A Bibliometric and Network Analysis of Digital Twins and BIM in Water Distribution Systems
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Analysis of Publication Patterns
3.2. Research Area
3.3. Social Structure of Knowledge
3.4. Sources
3.5. Intellectual Structure of Knowledge
3.6. Keyword Analysis
4. Key Areas in Water Distribution Systems
4.1. Physical and Digital Twin
4.2. Tech-Driven Innovations for Leak Detection
4.3. CAD and Simulation in WDSs
4.4. Decision-Making
5. Discussion
Limitations and Future Directions
- Interdisciplinary collaboration across engineering, artificial intelligence, social sciences, and local communities is critical for mitigating the current spatial concentration of research and ensuring that resulting solutions are socially equitable and contextually relevant.
- An Integrated DT Framework should be established, with future work focusing on finding out the merits of systematic integration of operational DTs with AI/ML models, GIS/BIM datasets, and real-time IoT sensor networks to address persistent challenges in data interoperability and model scalability.
- Advancing anomaly detection necessitates the development of explainable, adaptive machine learning models capable of identifying multiple concurrent events through the use of virtual sensors and advanced noise-logging technologies.
- Enhancing computational model robustness involves improving simulation efficiency and reliability via high-performance computing, alongside addressing key modelling challenges, including uncertainty propagation and calibration.
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Daniel, I.; Ajami, N.K.; Castelletti, A.; Savic, D.; Stewart, R.A.; Cominola, A. A survey of water utilities’ digital transformation: Drivers, impacts, and enabling technologies. NPJ Clean Water 2023, 6, 51. [Google Scholar] [CrossRef]
- Sivagurunathan, V.; Elsawah, S.; Khan, S.J. Scenarios for urban water management futures: A systematic review. Water Res. 2022, 211, 118079. [Google Scholar] [CrossRef]
- Eastman, C.; Teicholz, P.; Sacks, R.; Liston, K. BIM Handbook: A Guide to Building Information Modeling for Owners, Managers, Designers, Engineers and Contractors, 2nd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2011; ISBN 978-0-470-95134-7. [Google Scholar]
- American Water Works Association. Digital Twins. Available online: https://www.awwa.org/Resources-Tools/Resource-Topics/Digital-Twins (accessed on 9 June 2024).
- Gilbert, T.; James, P.; Smith, L.; Barr, S.; Morley, J. Topological integration of BIM and geospatial water utility networks across the building envelope. Comput. Environ. Urban. Syst. 2021, 86, 101570. [Google Scholar] [CrossRef]
- Bonilla, C.; Zanfei, A.; Brentan, B.; Montalvo, I.; Izquierdo, J. A Digital Twin of a Water Distribution System by Using Graph Convolutional Networks for Pump Speed-Based State Estimation. Water 2022, 14, 514. [Google Scholar] [CrossRef]
- Patriarca, R.; Simone, F.; Di Gravio, G. Modelling cyber resilience in a water treatment and distribution system. Reliab. Eng. Syst. Saf. 2022, 226, 108653. [Google Scholar] [CrossRef]
- Hamma-adama, M.; Kouider, T. Comparative Analysis of BIM Adoption Efforts by Developed Countries as Precedent for New Adopter Countries. Curr. J. Appl. Sci. Technol. 2019, 36, 1–15. [Google Scholar] [CrossRef]
- Hwang, K.E.; Kim, I.; Kim, J.I.; Cha, S.H. Client-engaged collaborative pre-design framework for modular housing. Autom. Constr. 2023, 156, 105123. [Google Scholar] [CrossRef]
- Mousavi, Y.; Gharineiat, Z.; Karimi, A.A.; McDougall, K.; Rossi, A.; Barsanti, S.G. Digital Twin Technology in Built Environment: A Review of Applications, Capabilities and Challenges. Smart Cities 2024, 7, 2594–2615. [Google Scholar] [CrossRef]
- Bonilla, C.; Brentan, B.; Montalvo, I.; Ayala-Cabrera, D.; Izquierdo, J. Digitalization of Water Distribution Systems in Small Cities, a Tool for Verification and Hydraulic Analysis: A Case Study of Pamplona, Colombia. Water 2023, 15, 3824. [Google Scholar] [CrossRef]
- The Sustainable Development Goals Report 2025. 2025. Available online: https://unstats.un.org/sdgs/report/2025/The-Sustainable-Development-Goals-Report-2025.pdf (accessed on 10 September 2025).
