO-CuO Nanocomposite by Ag Loading as a Highly Efficient Visible Light Photocatalyst. Mater. Res. Bull. 2023, 158, 112048. [Google Scholar] [CrossRef]
- Jiang, Z.; Cheng, B.; Zhang, L.; Zhang, Z.; Bie, C. A Review on ZnO-Based S-Scheme Heterojunction Photocatalysts. Chin. J. Catal. 2023, 52, 32–49. [Google Scholar] [CrossRef]
- Noman, M.T.; Amor, N.; Petru, M.; Mahmood, A.; Kejzlar, P. Photocatalytic Behaviour of Zinc Oxide Nanostructures on Surface Activation of Polymeric Fibres. Polymers 2021, 13, 1227. [Google Scholar] [CrossRef] [PubMed]
- Shalahuddin Al Ja’farawy, M.; Kusumandari; Purwanto, A.; Widiyandari, H. Carbon Quantum Dots Supported Zinc Oxide (ZnO/CQDs) Efficient Photocatalyst for Organic Pollutant Degradation—A Systematic Review. Environ. Nanotechnol. Monit. Manag. 2022, 18, 100681. [Google Scholar] [CrossRef]
- Zhu, X.; Wang, J.; Yang, D.; Liu, J.; He, L.; Tang, M.; Feng, W.; Wu, X. Fabrication, Characterization and High Photocatalytic Activity of Ag–ZnO Heterojunctions under UV-Visible Light. RSC Adv. 2021, 11, 27257–27266. [Google Scholar] [CrossRef] [PubMed]
- Yao, C.; Lin, J.; Wu, L.; Li, L.; Xu, N.; Sun, J.; Wu, J. High-Visible-Light Photocatalytic Activity of ZnO–Au Nanocomposites Synthesized by a Controlled Hydrothermal Method. Phys. Status Solidi (A) 2021, 218, 2100150. [Google Scholar] [CrossRef]
- Singh, A.; Wan, F.; Yadav, K.; Salvi, A.; Thakur, P.; Thakur, A. Synergistic Effect of ZnO Nanoparticles with Cu2+ Doping on Antibacterial and Photocatalytic Activity. Inorg. Chem. Commun. 2023, 157, 111425. [Google Scholar] [CrossRef]
- Roguai, S.; Djelloul, A. Structural, Microstructural and Photocatalytic Degradation of Methylene Blue of Zinc Oxide and Fe-Doped ZnO Nanoparticles Prepared by Simple Coprecipitation Method. Solid. State Commun. 2021, 334–335, 114362. [Google Scholar] [CrossRef]
- Al Farsi, B.; Souier, T.M.; Al Marzouqi, F.; Al Maashani, M.; Bououdina, M.; Widatallah, H.M.; Al Abri, M. Structural and Optical Properties of Visible Active Photocatalytic Al Doped ZnO Nanostructured Thin Films Prepared by Dip Coating. Opt. Mater. 2021, 113, 110868. [Google Scholar] [CrossRef]
- Piras, A.; Olla, C.; Reekmans, G.; Kelchtermans, A.-S.; De Sloovere, D.; Elen, K.; Carbonaro, C.M.; Fusaro, L.; Adriaensens, P.; Hardy, A.; et al. Photocatalytic Performance of Undoped and Al-Doped ZnO Nanoparticles in the Degradation of Rhodamine B under UV-Visible Light:The Role of Defects and Morphology. Int. J. Mol. Sci. 2022, 23, 15459. [Google Scholar] [CrossRef]
- Al-Mamun, M.R.; Rokon, M.Z.I.; Rahim, M.A.; Hossain, M.I.; Islam, M.S.; Ali, M.R.; Bacchu, M.S.; Waizumi, H.; Komeda, T.; Khan, M.Z.H. Enhanced Photocatalytic Activity of Cu and Ni-Doped ZnO Nanostructures: A Comparative Study of Methyl Orange Dye Degradation in Aqueous Solution. Heliyon 2023, 9, e16506. [Google Scholar] [CrossRef] [PubMed]
