Integrated Dynamic Power Management Strategy with a Field Programmable Gate Array-Based Cryptoprocessor System for Secured Internet-of-Medical Things Networks
Abstract
:1. Introduction
- A novel dynamic power management strategy implemented in a resource-constrained RISC cryptoprocessor FPGA design for healthcare applications.
- A secure sensing node system utilizing DSSS encoding with an average power consumption of up to 0.1 mW.
- A resource-efficient design employing only 2414 logic cells and 5292 registers, implemented on an Intel 5CSEMA5F31C6N FPGA device.
2. Resource-Constrained RISC Cryptoprocessor Design
2.1. FPGA-Based RISC Processor Design
2.2. DSSS Cipher Engine Peripheral Architecture
2.3. Power Management Design
3. Implementation of the Dynamic Power Strategy
3.1. Low-Power Mode Configuration
3.2. Data Acquisition
3.3. Data Encryption and Transmission
4. Implementation Results
4.1. FPGA-Based Encryption/Decryption Validation Analysis
4.2. FPGA-Based DPMS Performance Analysis
4.2.1. Test 1: Hardware Speed Resource Analysis
4.2.2. Test 2: Power Consumption Estimation Analysis
- Data acquisition: Stdby at LPM0 for 2 us (20.01 mW), sleep at LPM3 for 25 s (0.04 mW), and data measurements at LPM1 for 1ms (0.97 mW);
- Data encryption/decryption: LPM0 for 100 ns (20.01 mW);
- Transmission: LPM2 for 10 ms (0.98 mW);
- Sleep mode: LPM3 for 5 min (0.04 mW).
4.2.3. Test 3: Cryptographic Randomness Performance Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Babbar, H.; Rani, S.; AlQahtani, S.A. Intelligent Edge Load Migration in SDN-IIoT for Smart Healthcare. IEEE Trans. Ind. Inform. 2022, 18, 8058–8064. [Google Scholar] [CrossRef]
- Raza, A.; Nasar, M.A.; Hanandeh, E.S.; Zitar, R.A.; Nasereddin, A.Y.; Abualigah, L. A Novel Methodology for Human Kinematics Motion Detection Based on Smartphones Sensor Data Using Artificial Intelligence. Technologies 2023, 11, 55. [Google Scholar] [CrossRef]
- Al-Nbhany, W.; Zahary, A.; Al-Shargabi, A.A. Blockchain-IoT Healthcare Applications and Trends: A Review. IEEE Access 2024, 12, 4178–4212. [Google Scholar] [CrossRef]
- Bayoumy, K.; Gaber, M.; Elshafeey, A. Smart wearable devices in cardiovascular care: Where we are and how to move forward. Nat. Rev. Cardiol. 2021, 18, 581–599. [Google Scholar] [CrossRef]
- Zlatintsi, A.; Filntisis, P.P.; Efthymiou, N.; Garoufis, C.; Retsinas, G.; Sounapoglou, T.; Maglogiannis, I.; Tsanakas, P.; Smyrnis, N.; Maragos, P. Person Identification and Relapse Detection from Continuous Recordings of Biosignals Challenge: Overview and Results. IEEE Open J. Signal Process. 2024, 5, 641–651. [Google Scholar] [CrossRef]
- Donati, M.; Panicacci, S.; Ruiu, A.; Dalmiani, S.; Festa, P.; Ait-Ali, L.; Mastorci, F.; Pingitore, A.; Pennè, W.; Fanucci, L.; et al. Exploiting Biomedical Sensors for a Home Monitoring System for Paediatric Patients with Congenital Heart Disease. Technologies 2021, 9, 56. [Google Scholar] [CrossRef]
- Ramasamy, L.K.; Khan, F.; Shah, M.; Prasad, B.V.V.S.; Iwendi, C.; Biamba, C. Secure Smart Wearable Computing through Artificial Intelligence-Enabled Internet of Things and Cyber-Physical Systems for Health Monitoring. Sensors 2022, 22, 1076. [Google Scholar] [CrossRef]
- Woo-García, R.M.; Pérez-Vista, J.M.; Sánchez-Vidal, A.; Herrera-May, A.L.; de-la Rosa, E.O.; Caballero-Briones, F.; López-Huerta, F. Implementation of a Wireless Sensor Network for Environmental Measurements. Technologies 2024, 12, 41. [Google Scholar] [CrossRef]