- Pesantez, J.E.; Alghamdi, F.; Sabu, S.; Mahinthakumar, G.; Berglund, E.Z. Using a digital twin to explore water infrastructure impacts during the COVID-19 pandemic. Sustain. Cities Soc. 2021, 77, 103520. [Google Scholar] [CrossRef] [PubMed]
- Homaei, M.; Di Bartolo, A.J.; Ávila, M.; Gutiérrez, Ó.M.; Caro, A. Digital Transformation in the Water Distribution System based on the Digital Twins Concept. Preprint 2024. [Google Scholar] [CrossRef]
- Chihib, M.; Salmerón-Manzano, E.; Novas, N.; Manzano-Agugliaro, F. Bibliometric maps of BIM and BIM in universities: A comparative analysis. Sustainability 2019, 11, 4398. [Google Scholar] [CrossRef]
- Lovell, L.J.; Davies, R.J.; Hunt, D.V.L. Building Information Modelling Facility Management (BIM-FM). Appl. Sci. 2024, 14, 3977. [Google Scholar] [CrossRef]
- Zahedi, F.; Alavi, H.; Sardroud, J.M.; Dang, H. Digital Twins in the Sustainable Construction Industry. Buildings 2024, 14, 3613. [Google Scholar] [CrossRef]
- BIM Africa, African BIM Report 2024. Authored by the Research and Development Committee, 2024. Available online: www.bimafrica.org/reports (accessed on 20 May 2025).
- Radzi, A.R.; Azmi, N.F.; Kamaruzzaman, S.N.; Rahman, R.A.; Papadonikolaki, E. Relationship between digital twin and building information modeling: A systematic review and future directions. Constr. Innov. 2023, 24, 811–829. [Google Scholar] [CrossRef]
- Revolti, A.; Gualtieri, L.; Pauwels, P.; Dallasega, P. From building information modeling to construction digital twin: A conceptual framework. Prod. Manuf. Res. 2024, 12, 2387679. [Google Scholar] [CrossRef]
- Omrany, H.; Al-Obaidi, K.M.; Husain, A.; Ghaffarianhoseini, A. Digital Twins in the Construction Industry: A Comprehensive Review of Current Implementations, Enabling Technologies, and Future Directions. Sustainability 2023, 15, 10908. [Google Scholar] [CrossRef]
- Hossain, M.I.; Bari, M.N.; Miah, M.S.U. Opportunities and challenges for implementing managed aquifer recharge models in drought-prone Barind tract, Bangladesh. Appl. Water Sci. 2021, 11, 181. [Google Scholar] [CrossRef]
- Bamgbose, O.A.; Ogunbayo, B.F.; Aigbavboa, C.O. Barriers to Building Information Modelling Adoption in Small and Medium Enterprises: Nigerian Construction Industry Perspectives. Buildings 2024, 14, 538. [Google Scholar] [CrossRef]
- Hu, W.; Ou, Y.; Liu, H.; Ni, P.; Chang, C. Integrating digital twin technologies for maintenance 4.0 in the building industry: A review and conceptual framework. Build. Environ. 2025, 288, 113997. [Google Scholar] [CrossRef]
- Ramos, H.M.; Kuriqi, A.; Besharat, M.; Creaco, E.; Tasca, E.; Coronado-Hernández, O.E.; Pienika, R.; Iglesias-Rey, P. Smart Water Grids and Digital Twin for the Management of System Efficiency in Water Distribution Networks. Water 2023, 15, 1129. [Google Scholar] [CrossRef]
- Yan, J.K.; Zheng, Z.; Zhou, Y.C.; Lin, J.R.; Deng, Y.C.; Lu, X.Z. Recent Research Progress in Intelligent Construction: A Comparison between China and Developed Countries. Buildings 2023, 13, 1329. [Google Scholar] [CrossRef]
- Galkin, A.; Samchuk, G.; Kopytkov, D.; Thompson, R.G. Digital twins in logistics: A comprehensive bibliometric analysis for advancing smart cities and sustainable development. Discov. Sustain. 2025, 6, 853. [Google Scholar] [CrossRef]