- Waghchaure, R.H.; Adole, V.A.; Jagdale, B.S. Photocatalytic Degradation of Methylene Blue, Rhodamine B, Methyl Orange and Eriochrome Black T Dyes by Modified ZnO Nanocatalysts: A Concise Review. Inorg. Chem. Commun. 2022, 143, 109764. [Google Scholar] [CrossRef]
- Mohamed, K.M.; Benitto, J.J.; Vijaya, J.J.; Bououdina, M. Recent Advances in ZnO-Based Nanostructures for the Photocatalytic Degradation of Hazardous, Non-Biodegradable Medicines. Crystals 2023, 13, 329. [Google Scholar] [CrossRef]
- Dejam, L.; Kulesza, S.; Sabbaghzadeh, J.; Ghaderi, A.; Solaymani, S.; Țălu, Ș.; Bramowicz, M.; Amouamouha, M.; Shayegan, A.; hossein Sari, A. ZnO, Cu-Doped ZnO, Al-Doped ZnO and Cu-Al Doped ZnO Thin Films: Advanced Micro-Morphology, Crystalline Structures and Optical Properties. Results Phys. 2023, 44, 106209. [Google Scholar] [CrossRef]
- Ganesh, V. Synthesis of Multifunctional Cu and Al Codoped ZnO Nanoparticles towards Photosensor and Photocatalytic Applications. Opt. Mater. 2022, 132, 112834. [Google Scholar] [CrossRef]
- Saxena, G.; Salmani, I.A.; Khan, M.S.; Khan, M.S. Structural Co-Related Optical Properties of Al and Cu Co-Doped ZnO Nanoparticles. Nano-Struct. Nano-Objects 2023, 35, 100986. [Google Scholar] [CrossRef]
- Bu, I.Y.-Y. Effect of Cu Concentration on the Structural and Optoelectronic Properties of ZnO:Cu:Al Prepared by the Sol–Gel Deposition Method. Ceram. Int. 2015, 41, 4042–4049. [Google Scholar] [CrossRef]
- Filippov Ivan, A.; Yakushova Nadezhda, D.; Karmanov Andrey, A.; Gubich Ivan, A.; Pronin Igor, A. Hierarchical Self-Assembly of SiO2-SnO2 Nanoand Microstructures in Combined Sol-Gel Systems. St. Petersburg Polytech. Univ. J. Phys. Math. 2024, 76, 42–45. [Google Scholar]
- Greczynski, G.; Hultman, L. A Step-by-Step Guide to Perform X-Ray Photoelectron Spectroscopy. J. Appl. Phys. 2022, 132, 011101. [Google Scholar] [CrossRef]
- Li, Z.; Li, L.; Zhang, G.; Song, L.; Tu, Z.; Han, C. AZO Work Function Enhanced by Oxygen Plasma Immersion Ion Implantation. Vacuum 2023, 212, 112038. [Google Scholar] [CrossRef]
- Anaya-Zavaleta, J.C.; Ledezma-Pérez, A.S.; Gallardo-Vega, C.; Rodríguez-Hernández, J.; Alvarado-Canché, C.N.; García-Casillas, P.E.; de León, A.; Herrera-May, A.L. ZnO Nanoparticles by Hydrothermal Method: Synthesis and Characterization. Technologies 2025, 13, 18. [Google Scholar] [CrossRef]
- Moshnikov, V.A.; Maksimov, A.I.; Aleksandrova, O.A.; Pronin, I.A.; Karmanov, A.A.; Terukov, E.I.; Yakushova, N.D.; Averin, I.A.; Bobkov, A.A.; Permyakov, N.V. Nanolithographic Self-Assembly of Colloidal Nanoparticles. Tech. Phys. Lett. 2016, 42, 967–969. [Google Scholar] [CrossRef]