- Rostampour, S.; Bagheri, N.; Bendavid, Y.; Safkhani, M.; Kumari, S.; Rodrigues, J.J.P.C. An Authentication Protocol for Next Generation of Constrained IoT Systems. IEEE Internet Things J. 2022, 9, 21493–21504. [Google Scholar] [CrossRef]
- Jan, M.A.; Khan, F.; Khan, R.; Mastorakis, S.; Menon, V.G.; Alazab, M.; Watters, P. Lightweight Mutual Authentication and Privacy-Preservation Scheme for Intelligent Wearable Devices in Industrial-CPS. IEEE Trans. Ind. Inform. 2021, 17, 5829–5839. [Google Scholar] [CrossRef] [PubMed]
- Alsarhan, A.; AlJamal, M.; Harfoushi, O.; Aljaidi, M.; Barhoush, M.; Mansour, N.; Okour, S.; Abu, G.; Al-Fraihat, D. Optimizing Cyber Threat Detection in IoT: A Study of Artificial Bee Colony (ABC)-Based Hyperparameter Tuning for Machine Learning. Technologies 2024, 12, 181. [Google Scholar] [CrossRef]
- Paparizos, C.; Tsafas, N.; Birbas, M. A Zynq-Based Robotic System for Treatment of Contagious Diseases in Hospital Isolated Environment. Technologies 2020, 8, 28. [Google Scholar] [CrossRef]
- Bakiri, M.; Guyeux, C.; Couchot, J.F.; Marangio, L.; Galatolo, S. A Hardware and Secure Pseudorandom Generator for Constrained Devices. IEEE Trans. Ind. Inform. 2018, 14, 3754–3765. [Google Scholar] [CrossRef]
- Yang, Y.; He, D.; Kumar, N.; Zeadally, S. Compact Hardware Implementation of a SHA-3 Core for Wireless Body Sensor Networks. IEEE Access 2018, 6, 40128–40136. [Google Scholar] [CrossRef]
- Fotovvat, A.; Rahman, G.M.E.; Vedaei, S.S.; Wahid, K.A. Comparative Performance Analysis of Lightweight Cryptography Algorithms for IoT Sensor Nodes. IEEE Internet Things J. 2021, 8, 8279–8290. [Google Scholar] [CrossRef]
- Banerjee, U.; Wright, A.; Juvekar, C.; Waller, M.; Arvind; Chandrakasan, A.P. An Energy-Efficient Reconfigurable DTLS Cryptographic Engine for Securing Internet-of-Things Applications. IEEE J. Solid-State Circuits 2019, 54, 2339–2352. [Google Scholar] [CrossRef]
- Hadayeghparast, S.; Bayat-Sarmadi, S.; Ebrahimi, S. High-Speed Post-Quantum Cryptoprocessor Based on RISC-V Architecture for IoT. IEEE Internet Things J. 2022, 9, 15839–15846. [Google Scholar] [CrossRef]
- Kamadi, A.; Abbas, Z. Implementation of TRNG with SHA-3 for hardware security. Microelectron. J. 2022, 123, 105410. [Google Scholar] [CrossRef]
- Zhang, C.; Yue, J.; Jiao, L.; Shi, J.; Wang, S. A Novel Physical Layer Encryption Algorithm for LoRa. IEEE Commun. Lett. 2021, 25, 2512–2516. [Google Scholar] [CrossRef]
- Aboushosha, B.; Ramadan, R.A.; Dwivedi, A.D.; El-Sayed, A.; Dessouky, M.M. SLIM: A Lightweight Block Cipher for Internet of Health Things. IEEE Access 2020, 8, 203747–203757. [Google Scholar] [CrossRef]
- Liu, X.; Wu, B.; Yuan, X.; Yi, X. Leia: A Lightweight Cryptographic Neural Network Inference System at the Edge. IEEE Trans. Inf. Forensics Secur. 2022, 17, 237–252. [Google Scholar] [CrossRef]
- Feng, Z.; Cao, G.; Grigoriadis, K.M.; Pan, Q. Secure MPC-Based Path Following for UAS in Adverse Network Environment. IEEE Trans. Ind. Inform. 2023, 19, 11091–11101. [Google Scholar] [CrossRef]
- Huang, X.; Li, L.; Yang, J. IVLBC: An Involutive Lightweight Block Cipher for Internet of Things. IEEE Syst. J. 2023, 17, 3192–3203. [Google Scholar] [CrossRef]
- He, Y.; Wang, G.; Li, W.; Ren, Y. Improved Cube Attacks on Some Authenticated Encryption Ciphers and Stream Ciphers in the Internet of Things. IEEE Access 2020, 8, 20920–20930. [Google Scholar] [CrossRef]