- Abduljaleel, Y.W.; Usman, F.; Syamsir, A.; Albaker, B.M.; Najeeb, M.I.; Khattab, M.M.; Al-Humairi, S.N.S. A Systematic Review on Utilizing Artificial Intelligence in Lateral Resisting Systems of Buildings. Arch. Comput. Methods Eng. 2025, 32, 4887–4954. [Google Scholar] [CrossRef]
- Ricciardi, G.; Callegari, G.; Leone, M.F. Leveraging digital enabling technologies for integrating climate adaptation and mitigation in urban design. Autom. Constr. 2025, 180, 106504. [Google Scholar] [CrossRef]
- Shamshiri, A.; Ryu, K.R.; Park, J.Y. Text mining and natural language processing in construction. Autom. Constr. 2023, 158, 105200. [Google Scholar] [CrossRef]
- Burnham, J.F. Scopus database: A review. Biomed. Digit. Libr. 2006, 3, 1. [Google Scholar] [CrossRef]
- Rogers, G.; Szomszor, M.; Adams, J. Sample size in bibliometric analysis. Scientometrics 2020, 125, 777–794. [Google Scholar] [CrossRef]
- Kraus, S.; Breier, M.; Dasí-Rodríguez, S. The art of crafting a systematic literature review in entrepreneurship research. Int. Entrep. Manag. J. 2020, 16, 1023–1042. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. bibliometrix: An R-tool for comprehensive science mapping analysis. J. Inf. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Gouda, G.K.; Tiwari, B. Mapping talent agility: A bibliometric analysis and future research agenda. Manag. Decis. 2022, 60, 3165–3187. [Google Scholar] [CrossRef]
- Garcia-Buendia, N.; Moyano-Fuentes, J.; Maqueira-Marín, J.M.; Cobo, M.J. 22 Years of Lean Supply Chain Management: A science mapping-based bibliometric analysis. Int. J. Prod. Res. 2020, 59, 1901–1921. [Google Scholar] [CrossRef]
- van Eck, N.J.; Waltman, L. Citation-based clustering of publications using CitNetExplorer and VOSviewer. Scientometrics 2017, 111, 1053–1070. [Google Scholar] [CrossRef] [PubMed]
- Marinković, M.; Al-Tabbaa, O.; Khan, Z.; Wu, J. Corporate foresight: A systematic literature review and future research trajectories. J. Bus. Res. 2022, 144, 289–311. [Google Scholar] [CrossRef]
- Linnenluecke, M.; Marrone, M.; Singh, A.K. Conducting systematic literature reviews and bibliometric analyses. Aust. J. Manag. 2019, 45, 175–194. [Google Scholar] [CrossRef]
- Zheng, H.; Guo, M.; Wang, Q.; Zhang, Q.; Akita, N. A Bibliometric Analysis of Current Knowledge Structure and Research Progress Related to Urban Community Garden Systems. Land 2023, 12, 143. [Google Scholar] [CrossRef]
- Fuertes, P.C.; Alzamora, F.M.; Carot, M.H.; Campos, J.C.A. Building and exploiting a Digital Twin for the management of drinking water distribution networks. Urban Water J. 2020, 17, 704–713. [Google Scholar] [CrossRef]
- Martins, J.P.; Monteiro, A. LicA: A BIM based automated code-checking application for water distribution systems. Autom. Constr. 2013, 29, 12–23. [Google Scholar] [CrossRef]
- Ramos, H.M.; Morani, M.C.; Carravetta, A.; Fecarrotta, O.; Adeyeye, K.; López-Jiménez, P.A.; Pérez-Sánchez, M. New Challenges towards Smart Systems’ Efficiency by Digital Twin in Water Distribution Networks. Water 2022, 14, 1304. [Google Scholar] [CrossRef]
- Yu, T.; Chen, X.; Yan, W.; Xu, Z.; Ye, M. Leak detection in water distribution systems by classifying vibration signals. Mech. Syst. Signal Process 2023, 185, 109810. [Google Scholar] [CrossRef]
- Tijani, I.A.; Abdelmageed, S.; Fares, A.; Fan, K.H.; Hu, Z.Y.; Zayed, T. Improving the leak detection efficiency in water distribution networks using noise loggers. Sci. Total Environ. 2022, 821, 153530. [Google Scholar] [CrossRef]