- Sukhov, I.V.; Filippov, I.A.; Pronin, I.A.; Sysoev, V.V.; Kondratev, V.M.; Komolov, A.S.; Lazneva, E.F.; Karmanov, A.A.; Yakushova, N.D.; Moshnikov, V.A.; et al. Sol–Gel Prepared ZnO: UV Irradiation Effect on Structure and Surface Properties. Mendeleev Commun. 2024, 34, 643–646. [Google Scholar] [CrossRef]
- Shahid, M.U.; Deen, K.M.; Ahmad, A.; Akram, M.A.; Aslam, M.; Akhtar, W. Formation of Al-Doped ZnO Thin Films on Glass by Sol–Gel Process and Characterization. Appl. Nanosci. 2016, 6, 235–241. [Google Scholar] [CrossRef]
- Patel, M.; Mishra, S.; Verma, R.; Shikha, D. Synthesis of ZnO and CuO Nanoparticles via Sol Gel Method and Its Characterization by Using Various Technique. Discov. Mater. 2022, 2, 1. [Google Scholar] [CrossRef]
- Al-Gaashani, R.; Radiman, S.; Daud, A.R.; Tabet, N.; Al-Douri, Y. XPS and Optical Studies of Different Morphologies of ZnO Nanostructures Prepared by Microwave Methods. Ceram. Int. 2013, 39, 2283–2292. [Google Scholar] [CrossRef]
- Gora, M.K.; Kumar, A.; Kumar, S.; Maheshwari, P.K.; Patidar, D.; Dolia, S.N.; Singhal, R.K. Electronic, Optical and Magnetic Properties of Cu-Doped ZnO, a Possible System for Eco-Friendly and Energy-Efficient Spintronic Applications. Environ. Sci. Pollut. Res. 2023, 30, 98632–98646. [Google Scholar] [CrossRef]
- Li, M.; Zanna, S.; Seyeux, A.; Wiame, F.; Marcus, P.; Światowska, J. Surface Modifications Induced by Pretreatments and Effects on The Chemical Structure of TCP Conversion Coating on Al-Cu-Li Alloy (AA2050). J. Electrochem. Soc. 2021, 168, 041504. [Google Scholar] [CrossRef]
- Li, X.; Kong, W.; Qin, X.; Qu, F.; Lu, L. Self-Powered Cathodic Photoelectrochemical Aptasensor Based on in Situ–Synthesized CuO-Cu2O Nanowire Array for Detecting Prostate-Specific Antigen. Microchim. Acta 2020, 187, 325. [Google Scholar] [CrossRef]
- Akter, N.; Ahmed, T.; Haque, I.; Hossain, M.K.; Ray, G.; Hossain, M.M.; Islam, M.S.; Shaikh, M.A.A.; Akhtar, U.S. XPS Valence Band Observable Light-Responsive System for Photocatalytic Acid Red114 Dye Decomposition Using a ZnO–Cu2O Heterojunction. Heliyon 2024, 10, e30802. [Google Scholar] [CrossRef]
- Pronin, I.A.; Plugin, I.A.; Kolosov, D.A.; Karmanov, A.A.; Yakushova, N.D.; Varezhnikov, A.S.; Komolov, A.S.; Lazneva, E.F.; Koroleva, A.V.; Moshnikov, V.A.; et al. Sol-Gel Derived ZnO Film as a Gas Sensor: Influence of UV Processing versus a Thermal Annealing. Sens. Actuators A Phys. 2024, 377, 115707. [Google Scholar] [CrossRef]
- Nguyen, V.N.; Tran, D.T.; Nguyen, M.T.; Le, T.T.T.; Ha, M.N.; Nguyen, M.V.; Pham, T.D. Enhanced Photocatalytic Degradation of Methyl Orange Using ZnO/Graphene Oxide Nanocomposites. Res. Chem. Intermed. 2018, 44, 3081–3095. [Google Scholar] [CrossRef]
- Rytwo, G.; Zelkind, A.L. Evaluation of kinetic pseudo-order in the photocatalytic degradation of ofloxacin. Catalysts 2021, 12, 24. [Google Scholar] [CrossRef]