- Guo, X.; Hua, J.; Zhang, Y.; Wang, D. A Complexity-Reduced Block Encryption Algorithm Suitable for Internet of Things. IEEE Access 2019, 7, 54760–54769. [Google Scholar] [CrossRef]
- Saračević, M.H.; Adamović, S.Z.; Miškovic, V.A.; Elhoseny, M.; Maček, N.D.; Selim, M.M.; Shankar, K. Data Encryption for Internet of Things Applications Based on Catalan Objects and Two Combinatorial Structures. IEEE Trans. Reliab. 2021, 70, 819–830. [Google Scholar] [CrossRef]
- Singh, P.; Acharya, B.; Chaurasiya, R.K. Chapter 8—Lightweight cryptographic algorithms for resource-constrained IoT devices and sensor networks. In Security and Privacy Issues in IoT Devices and Sensor Networks; Advances in ubiquitous sensing applications for healthcare; Sharma, S.K., Bhushan, B., Debnath, N.C., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 153–185. [Google Scholar] [CrossRef]
- Maxim Integrated MAX30102. Available online: https://www.analog.com/en/products/max30102.html (accessed on 9 October 2024).
- Intel Quartus Prime Design Software. Available online: https://www.intel.la/content/www/xl/es/collections/products/fpga/software/downloads.html (accessed on 9 October 2024).
- Nasser, Y.; Lorandel, J.; Prévotet, J.C.; Hélard, M. RTL to Transistor Level Power Modeling and Estimation Techniques for FPGA and ASIC: A Survey. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2021, 40, 479–493. [Google Scholar] [CrossRef]
- Lin, Z.; Sinha, S.; Zhang, W. An Ensemble Learning Approach for In-Situ Monitoring of FPGA Dynamic Power. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2019, 38, 1661–1674. [Google Scholar] [CrossRef]
- NIST SP 800-22, A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications. Available online: https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-22r1a.pdf (accessed on 15 November 2024).
- GitHub, R. RISC Code FPGA-Based Cryptoprocessor System. Available online: https://github.com/Laboratorio-de-robotica-e-industria-4-0/RISC-Cryptoprocesor (accessed on 23 January 2025).
MT0 Register: LPM Configuration | ||||||||
---|---|---|---|---|---|---|---|---|
B7 | B6 | B5 | B4 | B3 | B2 | B1 | B0 | Mode |
X | X | X | X | X | X | 0 | 0 | LPM0: 50 MHz |
X | X | X | X | X | X | 0 | 1 | LPM1: 100 KHz |
X | X | X | X | X | X | 1 | 0 | LPM2: 10 KHz |
X | X | X | X | X | X | 1 | 1 | LPM3: Dynamic |
MT1 Register: LPM3 | ||||||||
---|---|---|---|---|---|---|---|---|
B7 | B6 | B5 | B4 | B3 | B2 | B1 | B0 | Time Period |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Sleep: 5 s |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | Sleep: 10 s |
: | : | : | : | : | : | : | : | : |
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | Sleep: 21.3 min |
Transition Process | ||||||
---|---|---|---|---|---|---|
Processing States | 000 | 001 | 010 | 011 | 100 | 101 |
Sleep | – | Stdby | – | Data acq | – | – |
Stdby | – | Sleep | – | – | – | |
Data acq | – | – | – | – | Encryption | – |
Encryption | – | – | – | – | – | BLE Tx |
BLE Tx | Sleep | – | – | – | – | – |
Hardware Resources | DSSS Crypto Engine | RISC | Power Management | Peripherals | Total Resources |
---|---|---|---|---|---|
Logic cells | 514 | 607 | 542 | 751 | 2414/32,070 (7.52%) |
Registers | 1205 | 1273 | 1229 | 1585 | 5292 |
IOBs | 25 | 46 | 14 | 100 | 185/457 (40.48%) |
Frequency (MHz) | Power Consumption Estimation (mW) |