- Giudicianni, C.; Herrera, M.; di Nardo, A.; Adeyeye, K.; Ramos, H.M. Overview of Energy Management and Leakage Control Systems for Smart Water Grids and Digital Water. Modelling 2020, 1, 134–155. [Google Scholar] [CrossRef]
- Poddar, N.; Saha, G.; Dhar, S.; Mondal, K.K. On solute dispersion in an oscillatory magneto-hydrodynamics porous medium flow under the effect of heterogeneous and bulk chemical reaction. Phys. Fluids 2022, 34, 093603. [Google Scholar] [CrossRef]
- Chang, C.Y.; Lee, D.C.; Tang, K.Y.; Hwang, G.J. Effect sizes and research directions of peer assessments: From an integrated perspective of meta-analysis and co-citation network. Comput. Educ. 2021, 164, 104123. [Google Scholar] [CrossRef]
- Ciliberti, F.G.; Berardi, L.; Laucelli, D.B.; Ariza, A.D.; Enriquez, L.V.; Giustolisi, O. From digital twin paradigm to digital water services. J. Hydroinformatics 2023, 25, 2444–24459. [Google Scholar] [CrossRef]
- Ciliberti, F.G.; Berardi, L.; Laucelli, D.B.; Giustolisi, O. Digital Water Services using Digital Twin paradigm. In IOP Conference Series: Earth and Environmental Science; IOP Science: Bristol, UK, 2023. [Google Scholar] [CrossRef]
- Ciliberti, F.G.; Berardi, L.; Laucelli, D.B.; Giustolisi, O. Digital Transformation Paradigm for Asset Management in Water Distribution Networks. In Proceedings of the 2021 10th International Conference on Energy and Environment, CIEM 2021, Bucharest, Romania, 14–15 October 2021; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2021. [Google Scholar] [CrossRef]
- Shishehgarkhaneh, M.B.; Keivani, A.; Moehler, R.C.; Jelodari, N.; Laleh, S.R. Internet of Things (IoT), Building Information Modeling (BIM), and Digital Twin (DT) in Construction Industry: A Review, Bibliometric, and Network Analysis. Buildings 2022, 12, 1503. [Google Scholar] [CrossRef]
- Hakimi, O.; Liu, H.; Abudayyeh, O. Digital twin-enabled smart facility management: A bibliometric review. Front. Eng. Manag. 2023, 11, 32–49. [Google Scholar] [CrossRef]
- Bukar, U.A.; Sayeed, M.S.; Razak, S.F.A.; Yogarayan, S.; Amodu, O.A.; Mahmood, R.A.R. A method for analyzing text using VOSviewer. MethodsX 2023, 11, 102339. [Google Scholar] [CrossRef]
- Oyewola, D.O.; Dada, E.G. Exploring machine learning: A scientometrics approach using bibliometrix and VOSviewer. SN Appl. Sci. 2022, 4, 143. [Google Scholar] [CrossRef]
- Oraee, M.; Hosseini, M.R.; Papadonikolaki, E.; Palliyaguru, R.; Arashpour, M. Collaboration in BIM-based construction networks: A bibliometric-qualitative literature review. Int. J. Proj. Manag. 2017, 35, 1288–1301. [Google Scholar] [CrossRef]
- Rana, S.M.M.; Uber, J.; McCary, J.; Keck, J. A Greedy Search Algorithm for Closed Valve Analysis in Drinking Water Networks for Real-Time Model Development. In Proceedings of the World Environmental and Water Resources Congress 2024: Climate Change Impacts on the World We Live, Milwaukee, Wisconsin, 19–22 May 2024; pp. 1257–1264. [Google Scholar] [CrossRef]
- Bernard, M. Using Digital Twins to Improve Pumping and Distribution System Operations. J. Am. Water Work. Assoc. 2024, 116, 6–15. [Google Scholar] [CrossRef]
- Brahmbhatt, P.; Maheshwari, A.; Gudi, R.D. Digital twin assisted decision support system for quality regulation and leak localization task in large-scale water distribution networks. Digit. Chem. Eng. 2023, 9, 100127. [Google Scholar] [CrossRef]