- Xie, J.; Li, Y.; Zhao, W.; Bian, L.; Wei, Y. Simple Fabrication and Photocatalytic Activity of ZnO Particles with Different Morphologies. Powder Technol. 2011, 207, 140–144. [Google Scholar] [CrossRef]
- Zhang, X.; Qin, J.; Hao, R.; Wang, L.; Shen, X.; Yu, R.; Limpanart, S.; Ma, M.; Liu, R. Carbon-Doped ZnO Nanostructures: Facile Synthesis and Visible Light Photocatalytic Applications. J. Phys. Chem. C 2015, 119, 20544–20554. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, Y.; Zhang, S.; Qiu, C. High Photocatalytic Performance of High Concentration Al-Doped ZnO Nanoparticles. Sep. Purif. Technol. 2017, 172, 236–241. [Google Scholar] [CrossRef]
- Chandekar, K.V.; Shkir, M.; Al-Shehri, B.M.; AlFaify, S.; Halor, R.G.; Khan, A.; Al-Namshah, K.S.; Hamdy, M.S. Visible Light Sensitive Cu Doped ZnO: Facile Synthesis, Characterization and High Photocatalytic Response. Mater. Charact. 2020, 165, 110387. [Google Scholar] [CrossRef]
- Pronin, I.A.; Filippov, I.A.; Komolov, A.S.; Dubov, E.A.; Karmanov, A.A.; Yakushova, N.D.; Korotcenkov, G. Photocatalytic Degradation of Paracetamol on ZnO Powders: Investigating the Effect Grain Size. Vacuum 2025, 238, 114340. [Google Scholar] [CrossRef]
- Nouasria, F.Z.; Selloum, D.; Henni, A.; Tingry, S.; Hrbac, J. Improvement of the Photocatalytic Performance of ZnO Thin Films in the UV and Sunlight Range by Cu Doping and Additional Coupling with Cu2O. Ceram. Int. 2022, 48, 13283–13294. [Google Scholar] [CrossRef]
- Nasr, M.; Viter, R.; Eid, C.; Habchi, R.; Miele, P.; Bechelany, M. Optical and Structural Properties of Al2O3 Doped ZnO Nanotubes Prepared by ALD and Their Photocatalytic Application. Surf. Coat. Technol. 2018, 343, 24–29. [Google Scholar] [CrossRef]
- Zhou, Q.; Yang, N.; Zhang, L.; Zhang, L.; Li, J.; Yang, X.; Peng, F.; Sun, Y. Structural Tailored ZnO@Cu2O Heterostructure-Decorated Mesh with Dual Functionalities for Oil/Water Separation and Photodegradation. J. Alloys Compd. 2022, 896, 162763. [Google Scholar] [CrossRef]
- Yadav, S.; Mittal, A.; Sharma, S.; Sharma, A.; Kumari, K.; Kumar, N. Highly Efficient Ag2O Loaded ZnO/Al2O3 Coupled Catalyst and Its Photocatalytic Application. Inorg. Chem. Commun. 2021, 130, 108738. [Google Scholar] [CrossRef]
Material | d, nm | Zn(lat) = O(lat) | Zn(lat)/Zn | kuv, 10−3 min−1 | kuv, 10−3 min−1 | |
---|---|---|---|---|---|---|
ZnO:Al(1 at.%):Cu(5 at.%) | 17.4 | 29.96 | 0.606 | 1.325 | 2.58 ± 0.36 | 1.52 ± 0.08 |
ZnO:Al(2 at.%):Cu(4 at.%) | 16.2 | 14.77 | 0.912 | 0.421 | 5.68 ± 0.27 | 1.33 ± 0.09 |
ZnO:Al(3 at.%):Cu(3 at.%) | 9.5 | 25.01 | 0.541 | 1.337 | 4.84 ± 0.34 | 4.47 ± 0.08 |
ZnO:Al(4 at.%):Cu(2 at.%) | 13.3 | 11.23 | 0.463 | 0.576 | 28.94 ± 0.34 | 19.32 ± 0.21 |