---|---|
0.01 | 0.04 |
0.1 | 0.15 |
1 | 0.41 |
2.5 | 1.07 |
10 | 4.62 |
50 | 20.01 |
NIST SP 800-22 Test Suite | p-Value |
---|---|
1. The Frequency (Monobit) Test | 0.9847 |
2. Frequency Test within a Block | 0.9942 |
3. The Runs Test | 0.9868 |
4. Tests for the Longest-Run-of-Ones in a Block | 0.9946 |
5. The Binary Matrix Rank Test | 0.9963 |
6. The Discrete Fourier Transform (Spectral) Test | 0.9959 |
7. The Non-overlapping Template Matching Test | 0.9968 |
8. The Overlapping Template Matching Test | 0.9965 |
9. Maurer’s “Universal Statistical” Test | 0.9887 |
10. The Linear Complexity Test | 0.9967 |
11. The Serial Test | 0.9932 |
12. The Approximate Entropy Test | 0.9914 |
13. The Cumulative Sums (Cusums) Test | 0.9958 |
14. The Random Excursions Test | 0.9964 |
15. The Random Excursions Variant Test | 0.9913 |
[9] | [13] | [15] | [17] | [18] | [20] | Our Study | |
---|---|---|---|---|---|---|---|
Security Technique | Authenticated Encryption-Associated Data (AEAD) | Chaotic-PRNG | Authenticated Encryption-Associated Data (AEAD) | Post-Quantum Cryptographic (PQC) | Secure Hash Algorithm (SHA)-3 | SLIM | Direct Sequence Spread Spectrum (DSSS) |
Sensor Node Platform | ASIC | FPGA Zybo | IMX233 | FPGA Virtex-7 | FPGA Zynq-7000 | MCU | FPGA 5CSEMA5F31C6N |
Wireless Protocol | UHF | UHF | LoRa | — | — | BLE | BLE |
Registers | 4565 | 1467 | — | 1470 | 3572 | – | 5292 |
Logic cells | 6720 | 1211 | — | 7092 | 3875 | – | 2414 |
Power Consumption | 0.87 mW | 7.8 mW | 450 mW | 5.4 mW | 38 mW | 10.7 mW | 0.1 mW |
Power Management Strategy | Uniform | Uniform | – | – | Uniform | Uniform | Dynamic |
Test Suite | NIST | NIST, TestU01 | NIST | NIST | NIST, Diehard | NIST | NIST |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vázquez-Castillo, J.; Visairo, D.; Atoche-Enseñat, R.; Castillo-Atoche, A.; Quijano-Cetina, R.; Del-Valle-Soto, C.; Ortegón-Aguilar, J.; Estrada-López, J.J. Integrated Dynamic Power Management Strategy with a Field Programmable Gate Array-Based Cryptoprocessor System for Secured Internet-of-Medical Things Networks. Technologies 2025, 13, 68. https://doi.org/10.3390/technologies13020068
Vázquez-Castillo J, Visairo D, Atoche-Enseñat R, Castillo-Atoche A, Quijano-Cetina R, Del-Valle-Soto C, Ortegón-Aguilar J, Estrada-López JJ. Integrated Dynamic Power Management Strategy with a Field Programmable Gate Array-Based Cryptoprocessor System for Secured Internet-of-Medical Things Networks. Technologies. 2025; 13(2):68. https://doi.org/10.3390/technologies13020068
Chicago/Turabian StyleVázquez-Castillo, Javier, Daniel Visairo, Ramón Atoche-Enseñat, Alejandro Castillo-Atoche, Renán Quijano-Cetina, Carolina Del-Valle-Soto, Jaime Ortegón-Aguilar, and Johan J. Estrada-López. 2025. "Integrated Dynamic Power Management Strategy with a Field Programmable Gate Array-Based Cryptoprocessor System for Secured Internet-of-Medical Things Networks" Technologies 13, no. 2: 68. https://doi.org/10.3390/technologies13020068
APA StyleVázquez-Castillo, J., Visairo, D., Atoche-Enseñat, R., Castillo-Atoche, A., Quijano-Cetina, R., Del-Valle-Soto, C., Ortegón-Aguilar, J., & Estrada-López, J. J. (2025). Integrated Dynamic Power Management Strategy with a Field Programmable Gate Array-Based Cryptoprocessor System for Secured Internet-of-Medical Things Networks. Technologies, 13(2), 68. https://doi.org/10.3390/technologies13020068