- Lv, Z. Digital Twins in Industry 5.0. Research 2023, 6, 71. [Google Scholar] [CrossRef] [PubMed]
- Pandey, P.; Mücke, N.T.; Jain, S.; Ramachandran, P.; Bohté, S.M.; Oosterlee, C.W. Machine Learning-Based Digital Twin for Water Distribution Network Anomaly Detection and Localization. Eng. Proc. 2024, 69, 201. [Google Scholar] [CrossRef]
- Murillo, A.; Taormina, R.; Tippenhauer, N.; Galelli, S. Co-Simulating Physical Processes and Network Data for High-Fidelity Cyber-Security Experiments. In Proceedings of the ICSS 2020: Sixth Annual Industrial Control System Security (ICSS) Workshop, New York, NY, USA, 12 April 2021; pp. 13–20. [Google Scholar] [CrossRef]
- Ukwuoma, H.C.; Dusserre, G.; Coatrieux, G.; Vincent, J. Analysis of digital twin and its physical object: Exploring the efficiency and accuracy of datasets for real-world application. Data Sci. Manag. 2024, 7, 361–375. [Google Scholar] [CrossRef]
- Cabri, G.; Rahimi, A.; Ferrando, A. Implementation of the Digital Twin in Water 4.0. In Proceedings of the Workshop on Enabling Technologies: Infrastructure for Collaborative Enterprises, WETICE, Reggio Emilia, Italy, 26–28 June 2024; pp. 38–43. [Google Scholar] [CrossRef]
- Batarseh, F.A.; Kulkarni, A.; Sreng, C.; Lin, J.; Maksud, S. ACWA: An AI-driven cyber-physical testbed for intelligent water systems. Water Pract. Technol. 2023, 18, 3399–3418. [Google Scholar] [CrossRef]
- Yussif, A.-M.; Sadeghi, H.; Zayed, T. Application of Machine Learning for Leak Localization in Water Supply Networks. Buildings 2023, 13, 849. [Google Scholar] [CrossRef]
- Guo, S.; Xin, K.; Tao, T.; Yan, H. A deep-level decomposed model to accelerate hydraulic simulations in large water distribution networks. Water Res. 2024, 266, 122318. [Google Scholar] [CrossRef]
- Lewis, G.; Vamvakeridou-Lyroudia, L.S.; Chen, A.S.; Djordjević, S.; Savić, D.A. The LOTUS International Multifunctional Digital Twin. Eng. Proc. 2024, 69, 26. [Google Scholar] [CrossRef]
- Riyadh, A.; Peleato, N.M. Exploring spatial and temporal importance of input features and the explainability of machine learning-based modelling of water distribution systems. Digit. Chem. Eng. 2025, 14, 100202. [Google Scholar] [CrossRef]
- Moraitis, G.; Makropoulos, C. A hybrid dynamic graph neural network framework for real-time anomaly detection. J. Hydroinformatics 2024, 26, 3172–3191. [Google Scholar] [CrossRef]
- Farouk, A.M.; Rahman, R.A.; Romali, N.S. Economic analysis of rehabilitation approaches for water distribution networks: Comparative study between Egypt and Malaysia. J. Eng. Des. Technol. 2021, 21, 130–149. [Google Scholar] [CrossRef]
- Sweetapple, C.; Salomons, E.; Le Gall, F.; Abid, A.; Vamvakeridou-Lyroudia, L.; Chen, A.S.; Broeke, J.v.D. Integrating Epanet and FIWARE for Development of Water Distribution System Digital Twins. Advances in Hydroinformatics; Springer: Singapore, 2022. [Google Scholar] [CrossRef]
- Martinho, N.; de Almeida, J.-P.; Simões, N.E.; Sá-Marques, A. UrbanWater: Integrating EPANET 2 in a PostgreSQL/PostGIS-based geospatial database management system. ISPRS Int. J. Geoinf. 2020, 9, 613. [Google Scholar] [CrossRef]
- Rossman, L.A.; Woo, H.; Tryby, M.; Shang, F.; Janke, R. EPANET 2.2 User Manual; U.S. Environmental Protection Agency: Washington, DC, USA, 2020.