ZnO:Al(5 at.%):Cu(1 at.%) | 7.1 | 17.23 | 0.573 | 1.120 | 10.99 ± 0.37 | 4.24 ± 0.09 |
ZnO | 27.4 | 33.93 | 0.619 | 1.346 | 3.47 ± 0.49 | - |
Wavenumber, cm−1 | Interpretation |
---|---|
514 | Deformation vibrations of Zn-O in the crystal lattice, deformation vibrations of Al-O. |
610 | Stretching symmetric vibrations of Si-Si |
690 | Deformation vibrations of Cu-O-Zn in the crystal lattice |
734 | Deformation vibrations C-O-H |
820 | Twisting vibrations of Si2O |
890 | C-C stretching vibrations, N-H out-of-plane vibrations |
978 | Stretching symmetric vibrations of Si-OH |
1108 | Asymmetric vibrations of bridging oxygen Si-O-Si, stretching symmetric vibrations C-O |
1404–1656 | H-O-H deformation vibrations, N-H stretching symmetric vibrations |
2360 | Atmospheric CO2 |
3100–3600 | Stretching symmetric vibrations of OH |
Material | BEZn2p3/2, eV | Zn2p, at.% | O1s, at.% | C1s, at.% | O(Z), a.u. | O(I), a.u. | O(II), a.u. | O(III), a. u. |
---|---|---|---|---|---|---|---|---|
ZnO:Al(1 at.%):Cu(5 at.%) | 1021.41 | 49.42 | 37.29 | 13.29 | 0.0283 | 0.7751 | 0.1966 | - |
ZnO:Al(2 at.%):Cu(4 at.%) | 1021.74 | 16.20 | 71.80 | 12.00 | 0.1144 | 0.0913 | 0.3308 | 0.4635 |
ZnO:Al(3 at.%):Cu(3 at.%) | 1021.31 | 46.23 | 34.59 | 19.18 | 0.0226 | 0.7003 | 0.2771 | - |
ZnO:Al(4 at.%):Cu(2 at.%) | 1021.96 | 24.27 | 60.34 | 15.39 | - | 0.1861 | 0.5121 | 0.3018 |
ZnO:Al(5 at.%):Cu(1 at.%) | 1021.89 | 30.06 | 26.83 | 43.11 | - | 0.6421 | 0.3579 | - |
ZnO | 1021.69 | 54.85 | 40.75 | 4.40 | - | 0.8327 | 0.1673 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yakushova, N.D.; Gubich, I.A.; Karmanov, A.A.; Komolov, A.S.; Koroleva, A.V.; Korotcenkov, G.; Pronin, I.A. Photocatalytic Degradation of Toxic Dyes on Cu and Al Co-Doped ZnO Nanostructured Films: A Comparative Study. Technologies 2025, 13, 277. https://doi.org/10.3390/technologies13070277
Yakushova ND, Gubich IA, Karmanov AA, Komolov AS, Koroleva AV, Korotcenkov G, Pronin IA. Photocatalytic Degradation of Toxic Dyes on Cu and Al Co-Doped ZnO Nanostructured Films: A Comparative Study. Technologies. 2025; 13(7):277. https://doi.org/10.3390/technologies13070277
Chicago/Turabian StyleYakushova, Nadezhda D., Ivan A. Gubich, Andrey A. Karmanov, Alexey S. Komolov, Aleksandra V. Koroleva, Ghenadii Korotcenkov, and Igor A. Pronin. 2025. "Photocatalytic Degradation of Toxic Dyes on Cu and Al Co-Doped ZnO Nanostructured Films: A Comparative Study" Technologies 13, no. 7: 277. https://doi.org/10.3390/technologies13070277
APA StyleYakushova, N. D., Gubich, I. A., Karmanov, A. A., Komolov, A. S., Koroleva, A. V., Korotcenkov, G., & Pronin, I. A. (2025). Photocatalytic Degradation of Toxic Dyes on Cu and Al Co-Doped ZnO Nanostructured Films: A Comparative Study. Technologies, 13(7), 277. https://doi.org/10.3390/technologies13070277