- Shafiee, M.E.; Rasekh, A.; Sela, L.; Preis, A. Streaming Smart Meter Data Integration to Enable Dynamic Demand Assignment for Real-Time Hydraulic Simulation. J. Water Resour. Plan. Manag. 2020, 146, 06020008. [Google Scholar] [CrossRef]
- Djemel, C.; Piller, O.; Horsin, T.; Mimeau, C.; Mortazavi, I. Review of Reduced-Order Models for Online Protection of Water Distribution Networks. Eng. Proc. 2024, 69, 159. [Google Scholar] [CrossRef]
- Herrera, M.; Giudicianni, C.; Creaco, E. District Information Areas: A Distributed Decision-Making Approach for Urban Water Systems. Eng. Proc. 2024, 69, 64. [Google Scholar] [CrossRef]
- Pereira, T.C.; Arbos, R.V.; Andrade-Campos, A. Multiservice System for Water Supply Systems: A Smart Predictive Digital Twin Proposal. In Proceedings of the IEEE International Conference on Emerging Technologies and Factory Automation, ETFA, Padova, Italy, 10–13 September 2024. [Google Scholar] [CrossRef]
- Ametepey, S.O.; Aigbavboa, C.; Addy, H.; Thwala, W.D. A Bibliometric Review of the Trends of Construction Digitalization Research in the Past Ten Years. Buildings 2024, 14, 2729. [Google Scholar] [CrossRef]
- Lu, Y.; Liu, C.; Wang, K.I.K.; Huang, H.; Xu, X. Digital Twin-driven smart manufacturing: Connotation, reference model, applications and research issues. Robot. Comput.-Integr. Manuf. 2019, 61, 101837. [Google Scholar] [CrossRef]
- Darko, A.; Chan, A.P.C.; Adabre, M.A.; Edwards, D.J.; Hosseini, M.R.; Ameyaw, E.E. Artificial intelligence in the AEC industry: Scientometric analysis and visualization of research activities. Autom. Constr. 2020, 112, 103081. [Google Scholar] [CrossRef]
- Tahmasebinia, F.; Lin, L.; Wu, S.; Kang, Y.; Sepasgozar, S. Exploring the Benefits and Limitations of Digital Twin Technology in Building Energy. Appl. Sci. 2023, 13, 8814. [Google Scholar] [CrossRef]
- Berisha, E.; Caprioli, C.; Cotella, G. Unpacking SDG target 11.a: What is it about and how to measure its progress? City Environ. Interact. 2022, 14, 100080. [Google Scholar] [CrossRef]
- Summary Progress Update 2021: SDG 6—Water and Sanitation for All. 2021. Available online: https://www.unwater.org/new-data-on-global-progress-towards-ensuring-water-and-sanitation-for-all-by-2030/ (accessed on 30 May 2025).







| Document Types | Total Publications | Percentage (%) |
|---|---|---|
| Article | 57 | 60.00 |
| Conference Paper | 26 | 27.33 |
| Conference Review | 7 | 7.40 |
| Review | 2 | 2.10 |
| Short Survey | 2 | 2.10 |
| Book Chapter | 1 | 1.05 |
| Research Areas | Total Publication |
|---|---|
| Engineering | 54 |
| Environmental Science | 36 |
| Computer Science | 25 |
| Social Sciences | 21 |
| Agricultural and Biological Sciences | 10 |
| Biochemistry, Genetics and Molecular Biology | 10 |
| Earth and Planetary Sciences | 10 |
| Chemical Engineering | 7 |
| Energy | 7 |
| Mathematics | 7 |
| No. | Country | Total Publication | Total Citation | Total Link Strength | Average Article Citations |
|---|---|---|---|---|---|
| 1 | Italy | 25 | 220 | 12 | 8.8 |
| 2 | United Kingdom | 14 | 166 | 8 | 11.88 |
| 3 | Spain | 9 | 256 | 41 | 28.44 |
| 4 | United States | 9 | 132 | 4 | 14.67 |
| 5 | China | 8 | 78 | 5 | 9.75 |
| 6 | Portugal | 8 | 203 | 7 | 25.38 |
| 7 | India | 7 | 53 | 3 | 7.57 |
| 8 | Germany | 6 | 64 | 3 | 10.67 |
| 9 | Netherlands | 6 | 31 | 2 | 5.17 |
| 10 | Brazil | 4 | 73 | 3 | 18.25 |
| Affiliation | Country | Articles |
|---|---|---|
| Universitat Politècnica de València | Spain | 15 |
| The Hong Kong Polytechnic University | Hong Kong | 10 |
| University of Bologna | Italy | 9 |
| Indian Institute of Science | India | 8 |
| Sapienza University of Rome | Italy | 8 |
| University of Exeter | United Kingdom | 8 |
| Technical University of Bari | Italy | 6 |
| Tongji University | China | 6 |
| University of Palermo | Italy | 5 |
| Delft University of Technology | Netherlands | 5 |
| Journal | Total Publication | Total Citation | Cite Score | SJR 2023 | Publisher | |
|---|---|---|---|---|---|---|
| 1 | Water (Switzerland) | 9 | 138 | 5.8 | 0.724 | MDPI |
| 2 | Journal of Water Resources Planning and Management | 5 | 39 | 6.3 | 0.81 | ASCE |
| 3 | Engineering Proceedings | 4 | 1 | 0.7 | 0.198 | MDPI |
| 4 | IOP Conference Series: Earth and Environmental Science | 3 | 5 | 1 | 0.199 | Conference Proceeding |
| 5 | Journal of Hydroinformatics | 3 | 9 | 4.8 | 0.573 | IWA Publishing |
| 6 | Digital Chemical Engineering | 2 | 12 | 3.1 | 0.529 | Elsevier |
| 7 | Sustainable Cities and Society | 2 | 84 | 22 | 2.545 | Elsevier |
| 8 | International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences | 1 | 0 | 1.7 | 0.282 | Conference Proceeding |
| 9 | Journal—American Water Works Association | 1 | 3 | 1 | 0.307 | John Wiley & Sons |
| 10 | Journal of Pipeline Systems Engineering and Practice | 1 | 3 | 3.8 | 0.44 | ASCE |
| No. | Reference | Title | Year | Total Citation |
|---|---|---|---|---|
| 1 | [41] | Building and exploiting a Digital Twin for the management of drinking water distribution networks | 2020 | 128 |
| 2 | [42] | LicA: A BIM based automated code-checking application for water distribution systems | 2013 | 78 |
| 3 | [13] | Using a digital twin to explore water infrastructure impacts during the COVID-19 pandemic | 2022 | 72 |
| 4 | [43] | New Challenges towards Smart Systems’ Efficiency by Digital Twin in Water Distribution Networks | 2022 | 56 |
| 5 | [44] | Leak detection in water distribution systems by classifying vibration signals | 2023 | 56 |
| 6 | [45] | Improving the leak detection efficiency in water distribution networks using noise loggers | 2022 | 35 |
| 7 | [25] | Smart Water Grids and Digital Twin for the Management of System Efficiency in Water Distribution Networks | 2023 | 34 |
| 8 | [6] | A Digital Twin of a Water Distribution System by Using Graph Convolutional Networks for Pump Speed-Based State Estimation | 2022 | 30 |
| 9 | [46] | Overview of Energy Management and Leakage Control Systems for Smart Water Grids and Digital Water | 2020 | 26 |
| 10 | [47] | On solute dispersion in an oscillatory magneto-hydrodynamics porous medium flow under the effect of heterogeneous and bulk chemical reaction | 2022 | 24 |
| Co-Cited Authors | Affiliations |
|---|---|
| Berardi, L. | University of G. d’Annunzio Chieti and Pescara |
| Giustolisi, O. | Politecnico di Bari |
| Ciliberti, F.G. | University of G. d’Annunzio Chieti and Pescara |
| Laucelli, D.B. | Politecnico di Bari |
| Ramos, H.M. | Instituto Superior Técnico |
| No | Keywords | Occurrences | Total Link Strength |
|---|---|---|---|
| 1 | water distribution systems | 64 | 227 |
| 2 | water distribution networks | 35 | 135 |
| 3 | cyber–physical system | 23 | 121 |
| 4 | distribution system | 21 | 93 |
| 5 | water supply | 17 | 86 |
| 6 | electric power distribution | 16 | 65 |
| 7 | water management | 15 | 69 |
| 8 | embedded systems | 10 | 45 |
| 9 | digital twin | 9 | 41 |
| 10 | hydraulic models | 9 | 42 |
| 11 | computer simulation | 7 | 32 |
| 12 | decision-making | 7 | 35 |
| 13 | network security | 7 | 21 |
| 14 | optimization | 7 | 34 |
| 15 | artificial neural network | 6 | 37 |
| 16 | cyber security | 6 | 29 |
| 17 | machine learning | 6 | 35 |
| 18 | water | 6 | 32 |
| 19 | water quality | 6 | 24 |
| 20 | water treatment | 6 | 35 |
| Keywords | Link | Occurrences | Avg. Citations |
|---|---|---|---|
| Cluster 1 (Orange)—Physical and Digital Twin | |||
| cyber–physical systems | 41 | 23 | 16.050 |
| distribution systems | 24 | 10 | 2.900 |
| electric power distribution | 24 | 16 | 7.063 |
| digital twin | 23 | 9 | 6.778 |
| water distributions | 19 | 9 | 0.556 |
| cyber security | 15 | 6 | 3.833 |
| embedded systems | 14 | 10 | 6.000 |
| network security | 11 | 7 | 3.286 |
| Cluster 2 (Green)—Tech-Driven Innovation in WDS | |||
| leak detection | 30 | 10 | 36.800 |
| distribution system | 21 | 11 | 18.546 |
| artificial neural network | 20 | 6 | 11.167 |
| machine learning | 20 | 6 | 11.500 |
| water | 18 | 6 | 9.167 |
| leakage | 17 | 5 | 9.200 |
| anomaly detection | 11 | 5 | 11.800 |
| Cluster 3 (Blue)—CAD and Simulation in WDS | |||
| water distribution networks | 49 | 35 | 36.850 |
| water supply | 25 | 17 | 18.941 |
| hydraulic models | 24 | 9 | 15.444 |
| water management | 22 | 15 | 23.533 |
| optimization | 19 | 7 | 18.286 |
| computer simulation | 17 | 7 | 7.000 |
| real time | 13 | 5 | 42.200 |
| Cluster 4 (Yellow)—Decision-Making | |||
| water distribution systems | 32 | 55 | 10.418 |
| decision-making | 23 | 7 | 10.143 |
| water treatment | 23 | 6 | 6.000 |
| water quality | 15 | 6 | 14.833 |
| water pollution | 14 | 5 | 5.400 |
| potable water | 12 | 5 | 23.000 |
| water resources | 8 | 5 | 5.200 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Canivete, C.R.C.; Chitauro, M.; Flörke, M.; Okorie, M.E. A Bibliometric and Network Analysis of Digital Twins and BIM in Water Distribution Systems. Technologies 2025, 13, 575. https://doi.org/10.3390/technologies13120575
Canivete CRC, Chitauro M, Flörke M, Okorie ME. A Bibliometric and Network Analysis of Digital Twins and BIM in Water Distribution Systems. Technologies. 2025; 13(12):575. https://doi.org/10.3390/technologies13120575
Chicago/Turabian StyleCanivete, Chiamba Ricardo Chiteculo, Mercy Chitauro, Martina Flörke, and Maduako E. Okorie. 2025. "A Bibliometric and Network Analysis of Digital Twins and BIM in Water Distribution Systems" Technologies 13, no. 12: 575. https://doi.org/10.3390/technologies13120575
APA StyleCanivete, C. R. C., Chitauro, M., Flörke, M., & Okorie, M. E. (2025). A Bibliometric and Network Analysis of Digital Twins and BIM in Water Distribution Systems. Technologies, 13(12), 575. https://doi.org/10.3390/technologies13120575

